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Mining Functional Modules in
Heterogeneous Biological Networks
Using Multiplex PageRank Approach

Jun Li † and Patrick X. Zhao*

Bioinformatics Lab, Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA

Identification of functional modules/sub-networks in large-scale biological networks

is one of the important research challenges in current bioinformatics and systems

biology. Approaches have been developed to identify functional modules in single-class

biological networks; however, methods for systematically and interactively mining

multiple classes of heterogeneous biological networks are lacking. In this paper, we

present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank

approach to mine functional modules from two classes of biological networks. We

demonstrate the capabilities of our approach by successfully mining functional biological

modules through integrating expression-based gene-gene association networks and

protein-protein interaction networks. We first compared the performance of our method

with that of other methods using simulated data. We then applied our method to identify

the cell division cycle related functional module and plant signaling defense-related

functional module in the model plant Arabidopsis thaliana. Our results demonstrated that

the mPageRank method is effective for mining sub-networks in both expression-based

gene-gene association networks and protein-protein interaction networks, and has the

potential to be adapted for the discovery of functional modules/sub-networks in other

heterogeneous biological networks. The mPageRank executable program, source code,

the datasets and results of the presented two case studies are publicly and freely available

at http://plantgrn.noble.org/MPageRank/.

Keywords: heterogeneous biological network, sub-network, functional module, multiplex PageRank, mPageRank,

gene expression association network, protein-protein interaction network, Arabidopsis thaliana

INTRODUCTION

The advent of systems biology, which often integrates microarray- or RNA-Seq-based
transcriptomics, proteomics, and metabolomics analyses, has made this an opportune time to
determine how biological processes and complex phenotypes (also called traits) are regulated in
living cells. In the post-genomics era, the development of high-throughput “omics” technologies
has generated vast amounts of mRNA, protein, andmetabolite profiles for many eukaryotic species,
and much of this “big data” has been made publicly accessible through data repositories (Pruitt
and Maglott, 2001; Parkinson et al., 2005; Barrett et al., 2007; Brandao et al., 2009). “Big data” has
the potential to provide unprecedented insights into the various biological processes, including
trait-regulation, leading to the discovery of vast amounts of novel biological information.
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Bioinformatics and systems biology approaches, which
include biological network analyses, have great potential to
elucidate the fundamental mechanisms that govern dynamic
cell organization and function. In the past decade, a number
of experimental (Rual et al., 2005; Arabidopsis Interactome
Mapping Consortium, 2011) and computational (Ma et al.,
2007; Brandao et al., 2009; Stark et al., 2011; Li et al.,
2013, 2014) approaches have been developed to generate and
predict protein-protein interaction networks, transcriptional
regulatory networks, gene-gene co-expression networks, and
metabolic networks in humans, animals and plants. The current
challenge, however, is how to effectively identify significant
functional modules or sub-networks in these extensive global
networks. Complex biological processes in livings cell are
carried out through interactions between multiple functional
modules at various levels (Barabasi and Oltvai, 2004; Cancer
Genome Atlas Research Network, 2008), and members of the
same functional module are often more densely connected
than those across functional modules (Hartwell et al., 1999).
Based on these observations, various clustering approaches,
including hierarchical clustering, k-mean clustering, andMarkov
clustering, have been applied to identify function-specific
modules in single-class biological networks (Eisen et al., 1998;
Wu, 2008; Shih and Parthasarathy, 2012).

Due to the dynamic characteristics of living cells, networks
generated from a single data source are usually limited, and
can only reveal partial, static snapshots of the cell. Additionally,
current technologies are often plagued by noise, leading to
biases and low confidence in networks constructed by these
technologies. To provide an accurate and comprehensive
understanding of biological systems, the integration of different
types of biological data has become an important and popular
strategy. A number of approaches (Ideker et al., 2002; Chuang
et al., 2007; Dittrich et al., 2008; Inoue et al., 2010) have been
developed to facilitate the identification of context-dependent
active functional modules/sub-networks by integrating protein-
protein interaction (PPI) networks with gene expression data.
On the basis of the topology structure of a PPI network, most
of these methods first devise a function to score interacting
edges or nodes in PPI networks while taking into account the
gene expression data, and then employ optimization algorithms
or graphical clustering algorithms to search the high-scoring
modules/sub-networks (D’haeseleer et al., 2000; Enright et al.,
2002; Langfelder and Horvath, 2008; Inoue et al., 2010). These
methods have achieved some success in identifying biologically
significant sub-networks, but have noticeable limitations. First,
high confidence PPI networks are far from complete, especially
in plants, and significant proportions of biologically significant
genes/proteins may be overlooked in the PPI networks. For
example, the PPI data included in the database of Arabidopsis
thaliana protein interaction networks (Brandao et al., 2009)
only include 201,699 interactions among 15,426 genes, while
the genome of the organism encodes more than 20,000 genes.
Second, cellular processes are the result of elegant coordination
among gene regulation, signal transduction, and protein-protein
interactions, etc. Some key proteins or genes that mediate or
control these interactions among other cellular processes may

be overlooked when utilizing a single network, even when the
data are integrated with other types of biological data. Therefore,
systematic and comprehensive mining of functional modules
in heterogeneous biological networks, such as protein-protein
interaction/protein-DNA interactions and gene-gene expression
network, etc., is a better approach for understanding the complex
mechanisms that govern the dynamic organization and function
of living cells.

The Multiplex PageRank method (Halu et al., 2013), which
is an extension of the widely used PageRank method (Langville
and Meyer, 2006), leverages network transitivity to rank nodes
in heterogeneous social networks. It simulates “bias random
walking” on multiple networks to rank nodes in multiplex
systems, in which the importance of a node in one network
is affected by the importance that node gained in another
network. The more important a node is in network A, the
more important that node, and the nodes connected to it, in
network B. The Multiplex PageRank method also considers the
importance of the node’s in-neighbors in the corresponding A/B
network. The method has been shown to be highly accurate
in community discovery in social networks (De Domenico
et al., 2015). Recent studies (Girvan and Newman, 2002; Zhu
et al., 2007; Vashisht et al., 2013) indicate significant similarities
between biological networks and social networks in term of
network properties, including the small-world property, power-
law degree distribution, and network transitivity.

Here we present a novel method, named mPageRank,
which adopts the Multiplex PageRank strategy to mine
functional modules in heterogonous biological networks,
including expression-based gene-gene association networks
and protein-protein interaction networks. We demonstrated
the effectiveness of our method by benchmarking against
other existing methodologies, using both simulated data and
experimental data. Compared with other methods and tools
such as the jActiveModule method (Ideker et al., 2002), kwalks
method (Faust et al., 2010), and DMSP method (Maraziotis et al.,
2007), ours was the most accurate. We further demonstrated
the effectiveness of our method by identifying cell division
cycle related and plant signaling defense-related functional
modules/sub-networks in Arabidopsis thaliana. These results
suggest that the mPageRank is a promising approach for
mining functional modules in heterogeneous biological
networks.

MATERIALS AND METHODS

Analysis Procedures
We developed a novel Multiplex PageRank-based algorithm
to extract biologically significant functional modules in
heterogonous biological networks, including gene expression-
based gene-gene association networks and protein-protein
interaction networks. Starting from seed genes, we iteratively
simulated biased random walks on a gene-gene association
network and a protein-protein interaction network to prioritize
those genes related to the seed genes. We then extract the
sub-networks based on the rank scores of all the genes in both
networks. The analysis flow is illustrated in the Figure 1.
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FIGURE 1 | The key steps in the functional module/sub-network identification analysis.

Construction of the Expression-Based
Gene-Gene Association Networks
To construct gene expression-based gene-gene association
networks for Arabidopsis thaliana, a total of 4162 microarray
hybridization-based gene expression profiles were downloaded
from the ArrayExpress data repository (Parkinson et al.,
2005). The dataset was firstly normalized using the Robust
Multi-array Averaging (RMA) method (Irizarry et al., 2003).
The gene association networks, including 22,497 nodes
(genes) and 2,106,763 edges (links between genes), were then
reconstructed by our DeGNServer (Li et al., 2013), which is a
powerful high performance web server developed for large-scale
gene association network (GAN) construction and analysis.
Reconstruction was performed using the Spearman-based
Context Likelihood of Relatedness (CLR) with the z-score
threshold set at 4.3.

Scoring Arabidopsis thaliana

Protein-Protein Interactions Based on the
Gene Ontology (GO) Term Semantic
Similarity
The Arabidopsis protein-protein interaction dataset was
downloaded from the AtPIN database-Arabidopsis thaliana
protein interaction network (Brandao et al., 2009). The
Arabidopsis thaliana gene ontology (GO) annotations were

downloaded from https://www.arabidopsis.org/portals/
genAnnotation/functional_annotation/go.jsp. The protein-
protein binary interactions were scoredwith Resnik implemented
in GoSemSim (Yu et al., 2010), which is an R package for
weighing binary protein-protein interactions by measuring the
semantic similarity among GO terms of gene products (GO-term
based protein annotations).

mPageRank Method
Here, we define the expression-based gene-gene association
network as network A and the protein-protein interaction
network as network B.

We first constructed the transition matrix, WA, based on the
gene-gene correlation values for network A, and the transition
matrix, WB, based on the GO term semantic similarity scores
for the proteins in the network. The transition probability from
gene i to gene j was calculated using the following equation
(Equation 1),

w
(

i, j
)

=
c
(

i, j
)

n
∑

k=1

c
(

i, k
)

(1)

where c(i, j) is the correlation value or similarity score between
gene i and j; if there is no interaction between gene i and j, then
c(i, j) is zero. n is the number of genes that interact with the gene i.
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On network A, we performed multiple iterations of biased
random walks to rank genes using the following equation
(Equation 2),

x
(n)
i = αA

∑

j

WA

(

i, j
)

× x
(n−1)
j + (1− αA) × p (i) (2)

where p(i) is set to 1/k for each seed gene, with k indicating
the number of seed genes, and where x0i is set to 1/m, with m
indicating the total number of genes in the network. Here, known
genes in a biological pathway or a functional module may be used
as the seed genes. p(i) specifies preference for node i. αA denotes
the probability of “returning” to one of the seed genes.

The error tolerance was defined as the Euclidean distance
between the current iteration and the previous iteration: Error

tolerance = Distance (x
(n)
i , x

(n−1)
i ), where n is the number of

iterations.
In our experiments, an error tolerance threshold at 1e-10 was

empirically tested sufficient to reach the convergence. Therefore,
the error tolerance threshold is set at 1e-10 by default in the
software. However, a user defined error tolerance threshold is also
allowed. The output rank score for each gene iwas reflected as the

node importance score, denoted x
(A)
i .

On network B, we performed the biased randomwalk iteration
process to rank genes as applied to network A, using a similar
equation (Equation 3, below). As with network A, iterations were
performed until the error tolerance was less than 1e-10.

x
(n)
i = αB

∑

j

x
(A)
j WB

(

i, j
)

× x
(n−1)
j + (1− αB) × p (i) (3)

As in Equation 2, p(i) was set to 1/k for each seed gene, with k
indicating the number of seed genes, and where x0i is set to 1/m,
with m indicating the total number of genes in the network. αA

and αB were set to the value of 0.85 based on an empirical value
(Halu et al., 2013). The output rank score for each gene i was

reflected as the node importance score, denoted x
(AB)
i .

Construction of Functional Module and
P-value Estimation
Based on a user-specified output number of top-ranking nodes,
n, our algorithm first grouped the top ranked nodes (in both
networks) associated with the seed genes by alternative random
walks into a functional module. Then, the interactions with nodes
included in the functional module were added to the module as
edges to denote the interactions in the gene expression-based
association networks or protein-protein interaction networks.
Finally, to evaluate the significance of the functional module, one
million of potential modules with same number of nodes were
randomly sampled, and a one-sample Z-test was then applied to
calculate the Z-score using the following equation (Equation 4):

Z − score = (x− u) /

(

σ
√
n

)

(4)

The Z-score of the identified functional module was converted to
a p-value for downstream analyses.

Gene Set Enrichment Analysis (GSEA)
Gene set enrichment analysis (GSEA) was performed using the
online tool agriGo (Du et al., 2010) (http://bioinfo.cau.edu.cn/
agriGO/). The significance of the GO term enrichment was
determined using a Fisher’s exact test with the entire Arabidopsis
thaliana genome as the background reference. A Yekutieli
correction was used to control for false positives.

RESULTS AND DISCUSSION

Performance Benchmark Analysis Using
Simulation Data
We benchmarked the performance of our Multiplex PageRank-
based method by comparing its performance against that
of jActiveModule (Ideker et al., 2002), kwalks (Faust et al.,
2010), and the method originally described by Ioannis
et al. (Cancer Genome Atlas Research Network, 2008).
The jActiveModule is a tool for module extraction from
protein-protein interaction network through combining with
expression profiles. In jActiveModule, the similarity for each
interaction is measured with the expression value. The other
two methods were developed based on the similar idea, but
with different graph search strategies. These methods may have
their advantages to identify those modules with high consistence
between the expression profiles and PPI interactions network.
However, such type of methods does not utilize the topological
relationships inferred from expression profiles. In contrast,
our mPageRank method effectively utilizes the topological
relationship information via converting the expression profiles
into gene-gene association networks, then walking on the two
graphs (PPI networks and gene-gene association networks)
to identify functional modules. Therefore, besides those
interactions are highly consistent between two networks could be
included, those interactions that are highly confident in a single
network could also be included in the extracted subnetworks or
functional modules. To generate simulation data for performance
benchmark analysis, a yeast cell cycle pathway related module
that included 113 genes and 369 experimentally validated
interactions were downloaded from KEGG pathway database
(Kanehisa et al., 2014) and used as the ground truth module
for our benchmark performance analysis. We also extracted
yeast cell cycle specific protein-protein interaction networks
from the BioGRID database (Stark et al., 2011) Combining
the two datasets, we created a network with 575 total genes
and 803 total interactions, 685 of which were identified from
protein-protein interactions. Due to the lack of experimentally
validated expression datasets that could be applied to accurately
extract all known interactions from this network, we utilized
the widely used software, SynTren Van Den Bulcke et al.,
2006, to generate a series of simulated expression datasets for
performance benchmark analyses. We define as true positive
(TP) a non-seed node that is present in both the reference
pathway and in the inferred module, while a false positive (FP)
was defined as a non-seed node found in the inferred module but
not in the reference pathway. We defined a false negative (FN)
as a non-seed node present in the reference pathway but not
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in the inferred module, while a true negative (TN) was defined
as a node absent from both the inferred module and reference
pathway. Using the true/false positive and true/false negative
rates, the prediction accuracy of each method was evaluated by
plotting Precision-Recall (PR) curves, where the Precision was
calculated as TP/(TP + FP) and the Recall was calculated as
TP/(TP + FN). A series of functional modules were chosen with
the variable sizes of the top-ranking nodes. The Precision and
Recall value were calculated based on the confidence values of
these series of functional modules. The average F-scores were
calculated to estimate the accuracy (Supplemental Table 1). As
illustrated in Figure 2, our method achieved the best precision
under different recall rates, followed by the jActiveModule
(Ideker et al., 2002) method, the Ioannis et al. method, and the
kwalks method (Faust et al., 2010).

Identification of a Cell Cycle Core
Functional Module
To further demonstrate the performance of our proposed
method, we applied our method to a group of Arabidopsis
thaliana specific datasets including gene expression-based
association networks and protein-protein interaction networks
to identify a cell cycle core functional module. The protein-
protein interaction network was the same one as described in the
previous section. An Arabidopsis thaliana gene expression-based
association network comprised of 15,285 genes and 2,587,457
interactions was downloaded from http://plantgrn.noble.org/
GPLEXUS/Result.jsp?sessionid=Arabidopsis.

Applying our method, we successfully baited a cell division
cycle related core functional module that consisted of 70 genes
and 403 interactions using the KRP2 and CDC2 genes as seed
genes. The functions of the proteins encoded by these 70 genes,

FIGURE 2 | Comparison of the precision of four different methods

under different recall rates, ranging from 10 to 90%.

most of which are cell division cycle related (see the list in
Supplemental Table 2). Among these 70 genes, 21 genes were
identified as CDK genes or core cell cycle genes. Three E2F
transcription factors were also included in the module. Other
genes such as WEE1, TON1, PAS2, AUR2, and SIM, which have
been validated to encode proteins with cell division cycle related
functions (Bach et al., 2008; Gutierrez, 2009; Cook et al., 2013),
were also included in the module.

A Gene Ontology Set Enrichment Analysis on the module
(Supplemental Table 3) further demonstrated that the module we
produced was composed of genes and proteins involved in the
cell division cycle. Among the 70 genes in our module, 46 genes
were annotated with cell cycle related gene ontology categories
(under GO term: GO: 0007049) and an additional 35 genes
were annotated with cell cycle regulation-related gene ontology
categories (under GO term: GO:0051726). A comparison of the
top 12 significantly enriched gene ontology categories in our
module compared to the whole-genome GO categories is shown
in Figure 3.

We then further examined the sub-network around the
core genes in the module (Figures 4, 5). Among the 403 total
interactions in the module, 276 were identified from the gene
expression-based network and 101 from the protein-protein
interactions network. Only 26 interactions were present in both
networks (Figure 4A). This is not unexpected, as protein-protein
interaction networks only reveal physical interactions, in contrast
to expression-based gene-gene association networks, which not
only reflect direct physical interaction, but also reveal potential
cell regulatory relationships.

Although, the number of shared protein-protein interactions
was minimal, most genes were present in both networks. As
illustrated in Figure 4B, 61 genes were identified from the
expression-based network and 59 were identified from the
protein-protein network, while 50 genes were present in both
networks. Importantly, we demonstrate that those genes existing
in only one network would be missed using other methods
(Ideker et al., 2002; Cancer Genome Atlas Research Network,
2008; Faust et al., 2010), which identify modules from a single
network. These results suggest that mining the heterogonous
datasets captured by multiple complementary technologies could
provide greater insights in biology, leading to better reflection of
the whole cellular activities.

We further examined the genes that were unique to each
network. Among them, 11 (CYCB1;4, EMB3007, GSL10, ATK1,
AT4G04670, ORP1D, AT1G19835, ATMAP65-6, AT4G11570,
AT2G28450, and MIP2) could only be identified from the
gene expression-based network, while 9 (CYCA3;2, CCS52A1,
AT3G17020, SDP1, CDC2, CDKD;1, ICK2, HSFB2A, andMOB1-
LIKE) could only be identified from protein-protein interaction
network. Analyzing the functional descriptions of these genes
indicates that all of these genes have been experimentally
validated as cell cycle related genes. For example, CYCB1;4
has been validated as the core cell cycle gene (Vandepoele
et al., 2002), while ATMAP65-6 encodes a protein that
induces microtubules to form a mesh-like network (Mao
et al., 2005). GSL10, a member of the glucan synthase-like
(GSL) family, which is involved in synthesis of the cell-wall
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FIGURE 3 | The top 12 significantly enriched GO categories in our identified Arabidopsis thaliana cell cycle core functional module.

component callose at specialized locations, governs the entry
of micropores into mitosis, and impaired GSL10 function
leads to a perturbation in micropore division symmetry (Toller
et al., 2008). Additionally, ATK1 plays a crucial role in spindle
morphogenesis during meiosis in male Arabidopsis plants (Chen
et al., 2002).

In the extracted module, among those identified interactions
that could be experimentally validated, many of them only exist
in one network. For example, the interaction between the cyclin-
dependent protein kinase regulators CYCA1;1 (AT1G44110)
and CYC1 (AT4G37490) was described in (De Almeida
Engler et al., 2012), and the interaction between CCS52B
and CDKB2;2 (AT1G20930) was reported in Van Leene
et al. (2010). Nevertheless, these interactions were only
present in the gene expression-based association network
but not in the protein-protein interaction network. On the
other hand, the experimentally validated interactions between
CDC2 and ATE2FA (Boruc et al., 2010), between CDC2
and TON1 (Van Leene et al., 2007), and between ICK6
and CKS2 (Van Leene et al., 2010) were only present
in the protein-protein interaction network. Therefore, by
performing biased random walks on both networks, we
successfully identified an integrated cell division cycle functional
module.

FIGURE 4 | The genes and interactions that were identified from the

Network A: expression-based gene-gene association network and the

Network B: protein-protein interaction network. (1) The Venn Diagram

shows the numbers of unique and shared genes in network A and B. (2) The

Venn Diagram shows the numbers of unique and shared interactions in

network A and B.

Identification of an Immune-Related
Functional Module Involved in Plant
Defense Signaling
To further demonstrate the performance of our proposed
method, we next applied our method to identify genes and
sub-networks involved in the plant defense signaling. Plants
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FIGURE 5 | The genes and interactions included in our identified Arabidopsis thaliana cell cycle core functional module.

have evolved highly sophisticated immune systems, which
are critically important for plant survival in the face of
life-threatening pathogens, pests, and harsh environmental
challenges. Understanding the plant defense signaling pathway
will help biologists to better understand the biotic and abiotic
stress response mechanisms in plants. Using biased random
walks with four plant seed genes (FLS2, MPK4, WRKY40, and
WRKY33), we constructed a highly confident (p = 0.008)
functional core module related to the MAMP signaling pathway
(MAMP), the primary means by which plants detect and respond
to pathogens.

Functional annotation of the genes present in this pathway
revealed a number of biological features related to MAMP
signaling pathway (see Supplemental Table 4 for a list of
the functions of all genes in the module), providing strong
evidence that the module is highly related to the plant defense
signal transduction pathway. The major gene products included
mitogen-activated protein (MAP) kinases, WRKY transcription
factors, and vesicle-trafficking proteins, all of which have been
reportedly involved in the plant defense signaling functions.
Indeed, several MAP kinases involved in the plant defense
response have been experimentally validated (Ligterink et al.,
1997; Nuhse et al., 2000; Lee et al., 2001), and the WRKY

transcription factors are involved in several immune responses in
plants, including microbe-associated molecular pattern-triggered
(MAMP-triggered) immunity, pathogen-associated molecular
pattern-triggered (PAMP-triggered) immunity, effector-triggered
immunity (ETI), and systemic acquired resistance (Eulgem et al.,
2000; Xu et al., 2006; Encinas-Villarejo et al., 2009; Pandey and
Somssich, 2009). We also identified BIK1, a positive regulator
of plant immunity, and in our module, BIK1 functioned as
a negative regulator of plant hormone brassinosteroid (BR)-
mediated growth through association with the BR receptor BRI1.
This dual association may contribute to the inverse functions of
BIK1 previously reported in plant immunity and development
(Lin et al., 2013).

GSEA (Supplemental Table 5) further validated that core
genes in our module are highly related to plant defense
signaling, as the GO terms defense response to bacteria, signaling
transduction, cellular response to salicylic acid stimulus, and
regulation of immune response were overrepresented. Almost
80 percent of genes in the module have the GO term
referring to response to stimulus. A comparison of the top 12
significantly enriched gene ontology categories in our module
compared to the whole-genome GO categories is shown in
Figure 6.
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FIGURE 6 | The top 12 significantly enriched GO categories in our Arabidopsis thaliana defense response related functional module.

We further analyzed the sub-network around the core
genes in the module and found several interactions that
have been experimentally validated. Again, it demonstrates
the effectiveness of our method. For example, it has been
demonstrated that in vivo, FLS2 and BIK1 form a complex in
a specific ligand-dependent manner, and that this interaction
plays a functional role PRR-dependent signaling, which initiated
innate immunity (Chinchilla et al., 2007). Qiu et al. (2008)

demonstrated that WRKY33 can bind in a complex with MAP
kinase 4 (MPK4) and MKS1, playing a role in the immune
response to Pseudomonas syringae.While the interaction between
WRKY33 and MPK4 could be revealed in the PPI network,
the interaction between WRKY33 and MKS1 was identified
in the expression-based network only. Using our method to
integrate the two networks, both of these interactions were
successfully identified. However, only the interaction between
WRKY33 and MPK4 could be included by other three methods
because they only considered those interactions in the PPI
network. As with the cell division cycle functional module,
some interactions were only identified in the expression-based
gene-gene association network or the protein-protein interaction
network, while some were identified in both networks. Figure 7
illustrates the core interactions of the functional core module,

with experimentally validated interactions highlighted in red.
Again, only part of those interactions that existed in a
single network could be identified by other three methods
due to their inability to combine the topological relationship
information in both networks. Taken them together, we
demonstrated that our mPageRank algorithm was effective
in combining graph topological relationship information in
two heterogonous biological networks for functional module
discovery.

CONCLUSIONS

We present here a novel mPageRank approach for mining
functional modules in heterogeneous biological networks.
Beginning with several cell division cycle related or immune-
related seed genes from the model plant, Arabidopsis thaliana,
our approach successfully ranked and retrieved genes involved
in cell division cycle related functions and plant defense
signaling related functions. These genes formed the basis for
core functional modules created from global gene co-expression
association networks and protein-protein interaction networks.
Our benchmarking analyses using simulated data and case
study analyses additionally demonstrated that our proposed
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FIGURE 7 | The genes and interactions included in the identified functional core module related to defense response in Arabidopsis thaliana.

mPageRank method is effective and is a promising approach
for mining functional modules in heterogonous biological
networks.

AVAILABILITY

The program namely mPageRank, datasets and results of the
presented two case studies are publicly and freely available at
http://plantgrn.noble.org/MPageRank/.

AUTHOR CONTRIBUTIONS

JL implemented themPageRank algorithm, carried out case study
analyses and wrote the manuscript. PZ conceived and directed
the study, performed bioinformatics analyses and wrote the
manuscript.

FUNDING

This work was supported by the National Science Foundation
[grants DBI: 0960897 and DBI: 1458597 to PZ] and the Samuel
Roberts Noble Foundation.

ACKNOWLEDGMENTS

We thank Dr. Xinbin Dai and Ms. Zhaohong Zhuang for
their assistances in Arabidopsis thaliana gene expression data
collection, compilation and curation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.
00903

Frontiers in Plant Science | www.frontiersin.org 9 June 2016 | Volume 7 | Article 903

http://plantgrn.noble.org/MPageRank/
http://journal.frontiersin.org/article/10.3389/fpls.2016.00903
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Li and Zhao mPageRank Method for Mining Functional Modules

REFERENCES

Arabidopsis Interactome Mapping Consortium (2011). Evidence for network

evolution in an Arabidopsis interactome map. Science 333, 601–607. doi:

10.1126/science.1203877

Bach, L., Michaelson, L. V., Haslam, R., Bellec, Y., Gissot, L., Marion, J.,

et al. (2008). The very-long-chain hydroxy fatty acyl-CoA dehydratase

PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad

Sci U.S.A. 105, 14727–14731. doi: 10.1073/pnas.0805089105

Barabasi, A. L., and Oltvai, Z. N. (2004). Network biology: understanding the cell’s

functional organization. Nat. Rev. Genet 5, 101–113. doi: 10.1038/nrg1272

Barrett, T., Troup, D. B.,Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al.

(2007). NCBI GEO:mining tens of millions of expression profiles–database and

tools update. Nucleic Acids Res. 35, D760–D765. doi: 10.1093/nar/gkl887

Boruc, J., Van Den Daele, H., Hollunder, J., Rombauts, S., Mylle, E., Hilson,

P., et al. (2010). Functional modules in the Arabidopsis core cell cycle

binary protein-protein interaction network. Plant Cell 22, 1264–1280. doi:

10.1105/tpc.109.073635

Brandao, M. M., Dantas, L. L., and Silva-Filho, M. C. (2009). AtPIN:

Arabidopsis thaliana protein interaction network. BMC Bioinformat. 10:454.

doi: 10.1186/1471-2105-10-454

Cancer Genome Atlas Research Network (2008). Comprehensive genomic

characterization defines human glioblastoma genes and core pathways. Nature

455, 1061–1068. doi: 10.1038/nature07385

Chen, C., Marcus, A., Li, W., Hu, Y., Calzada, J. P., Grossniklaus, U., et al. (2002).

The Arabidopsis ATK1 gene is required for spindle morphogenesis in male

meiosis. Development 129, 2401–2409.

Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.

D., et al. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1

initiates plant defence. Nature 448, 497–500. doi: 10.1038/nature05999

Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D., and Ideker, T. (2007). Network-

based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140. doi:

10.1038/msb4100180

Cook, G. S., Gronlund, A. L., Siciliano, I., Spadafora, N., Amini, M., Herbert,

R. J., et al. (2013). Plant WEE1 kinase is cell cycle regulated and removed at

mitosis via the 26S proteasome machinery. J. Exp. Bot. 64, 2093–2106. doi:

10.1093/jxb/ert066

De Almeida Engler, J., Kyndt, T., Vieira, P., Van Cappelle, E., Boudolf, V., Sanchez,

V., et al. (2012). CCS52 and DEL1 genes are key components of the endocycle

in nematode-induced feeding sites. Plant J. 72, 185–198. doi: 10.1111/j.1365-

313X.2012.05054.x

De Domenico, M., Sole-Ribalta, A., Omodei, E., Gomez, S., and Arenas, A. (2015).

Ranking in interconnected multilayer networks reveals versatile nodes. Nat.

Commun. 6, 6868. doi: 10.1038/ncomms7868

D’haeseleer, P., Liang, S., and Somogyi, R. (2000). Genetic network inference: from

co-expression clustering to reverse engineering. Bioinformatics 16, 707–726.

doi: 10.1093/bioinformatics/16.8.707

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T., and Muller,

T. (2008). Identifying functional modules in protein-protein interaction

networks: an integrated exact approach. Bioinformatics 24, i223–i231. doi:

10.1093/bioinformatics/btn161

Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis

toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70. doi:

10.1093/nar/gkq310

Eisen,M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis

and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A.

95, 14863–14868. doi: 10.1073/pnas.95.25.14863

Encinas-Villarejo, S., Maldonado, A. M., Amil-Ruiz, F., De Los Santos, B., Romero,

F., Pliego-Alfaro, F., et al. (2009). Evidence for a positive regulatory role of

strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75

proteins in resistance. J. Exp. Bot. 60, 3043–3065. doi: 10.1093/jxb/erp152

Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002). An efficient algorithm

for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584.

doi: 10.1093/nar/30.7.1575

Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E. (2000). The WRKY

superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206. doi:

10.1016/S1360-1385(00)01600-9

Faust, K., Dupont, P., Callut, J., and Van Helden, J. (2010). Pathway discovery in

metabolic networks by subgraph extraction. Bioinformatics 26, 1211–1218. doi:

10.1093/bioinformatics/btq105

Girvan, M., and Newman, M. E. (2002). Community structure in social

and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826. doi:

10.1073/pnas.122653799

Gutierrez, C. (2009). The Arabidopsis cell division cycle. Arabidopsis Book 7:e0120.

doi: 10.1199/tab.0120

Halu, A., Mondragon, R. J., Panzarasa, P., and Bianconi, G. (2013). Multiplex

PageRank. PLoS ONE 8:e78293. doi: 10.1371/journal.pone.0078293

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999).

From molecular to modular cell biology. Nature 402, C47–C52. doi:

10.1038/35011540

Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. (2002).

Discovering regulatory and signalling circuits in molecular

interaction networks. Bioinformatics 18 (Suppl. 1), S233–S240. doi:

10.1093/bioinformatics/18.suppl_1.s233

Inoue, K., Li, W., and Kurata, H. (2010). Diffusion model based spectral

clustering for protein-protein interaction networks. PLoS ONE 5:e12623. doi:

10.1371/journal.pone.0012623

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P.

(2003). Summaries of Affymetrix GeneChip probe level data.Nucleic Acids Res.

31:e15. doi: 10.1093/nar/gng015

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.

(2014). Data, information, knowledge and principle: back to metabolism in

KEGG. Nucleic Acids Res. 42, D199–D205. doi: 10.1093/nar/gkt1076

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformat. 9:559. doi: 10.1186/1471-2105-

9-559

Langville, A. N., and Meyer, C. D. (2006). Google’s PageRank and Beyond: The

Science of Search Engine Rankings. Princeton, N.J.: Princeton University Press.

Lee, J., Klessig, D. F., and Nurnberger, T. (2001). A harpin binding site in tobacco

plasma membranes mediates activation of the pathogenesis-related gene HIN1

independent of extracellular calcium but dependent on mitogen-activated

protein kinase activity. Plant Cell 13, 1079–1093. doi: 10.1105/tpc.13.5.1079

Li, J., Wei, H., Liu, T., and Zhao, P. X. (2014). GPLEXUS: enabling genome-

scale gene association network reconstruction and analysis for very large-scale

expression data. Nucleic Acids Res. 42, e32. doi: 10.1093/nar/gkt983

Li, J., Wei, H., and Zhao, P. X. (2013). DeGNServer: deciphering genome-scale

gene networks through high performance reverse engineering analysis. Biomed.

Res. Int. 2013:856325. doi: 10.1155/2013/856325

Ligterink, W., Kroj, T., Zur Nieden, U., Hirt, H., and Scheel, D. (1997). Receptor-

mediated activation of aMAP kinase in pathogen defense of plants. Science 276,

2054–2057. doi: 10.1126/science.276.5321.2054

Lin, W., Lu, D., Gao, X., Jiang, S., Ma, X., Wang, Z., et al. (2013). Inverse

modulation of plant immune and brassinosteroid signaling pathways by the

receptor-like cytoplasmic kinase BIK1. Proc. Natl. Acad. Sci. U.S.A. 110,

12114–12119. doi: 10.1073/pnas.1302154110

Ma, S., Gong, Q., and Bohnert, H. J. (2007). An Arabidopsis gene network

based on the graphical Gaussian model. Genome Res. 17, 1614–1625. doi:

10.1101/gr.6911207

Mao, T., Jin, L., Li, H., Liu, B., and Yuan, M. (2005). Two microtubule-associated

proteins of theArabidopsisMAP65 family function differently onmicrotubules.

Plant Physiol. 138, 654–662. doi: 10.1104/pp.104.052456

Maraziotis, I. A., Dimitrakopoulou, K., and Bezerianos, A. (2007). Growing

functional modules from a seed protein via integration of protein interaction

and gene expression data. BMC Bioinformat. 8:408. doi: 10.1186/1471-2105-8-

408

Nuhse, T. S., Peck, S. C., Hirt, H., and Boller, T. (2000). Microbial elicitors induce

activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6.

J. Biol. Chem. 275, 7521–7526. doi: 10.1074/jbc.275.11.7521

Pandey, S. P., and Somssich, I. E. (2009). The role of WRKY transcription factors

in plant immunity. Plant Physiol. 150, 1648–1655. doi: 10.1104/pp.109.138990

Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S.,

Coulson, R., et al. (2005). ArrayExpress–a public repository for microarray

gene expression data at the EBI. Nucleic Acids Res. 33, D553–555. doi:

10.1093/nar/gki056

Frontiers in Plant Science | www.frontiersin.org 10 June 2016 | Volume 7 | Article 903

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Li and Zhao mPageRank Method for Mining Functional Modules

Pruitt, K. D., and Maglott, D. R. (2001). RefSeq and LocusLink: NCBI gene-

centered resources. Nucleic Acids Res. 29, 137–140. doi: 10.1093/nar/29.1.137

Qiu, J. L., Fiil, B. K., Petersen, K., Nielsen, H. B., Botanga, C. J., Thorgrimsen,

S., et al. (2008). Arabidopsis MAP kinase 4 regulates gene expression through

transcription factor release in the nucleus. EMBO J. 27, 2214–2221. doi:

10.1038/emboj.2008.147

Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N.,

et al. (2005). Towards a proteome-scale map of the human protein-protein

interaction network. Nature 437, 1173–1178. doi: 10.1038/nature04209

Shih, Y. K., and Parthasarathy, S. (2012). Identifying functional modules in

interaction networks through overlapping Markov clustering. Bioinformatics

28, i473–i479. doi: 10.1093/bioinformatics/bts370

Stark, C., Breitkreutz, B. J., Chatr-Aryamontri, A., Boucher, L., Oughtred, R.,

Livstone, M. S., et al. (2011). The BioGRID interaction database: 2011 update.

Nucleic Acids Res. 39, D698–D704. doi: 10.1093/nar/gkq1116

Toller, A., Brownfield, L., Neu, C., Twell, D., and Schulze-Lefert, P. (2008).

Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in

male gametophyte development and plant growth. Plant J. 54, 911–923. doi:

10.1111/j.1365-313X.2008.03462.x

Van Den Bulcke, T., Van Leemput, K., Naudts, B., Van Remortel, P., Ma,

H., Verschoren, A., et al. (2006). SynTReN: a generator of synthetic gene

expression data for design and analysis of structure learning algorithms. BMC

Bioinformatics 7:43. doi: 10.1186/1471-2105-7-43

Vandepoele, K., Raes, J., De Veylder, L., Rouze, P., Rombauts, S., and Inze, D.

(2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell

14, 903–916. doi: 10.1105/tpc.010445

Van Leene, J., Hollunder, J., Eeckhout, D., Persiau, G., Van De Slijke, E., Stals,

H., et al. (2010). Targeted interactomics reveals a complex core cell cycle

machinery in Arabidopsis thaliana. Mol. Syst. Biol. 6, 397. doi: 10.1038/msb.

2010.53

Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijke, E., Van Isterdael,

G., et al. (2007). A tandem affinity purification-based technology platform to

study the cell cycle interactome in Arabidopsis thaliana.Mol. Cell Proteomics 6,

1226–1238. doi: 10.1074/mcp.M700078-MCP200

Vashisht, R., Bhardwaj, A., Osdd, C., and Brahmachari, S. K. (2013).

Social networks to biological networks: systems biology of Mycobacterium

tuberculosis.Mol. Biosyst. 9, 1584–1593. doi: 10.1039/c3mb25546h

Wu, F. X. (2008). Genetic weighted k-means algorithm for clustering large-scale

gene expression data. BMC Bioinformat. 9 (Suppl. 6):S12. doi: 10.1186/1471-

2105-9-S6-S12

Xu, X., Chen, C., Fan, B., and Chen, Z. (2006). Physical and functional interactions

between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60

transcription factors. Plant Cell 18, 1310–1326. doi: 10.1105/tpc.105.037523

Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., and Wang, S. (2010). GOSemSim: an R

package formeasuring semantic similarity amongGO terms and gene products.

Bioinformatics 26, 976–978. doi: 10.1093/bioinformatics/btq064

Zhu, X., Gerstein, M., and Snyder, M. (2007). Getting connected: analysis

and principles of biological networks. Genes Dev. 21, 1010–1024. doi:

10.1101/gad.1528707

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Li and Zhao. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 11 June 2016 | Volume 7 | Article 903

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach
	Introduction
	Materials and Methods
	Analysis Procedures
	Construction of the Expression-Based Gene-Gene Association Networks
	Scoring Arabidopsis thaliana Protein-Protein Interactions Based on the Gene Ontology (GO) Term Semantic Similarity
	mPageRank Method
	Construction of Functional Module and P-value Estimation
	Gene Set Enrichment Analysis (GSEA)

	Results and Discussion
	Performance Benchmark Analysis Using Simulation Data
	Identification of a Cell Cycle Core Functional Module
	Identification of an Immune-Related Functional Module Involved in Plant Defense Signaling

	Conclusions
	Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


