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Computer models are nowadays part of the biologist’s toolbox for studying biological

dynamics and processes. Tissue development and functioning results from extremely

complicated dynamics, that usual analysis does not come very far in terms of

understanding the processes underlying those dynamics. In this context, mathematical

and numerical models can help to disentangle complex interactions and to analyze

non-intuitive dynamics that drives tissue development and functioning. Since these

are multi-scale processes, both in time and space, there is the need to develop an

appropriate modeling approach. The most promising one is hybrid modeling, that is a

synthesis of the differential equation based reaction-diffusion approach at molecular and

chemical continuous scales, and the Individual-Based modeling approach for simulating

the mechanical and behavioral interactions of the cell ensemble constituting the tissue.

Such an approach has been often used in developmental biology, both for plants and

animals. In this paper, a brief history of hybrid modeling approaches and tools will

be reviewed, and a simple example of its application to a current problem in plant

developmental biology (the appearance of vascular patterning during plant growth) will

be illustrated, showing the intuitiveness and the strength of such an approach.

Keywords: system dynamics, individual-based modeling, differential equations, mathematical models, numerical

simulation, pattern formation, procambium differentiation, primary vascular structure

1. INTRODUCTION

During the first decade of the twenty-first century, biology has been profoundly transformed. The
technological advances of this period contributed to produce a tremendous amount of biological
data, which in turn has made computers fundamental tools in biology research.

Nowadays, researchers have means to investigate cell biophysical, biological and kinetic
properties, providing large and very detailed amount of information to the scientific community.
On the other hand, knowledge on how cell processes combine and give rise to tissue and organ
properties is still meager, mainly because genetic analysis is time consuming when the number of
interacting factors is large. As time passes, and data gathers, it is becoming extremely complicated
to identify the networks underlying the regulation of cell activity, while considering all the parallel
interactions that underlie cellular morphogenesis (Merks and Glazier, 2005).

Traditional research organizes results and develops new hypotheses about the behavior of
gene networks using static schemes, an approach that is unfruitful in all but the simplest cases
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(Merks and Glazier, 2005). This suggests that reconstructing the
dynamics of the genetic regulatory networks with wet research
it is not sufficient. Furthermore, gene networks seem just one
part of the story: insights on the role of mechanical and
physical interactions are needed if one wants to truly elucidate
emergent properties linked to tissues (Dupuy et al., 2008). During
the development of multi-cellular organisms, cells are capable
of interacting with each other through a range of biological
and physical mechanisms. A description of these networks of
interactions is essential for understanding how it is possible for
tissues and organs to co-ordinate cellular activity (Dupuy et al.,
2008).

Working at tissue-level many cellular dynamics have to
be considered, such as cell growth, cell elongation and cell
division: all these are still subjected to intense study and
discussions scientific community. This is particularly felt with
stem cells, whose ability to differentiate is intrinsically linked
to specific biological functions in multi-cellular organisms. A
widespread idea is to “interpret stem cells as non-hierarchical
self-organizing dynamical systems” (De Matteis et al., 2013) and
“stemness” not as an explicit cellular property: stem cells would
be “dynamically selected and modified in response to cell-cell
and cell-environment interactions on the basis of their potential
and flexibility, rather than being specialized a priori” (De Matteis
et al., 2013).

The difficulty of working with living tissues, together
with the aforementioned multi-scale complexity, is a major
limitation to describe such systems, and computer modeling
appears particularly helpful to characterize the behavior of
multi-cellular systems: working with theoretical models and
numerical simulations has proven to be effective in disentangling
the relationship between cellular processes and tissue-level
arrangement (Jönsson and Krupinski, 2010).

2. MODELING IN PLANT DEVELOPMENTAL
BIOLOGY

The first pivotal moment in the history of mathematical
modeling in developmental biology was the publication of
D’Arcy Thompson “On growth and form” (Thompson, 1942),
who spawned a geometrically-oriented approach to the problem.
In plant biology, this path has been followed and extended by
Lindenmayer with its L-system (Lindenmayer, 1975), a modeling
framework for representing 1D linear and branching structures
(e.g., cells, leaves, or shoots) in form of a sequence of elements.
The “geometrical” approach has subsequently been adapted for
describing 2D structures as a graph rotation system, and coded in
vv-system (Smith, 2006) (formore information see Prusinkiewicz
and Runions, 2012).

A second strong contribution to the formalization of
developmental processes in biology came from the works
of Hofmeister (1863), Sachs (1877), and Errera (1886): their
mechanics theories on cells are the foundation of the modern
approach to cell division, even if their use bring some discrepancy
between models and observations (for a solution to this, see
Besson and Dumais, 2011).

Another decisive contribution on theoretic developmental
biology has been made by Turing, with his paper on biological
pattern formation (Turing, 1952), whose concepts have been
extensively used for showing that molecular-level interactions
may lead to morphogenesis and differentiation. Turing used
a system of partial differential equations (PDE) in his work,
a mathematical tool widely used in biological modeling, for
describing substance diffusion and reaction. This approach
evolved to this day in plant science as a chemical/molecular-
oriented one, mainly thanks the works of Meinhardt (1982).

Since the diffusion of these ideas, the contributions of
mathematical modeling to developmental biology have grown
substantially and contributed to many interesting results (for an
in-depth review see Prusinkiewicz and Runions, 2012), but the
issues with modeling multi-cellular systems have remained.

2.1. History of Cellular Based Models in
Biology
During the last decade, more and more developmental
plant biologists turned to mathematical models to explore
their hypotheses, and specialized packages appeared for
facilitating model construction. Following the realization that
developmental processes depend on both geometrical and
molecular dynamics, a synthesis of these two approaches has
been performed, and some hybrid tools appeared on the scene.
This hybrid approach has a deep conceptual meaning, since
joining the geometrical and the molecular point of view means
working simultaneously at different temporal and spatial scales
(i.e., it is a multi-scale approach). A key point in this kind
of approach is to establish a certain degree of simplification
of cell processes, since using complex molecular models of
the cell for simulating tissue-related dynamics (Krul et al.,
2003) has been found very computationally demanding and
too complex for gathering insights. It is possible to assimilate
cells to well-mixed compartments and single cell functions can
be represented in a very “simplified” way, still capturing the
complexity of their spatial interactions. Considering a tissue
as an ensemble of such “simplified” cells facilitates the search
for the emergence of tissue organization due to the collective
behaviors of the single cells; these behaviors are dependant on
both cell internal processes and interactions with neighboring
cells. Since chemical substances are signals regulating internal
cell dynamics, reaction-diffusion processes, are key players in
tissue modeling.

This approach is called cell-based modeling. As stated by
Palm and Merks (2015): “The inputs to a cell-based model are
the behavioral rules that cells follow. The output of a cell-based
model is the tissue morphogenesis that follows indirectly from
the collective behavior of the individual cells”

Spatially explicit, cell-based paradigms can be broadly
classified according to the cells being part of a grid (in-lattice
models) or not (off-lattice models).

A widespread in-lattice paradigm in animal developmental
biology modeling is the Cellular Potts Model (CPM; Glazier and
Graner, 1993), a modeling approach that considers single cells as
agents trying to minimize their internal energy while growing,
dividing, and interacting with chemical fields.
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The CPM represent cells as a groups of neighboring pixels,
distinguishing between boundary and non-boundary pixels
in order to define interaction sites, and uses an energy-
based approach for simulating growth, cell-cell interaction, and
for maintaining cell shapes. Molecular details, i.e., substance
production and diffusion, are handled by ODE and PDE
(Ordinary and Partial Differential Equations) solvers coupled
with geometric informations and with the growth process, that
also permit to consider other continuous (eventually spatially-
explicit) processes. The CPM approach has been successfully
applied to a vast array of biological problems: here we will cite
tissue patterning (Savill and Sherratt, 2003; Zeng et al., 2004),
morphogenesis (Zajac et al., 2003), tumorigenesis (Turner and
Sherratt, 2002), and vasculogenesis (Scianna and Preziosi, 2012).

While some models of plant systems have been produced
within the CPM paradigm, it is considered unfit for simulating
plant tissue dynamics. These are strongly influenced by the
presence of a cell-wall, which is responsible for maintaining
cell geometry, for preventing cell motility, and it is involved in
substance (e.g., auxin) transport. The CPM lacks a proper way
to simulate cell wall dynamics, and the paradigm chosen for cell
geometrymakes cell shape andmotility (absent in almost all plant
cells, due to the cell wall) difficult to control.

Merks et al. (2011) proposes an appropriate solution,
starting from the CPM but using for geometry an off-grid
modeling approach that describes cells as polygons delimited
by cell walls, considered as separate entities and shared among
adjacent cells. Walls are assimilated to mechanical springs, so
that growth and mechanical interactions could be computed
by means of a Markovian relaxation algorithm. Additional
differential equations model diffusive transport across the two
cell membranes and across the cell wall separating adjacent cells.
As in the original CPM, sets of ordinary differential equations in
each cell describe dynamics of biochemical networks and genetic
regulatory networks.

Since the hybrid approach has proven itself fruitful, other
variations have been developed, changing the way cell geometry
and/or topology are defined, e.g., using L-system (Wabnik et al.,
2013) or considering cells as polygonal (Dupuy et al., 2008) or
Voronoimeshes (Mebatsion et al., 2006), as well as using different
ways to describe cell walls and to render mechanical interactions,
such as assimilating the structure to a spring (Shapiro et al.,
2013) or a viscous fluid (Dupuy et al., 2008), and use appropriate
physical models for simulating their behavior.

Since the diffusion of mathematical models as plant
developmental biology tools, a few general purpose tools have
been made, in order to allow non-programmers to enter the field.

The CPM has been integrated in the CompuCell3D software
environment (Izaguirre et al., 2004—http://www.compucell3d.
org), a python-based, extensible general-purpose framework used
in biology for simulating in 2D and 3D a range of biological
dynamics. Compucell3D has been used mainly for studies in
human tumorigenesis (Boghaert et al., 2014; Swat et al., 2015)
and animal tissue development (Dias et al., 2014), albeit other
processes have been simulated (Popławski et al., 2008; Zhang
et al., 2011; Giverso and Preziosi, 2014). It is not particularly
suited for plant tissues, mainly because it is based on the CPM,

although a model of root growth has been developed with this
method (Grieneisen et al., 2007).

The plant-specific approach of Merks, based on the CPM,
has been implemented in the VirtualLeaf modeling framework
(Merks et al., 2011—https://biomodel.project.cwi.nl/software)
for 2D tissue simulation. VirtualLeaf is written in C++, and
comes with pre-programmedmodules simulating many accepted
results. It is possible to write new modules in order to test new
hypotheses.

CellModeller (Dupuy et al., 2008—https://haselofflab.github.
io/CellModeller/) is another stand-alone environment build
with a modular approach and written in python, for modeling
large-scale multi-cellular systems in 2D. As in other tools cell
topologies are graph rotation system (i.e., composed of nodes
and edges), and inter- and intra-cellular chemical interactions
are formalized as PDEs and ODEs. Mechanical interactions
and growth are simulated through physical laws regulating
rearrangement of the cell nodes following strain/stress of the cell
wall, itself rendered as a viscous fluid. This tool has been used for
modelingmicrobial biofilms (Rudge et al., 2012), but his potential
for modeling plant cells related dynamics has been often stated
(Dupuy et al., 2008; Liu and Stewart, 2015).

Some other tools have been programmed as extension for
pre-existing software environment, like CellZilla (Shapiro et al.,
2013—http://www.cellzilla.info/) that extends the xlr8r (Shapiro
et al., 2003)Mathematica package capabilities of solving chemical
reactions as sets of ODE to 2D tissues. The topology of the
cell is described as a set of nodes (vertexes), with the segments
joining them (edges) being the cell wall. Using xlr8r, inter- and
intra-cellular chemical interactions are formulated as differential
equations; growth and mechanical interactions are modeled
considering the walls subject to springs whose behavior is
regulated by Hooke’s law. CellZilla has been used for simulating
auxin-driven development in the apical meristem of Arabidopsis
thaliana L. (Nikolaev et al., 2013).

Finally, VPlants (https://team.inria.fr/virtualplants/) is a set
of packages belonging the OpenAlea software environment that
permit to analyze, model and simulate tissue dynamics (for detail
on OpenAlea see Pradal et al., 2008). Its “Tissue” package permits
to simulate tissues growth and division, starting from a single
cell, or after reconstructing a digital tissue from a photograph.
The cell is geometrically described as a polygon, and the user
may choose different algorithms for growth; division is similarity
coded on the basis of the user’s needs. VPlants has been used
for simulating, among other things, vascular development in A.
thaliana (Muraro et al., 2014).

3. EXAMPLE OF HYBRID MODEL
APPROACH

Vascular plants are characterized by a pervasive, specialized
system of vessels, composed of two types of tissues: xylem,
cells that transport water and mineral nutrient, and phloem
cells that carry sugars and other organic molecules. The spatial
position and differentiation of such vascular cells is established
during early phases of tissue development. In the plant embryo,
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four cells buried inside the cell mass are activated as an
undifferentiated tissue named procambium: they will grow and
divide following specific procedures, increasing the number
of cells and forming a cylinder of procambial tissue. As the
embryo matures, two zones will start to act as “stock” of
undifferentiated cells: one on top, called shoot apical meristem,
and the other, called root apical meristem, on the lower part
of the embryo. Adjacent to the two apical meristems, some
procambial cells will further divide, generating precursors of
vascular cells (Jouannet et al., 2015). Peculiar procambium
arrangement patterns will emerge during this phase, that will
be propagated by the two meristems as the plant grows in
height.

These arrangement patterns vary among species (Beck et al.,
1982) but also between the stem and the root of the same
individual.

How these arrangements arise, how they are maintained,
and what causes their diversity are open questions that have
been puzzling plant scientists and modelers for a long time
(Jeffrey, 1903; Sieburth and Deyholos, 2006; Muraro et al., 2014).
From an experimental standpoint, studies in plant vascular
morphogenesis have followed the reductionist route, as the
key players shifted from structures (Esau, 1960) to cells, and
from those to genes (Caño-Delgado et al., 2010) and proteins
(Sieburth and Deyholos, 2006), with many regulatory elements
discovered recently (Donner et al., 2009), most of them in the
species A. thaliana. At the moment there is only an approximate
knowledge of the underlying dynamics (Jouannet et al., 2015),
derived mainly from studies on plant hormones like auxins
(Scarpella et al., 2006), brassinosteroids (Vert and Chory, 2006),
and cytokinines (Mähönen et al., 2006); most of these focus on
single aspects, and there is the need for a clarification of the
interaction of these aspects both spatially and temporally.

3.1. Existing Models and Limitations
Whilst mathematical models have proven to be a good tool
in helping to understand the connections between cells and
tissues (Jönsson and Krupinski, 2010), they do so focusingmainly
on sub-cellular processes related to plant hormones, especially
auxins (Prusinkiewicz and Runions, 2012). The first steps were
laid by Sachs (1969), with the so-called ’canalization hypothesis’,
used by various molecular models exploring the vascularization
processes (Mitchison, 1980; Feugier et al., 2005; Bayer et al.,
2009).

The first to approach plant primary vascular structure
specification and arrangement were Muraro et al. (2014), with
a multicellular model that explores the hypothesis of a vascular
patterning mechanism dependent on hormones interaction in
a very specific context (the roots of A. thaliana in a steady-
state condition). Starting from a set of experimentally determined
factors (i.e., gene products and hormones), the authors build
a model formalizing the interaction between these factors and
propose a minimal regulatory network capable of maintaining a
stable vascular pattern in Arabidopsis root without predefined
positional information (Muraro et al., 2014). This model used
VPlants from the OpenAlea environment to simulate the tissue
geometry and auxin diffusion.

The theory of an auxin-dependant patterning in A. thaliana
has been further explored with the model of De Rybel
et al. (2014), which combined experimental evidence and
modeling work to investigate the interactions between
auxin and cytokinin and their involvement in early embryo
development. The model, formulated using VirtualLeaf,
shows how these hormones contribute to cell division and
differentiation of vascular tissues providing positional cues for
the establishment of a stable spatial pattern within a growing
domain.

Another model, based on reaction-diffusion dynamics, has
been proposed by Cartenì et al. (2014) for simulating the
differentiation and the spatial patterning of procambium,
phloem and xylem. This theoretical model was formulated
as a set of activator–substrate systems (Meinhardt, 1982)
describing the dynamics of nine diffusible morphogens whose
interactions lead to the differentiation of vascular tissues and the
emergence of their spatial patterns. This model, implemented
in MATLAB (MathWorks Inc.—https://www.mathworks.com/
products/matlab/) successfully recreated a broad range of
vascular arrangements, working with a fixed domain and without
considering individual cell dynamics.

In order to provide a procedural example of development
of a hybrid model, we built a simple model of A. thaliana
root and stem early vascular differentiation. The hybrid
approach permits to take into account both the molecular and
geometric perspectives (Figure 1), thus providing the chance to
capture emergent properties linked to the interaction of these
two phenomena The use of VirtualLeaf approximates spatial
interactions among cells in a computationally convenient way
(Merks and Glazier, 2005), even if it considers stochastic-based
dynamics not necessarily linked with cells biological properties
(Merks et al., 2011).

3.2. Model Description
As mentioned in the introduction, it is possible to work with
tissue-related dynamics using a hybrid modeling approach
(Vincenot et al., 2011), i.e., coupling an Individual-Based
Model (IBM) with a continuous PDE/ODE mathematical model.
Under this paradigm, the IBM will account for internal cell
rules and cell-cell interactions, whilst a set of differential
equations will regulate substance physics and continuous
processes.

Vincenot et al. (2011) proposed a conceptual framework
comprising a set of reference cases representing combination
patterns of SD and IBM sub-models, which shall serve as building
blocks for hybrid models. The model described here fits into
case 2b of the framework, since cells are represented as IBM
individuals and a SD sub-model is embedded in each cell to
compute growth and substance dynamics. Single cells are then
networked depending on the adjacency of their walls, forming
thereby a tissue.

Starting from Cartenì et al. (2014), we built a hybrid, growing-
domain model of cell growth and differentiation in the roots
and stems of A. thaliana; this model considers simplified tissue
dynamics, and the production of four diffusible, cross-reacting
substances (S0, S1, S2, and AP) which are responsible for
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FIGURE 1 | An individual agent is described by its geometric properties (Area, Shape and derived Center of mass) and cell type. Each type is

characterized by a specific metabolism (ODE) with products whose concentration is dynamically linked with diffusion processes (PDE).

procambium differentiation and proliferation. In this particular
case, the PDE mathematical formulation is a simplified version
of the Reaction/Diffusion model presented in Cartenì et al.
(2014).

The model is not meant to provide a one-to-one
correspondence with specific gene products or plant hormones
or insights into the molecular mechanisms of vascular
differentiation. It was rather selected for the simplicity of
formulation and for the fact that to date it is the only one that
provides a general framework (although only theoretical) for
the spontaneous emergence of different spatial arrangements
of vascular bundles. For more detail on the models underlying
assumptions, see Cartenì et al. (2014).

The model domain is a transversal section of growing A.
thaliana tissue. Each one of the cells composing the tissue is a
complex agent made by the cell itself and by a polygonal cell
wall, shared with neighbor cells. The cell agent properties are the
position, the type (Table 1), the area, and the concentration of all
substances considered in the model.

The model itself considers four substances:

• S0, produced by the cell walls contacting the medium/outside.
It represents the signal involved in the creation of a radial
gradient that determines the establishment of pith, inner, and
outer layers of cells.

• S1 and S2, produced respectively by the inner or the outer cells.
These represent signal substrates regulating the production of
the activator AP.

• AP, produced by the reaction between S1 and S2. It represents
the procambium activator that triggers the differentiation of
procambial cells.

All substances diffuse between cells but not outwards the tissue,
and all four are considered homogeneous in the individual cell
space.

In the model, cells grow at a constant rate (controlled
by the parameter ka, see Table 2), dividing if their size
reach twice the original size. A theoretical substance (S0), is
then produced in the outermost layer of cells, contributing
to the creation of an inside/outside gradient; and the other
substances are produced according to cell type (Table 1).
Each chemical species inside the cell diffuse through the
tissue and react with each other according to the following
equations:

TABLE 1 | Differentiation and substance production rules.

ID Type Differentiation condition Substance

produced
On S0 ON AP

0 Pith [S0 ] < S0 Any None

1 Inner S0 < [S0 ] < Ŝ0 [AP ] < AP S1, AP

2 Inner procambium S0 < [S0 ] < Ŝ0 [AP ] > AP S1, AP

3 Outer [S0 ] > Ŝ0 [AP ] < AP S2, AP

4 Outer procambium [S0 ] > Ŝ0 [AP ] > AP S2, AP

∂S0
∂t

= σ0 − µ0S0 + DS0∇
2S0 (1)

∂S1
∂t

= σ1

(
1−

S1
1+ kSAP

)
− ρSA

2
PS1S2 + DS∇

2S1 (2)

∂S2
∂t

= σ2

(
1−

S2
1+ kSAP

)
− ρSA

2
PS1S2 + DS∇

2S2 (3)

∂AP

∂t
= σAP

+ ρAP
A2
PS1S2 − µAP

AP + DAP
∇

2AP (4)

with:

σ1 =

{
σS if cell is not type 0 and is (type 1 or type 2)

0 else
(5)

σ2 =

{
σS if cell is not type 0 and is (type 3 or type 4)

0 else
(6)

Algorithmically, at the beginning of each simulation time step
the concentration of the substances inside each cell is checked
and, if any of the threshold values in Table 1 are met, the
cell type attribute is updated; then the cell grows taking into
account mechanical constraints due to cell-cell interactions, and
the area and shape attributes are updated. After growth the
cell size is checked for evaluating if to divide or not. The
model then computes the reaction/diffusion module, based on
its type (Table 1), and all substances first diffuse and then
react among each other following the aforementioned system of
Partial Differential Equations, taking into account geometry and
topology. Then, the model enters the next time step.

In order to further explore the hybrid-model capabilities of
VirtualLeaf, another simple assumption has been implemented
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TABLE 2 | List of parameters values.

Module Parameter Description Parameter

value

IBM S0 Threshold value for pith cell

differentiation

0.02

IBM Ŝ0 Threshold value for internal cell

differentiation

0.2

IBM AP Threshold value for procambium cell

differentiation

0.5

PDE σ0 S0 production 1

PDE µ0 S0 consumption rate 0.2

PDE DS0
S0 diffusion coefficient 0.1

PDE σ
S

S basic production rate 0.1

PDE kS S production saturation constant 20

PDE ρ
S

S cross-reaction coefficient 0.8

PDE DS S diffusion coefficient 0.5

PDE σ
AP

AP basic production rate 0.001

PDE ρ
AP

AP cross-reaction coefficient 0.3

PDE µ
AP

AP removal rate 0.02

PDE D
AP

AP diffusion coefficient 0.001

FIGURE 2 | Schematization of Arabidopsis thaliana vascular structures

in stem and primary root. (a) Stem/root tip; (b1) stem section scheme; (b2)

stem section micrograph; (c1) root section scheme; (c2) root section

micrograph. Micrographs reproduced with permission of Avsian-Kretchmer

et al. (2002).

for the description of cell growth and division. In this case cells
still grow at a fixed rate, but the division threshold is modeled as
inversely proportional to the S0 concentration. Cell size increases
with the distance from the outermost layer of cells.

FIGURE 3 | Model output for root (A) and stem (B) sections. Gray is

procambium, white is non-procambial tissue.

Parameter definitions and values for both the variants of the
model are the same; they are presented in Table 2.

3.3. Model Output and Discussion
A set of simulations was performed to test the capabilities of
the model to reproduce the provascular patterns observed in A.
thaliana plants (Figure 2).

Figure 3 shows the output of two model simulations run
for 1785 (Figure 3A) and 11505 (Figure 3B) time steps. All
parameter values for the two simulations were the same.

From these results it is possible to observe how procambium
arrangement is an emergent property dependent both on
the reaction/diffusion dynamics that lead to the formation
of Turing patterns (Turing, 1952) and on the tissue size,
that influence the aforesaid dynamics and contribute to the
differences between the stem (bigger domain) and the root
(smaller domain) patterns. This model thus confirm, in a
growing domain, the results presented by Cartenì et al. (2014).
that the shift between a protostelic arrangement (Figure 3A)
and a eustelic arrangement (Figure 3B) could be attributed
only to the size of the domain in which the molecular dynamics
occur. Moreover, both simulated sections show roughly the
same cell number and the same total area of the reference
photomicrographs (Figures 2c1,b2). However, in the real system,
cells are heterogeneous in dimensions and the difference
between the model and the real system can be reduced if a
further assumption for growth and division dynamics is added
to the model.
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FIGURE 4 | Output from alternative growth model.

The output from the third model simulation (Figure 4) shows
how a simple rule can affect the system state producing a
difference in terms of size among the cell rows, linked to the
concentration of S0 inside the cells. Cells leaving meristematic
zones often enlarge to hundreds of times their original size
and the final size depends on the position they occupy in the
radial arrangement. Cell expansion usually results from the
combination of two processes: the increase in cell ploidy by
endoreplication (DNA replication with no mitosis), and the
complex process of cell expansion, which is driven by internal
turgor pressure and restricted by the ability of cell walls to
extend (Perrot-Rechenmann, 2010). These processes are under
the control of several stimuli that can be spatially heterogeneous.
In the presented simulation, this was achieved inserting the
inverse of the concentration of a certain substance (S0) as a term
in the algorithm that triggers cell division. The condition may
simulate the dynamics of a substance that inhibits cell growth,
whose biological counterpart may be a sugar or a plant hormone
(e.g., Evans et al., 1994).

The proposed solution effectively reproduced the radial
pattern of cell sizes observed in Arabidopsis stems (Figure 1).
This result is an example of how a simple individual rule
makes a complex collective behavior emerge and illustrate
the potential of VirtualLeaf for exploring spatial-explicit tissue
dynamics.

The spatial position of plant vascular cells is established during
early phases of development, when some cells are activated as
procambium, and it is maintained along the plant life-span.
Procambium arrangement patterns vary among different species

but also between the stem and the root of the same individual:
how they arise, how they are maintained, and what causes their
diversity are open questions. Modeling the dynamics of the
system in a manner appropriate to answer these questions is
considered a complex challenge, since the system analyzed is
multi-scale and characterized by a vast number of processes.
IBMs and PDEs are unsuitable for this task, mainly because
taken separately, these approaches are not able to efficiently

describe multi-scale systems: the former cannot account for
continuous dynamics and the latter cannot work with discrete
elements.

In our case, a purely IBM approach would not efficiently
model the diffusion of substances among cells (a continuous
process) while a PDEmodel would fail to represent the properties
of the single cells, mainly because it considers the tissue as a whole
characterized by average properties (for the meaning of whole
in this context, see Vincenot et al., 2011). A hybrid modeling
approach, instead, may be suitable because it permits to analyze
multi-scale systems like tissues without oversimplifying them.
Beside preventing conceptual approximations, this approachmay
became necessary in order to inspect properties emerging from
the interaction of processes that cannot bemodeled with the same
paradigm, as those linking individual properties with diffusion
dynamics. In order to test this hypothesis we built a model
using a hybrid approach, i.e., individual-based rules for modeling
networks and interactions, and differential equations to model
growth and diffusion.

4. CONCLUSIONS

This paper presented a brief review of cellular-based modeling
in plant developmental biology, pointing out its strength and
showing available tools. The present state is that models
addressing the dynamics of root and stem vascular differentiation
are few, and almost all of them work with static-domains, albeit
the modeling tools proposed are more than capable to handle
growing domains.

The paper also presents an example on how to analyze
tissue-related dynamics using a hybrid modeling approach. The
presentedmodeling process showed that this approach represents
an efficient way to simulate tissue-level dynamics, because it
provides an intuitive manner to aggregate individual based
dynamics with continuous processes like diffusion. A model
built with this technique permits to observe emergent processes
linked to the interaction of these discrete/continuous elements.
A simple tissue growth model with a process-based condition
of cell division shows how VirtualLeaf is capable to link spatial
individual properties and process-based internal processes.
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