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Phosphate and sulfate are essential macro-elements for plant growth and development,
and deficiencies in these mineral elements alter many metabolic functions. Nutritional
constraints are not restricted to macro-elements. Essential metals such as zinc and
iron have their homeostasis strictly genetically controlled, and deficiency or excess
of these micro-elements can generate major physiological disorders, also impacting
plant growth and development. Phosphate and sulfate on one hand, and zinc and
iron on the other hand, are known to interact. These interactions have been partly
described at the molecular and physiological levels, and are reviewed here. Furthermore
the two macro-elements phosphate and sulfate not only interact between themselves
but also influence zinc and iron nutrition. These intricated nutritional cross-talks are
presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies
have been widely studied considering each element separately, and some molecular
actors of these regulations have been characterized in detail. Although some scarce
reports have started to examine the interaction of these mineral elements two by two,
a more complex analysis of the interactions and cross-talks between the signaling
pathways integrating the homeostasis of these various elements is still lacking. However,
a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as
a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a
potential general integrator for the control of mineral nutrition is discussed.

Keywords: PHR1, mineral homeostasis, phosphate, zinc, iron, sulfate, crosstalks, integration

Introduction

Among environmental constraints, mineral nutrition plays a key role for plant growth and develop-
ment. Variations in soil nutrient composition and availability are the rule and plants have evolved
mechanisms to cope with conditions ranging from extreme deficiency to toxicity due to excess.
Plant breeding was oriented these last 50 years to provide crops to modern agriculture with high
intrinsic growth rates and yields, under the condition that mineral nutrition was not limiting. Such
condition was obtained by the massive use of fertilizers, in particular considering nitrogen (N),
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phosphorous (P), and potassium (K) (López-Arredondo et al.,
2013). The future of agriculture will undoubtedly require to use so
far uncultivated lands, some of them exhibiting unfavorable soil
mineral composition, and to reduce the use of fertilizers in order
to promote sustainable practices. In such a context of lower input
into the environment, new cultivated plant genotypes will need
to be selected in a way improving their mineral use efficiency.
Reaching such a goal would be facilitated by a knowledge-based
approach rooted in the understanding of how plants sense and
signal changes in the availability of nutrients (López-Arredondo
et al., 2013).

A wealth of knowledge was obtained these last 20 years on the
physiological and morphological adaptation of plants in response
to variations in availability of a given mineral element (Maathuis,
2009; Krouk et al., 2011; Gruber et al., 2013; Briat et al., 2014;
Giehl and von Wirén, 2014). Genes encoding proteins involved
in uptake, translocation, assimilation, and storage of macro and
micro-elements have been characterized and the regulation of
their expression in response to mineral status has started to be
elucidated (Schachtman and Shin, 2007; Giehl et al., 2009; Gojon
et al., 2009; Liu et al., 2009; Pilon et al., 2009; Hindt and Guerinot,
2012; Vigani et al., 2013). More recently multi-level studies inte-
grating transcriptome to metabolome and to enzyme activities
data enabled to begin to understand how plants reprogram vari-
ous metabolic pathways in response to removal and/or resupply
of mineral nutrients. It gives an insight into how plants inte-
grate metabolism adaptation to mineral nutrition deficiency to
growth (Amtmann and Armengaud, 2009; Kellermeier et al.,
2014). However, it is well known that interactions between nutri-
ents for uptake can cause imbalances if one of them is deficient
or in excess (Marschner, 1995; Rouached et al., 2010). Multi-level
interactions between the various mineral elements need therefore
to be studied in order to understand how the different sensing and
signaling pathways activated in response to changes in availability
of one element are coordinately integrated with the ones of other
elements.

In such a context, the principal aim of this paper is to review
interactions between phosphorus (P) and sulfur (S) on one hand,
and between zinc (Zn) and iron (Fe) on the other hand. In addi-
tion, phosphate (Pi) and sulfate (SO4) not only interact between
themselves but also influence Zn and Fe nutrition, and these
intricated nutritional cross-talks are presented, pointing out the
emerging role of transcription factors (TFs) belonging to the
MYB family.

The MYB Family of Transcription
Factors and its Role in Abiotic Stress
Responses

Due to their sessile nature plants must face and adapt to a vari-
ety of biotic (e.g., bacteria, fungi, etc.) and abiotic (e.g., cold,
drought, etc.) stresses throughout their life cycle. As a conse-
quence plants have evolved molecular mechanisms allowing a
tight control of their growth and development. This process is
complex and dynamic, and requires the coordinated expression
of several thousands of genes.

Transcription factors are sequence-specific DNA binding pro-
teins that play a key role in the control of genes expression by
acting as transcriptional activators, repressors or both. TFs pos-
sess amodular structure that is characterized by two key domains,
a DNA-binding domain (DBD) and a transcriptional regulatory
domain. TFs have been categorized into various families on the
basis of some specific amino acid signatures mostly present in
their DBD (Charoensawan et al., 2010).

Among the various classes of TFs found in plants, the MYB
family is one of the largest and most diverse (Riechmann et al.,
2000; Dubos et al., 2010). MYB proteins are characterized by their
DBD (Figure 1), or MYB domain. It is composed of different
numbers (from 1 to 4) of imperfect repeats (R) of approximately
50 amino acids (Lipsick, 1996). Each repeat forms a helix-turn-
helix (HTH) structure containing three evenly spaced tryptophan
residues. These residues form a hydrophobic core playing a key
role in the sequence-specific binding to DNA. The MYB gene
family is divided into various groups according to the number
and the type of repeat(s) found in their DBD (Stracke et al., 2001;
Du et al., 2013).

To date, no biological role directly related to plant responses
to abiotic stresses has been clearly reported for the 3R- and 4R-
MYB proteins. 3R-MYBs are found in all eukaryotic cells where
they participate to the control of the cell cycle. In contrast, the
role of the plant specific 4R-MYBs remains elusive.

The R2R3-MYB class (two repeats) is the largest group of
MYB-proteins exclusively found in plant species. For instance,
out of the 196 MYB genes found in the Arabidopsis thaliana
genome, 126 encode R2R3-MYB proteins (Dubos et al., 2010).
R2R3-MYBs are specifically involved in the transcriptional con-
trol of plant-specific processes, including plant responses to
various abiotic stresses, such as cold or drought. This TF sub-
family has been extensively studied in Arabidopsis allowing to
determine the biological role played by more than half of its
members (Dubos et al., 2010). For example, AtMYB14 and
AtMYB15 are involved in the plant response to cold stress
(Agarwal et al., 2006; Chen et al., 2013). AtMYB60 and AtMYB96
act through the ABA signaling cascade to modulate plant
response to drought, by controlling stomatal movement, and root
growth and cuticular wax deposition, respectively (Cominelli
et al., 2005; Seo et al., 2009, 2011). In contrast, AtMYB2 and
AtMYB44/AtMYBR1 regulate the expression of their target genes
in response to drought in an ABA-dependent manner (Abe et al.,
2003; Jaradat et al., 2013). AtMYB88 and AtMYB124/FLP par-
alogs are key regulators of stomata differentiation. They have
recently been shown to be involved in sensing and/or trans-
ducing salt stress (and most probably other abiotic stresses; Xie
et al., 2010). AtMYB20 and AtMYB73 are also involved in salt
stress tolerance, whereas AtMYB108/BOS1 displays a less spe-
cific role as it is required in the response to both pathogens
and abiotic stresses, including drought, salinity, and oxida-
tive stress (Mengiste et al., 2003; Cui et al., 2013; Kim et al.,
2013).

Last, the single MYB repeat proteins forms a heterogeneous
group that gather genes that can be classified into five major
subgroups: the CPC-like, the CCA1-like/R-R, the I- box-like,
the TRF-like, the TBP-like, and the GARP (Du et al., 2013). To
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FIGURE 1 | The plant MYB protein family. (A) Schematic representation of
the different MYB protein classes based on the number (from 1 to 4) and the
type (i.e., R1, R2, R3, R1/2, R1/2-like, and R3-like) of adjacent MYB repeat (R).
It must be noted that the position of the R1/2 MYB repeat alongside the
polypeptide chain of the proteins may vary between the different 1R-MYB
subclasses that contain this domain (i.e., CCA1-like/R-R, TRF-like, and
TBP-like). (B) Sequence alignment of MYB repeats from different classes of
MYB proteins. Conserved tryptophan (W) residues are highlighted in orange.
Specific amino acid signatures of the GARP, the CCA1like/R-R, TRF-like, and
TBP-like, and the I-box-like 1R-MYB classes are highlighted in red, blue, and

green, respectively. α-Helices are shaded in gray. The α-helix 3 is the recognition
helix that makes direct contacts with DNA nitrogen bases (i.e., interacting with
cis-regulatory sequences). Protein sequences were downloaded from TAIR
(except for OsMYBS3, GenBank: accession AAN63154). (C) Phylogenetic
relationship (unrooted tree, neighbor joining method) between the different
classes of MYB repeats. The corresponding protein name is given at the
extremity of each branch of the tree. The GARP, the CCA1like/R-R, TRF-like,
and TBP-like, and the I-box-like repeats are shaded in red, blue and green,
respectively. R1, R2, and R3 repeats are shaded in gray. (Adapted from Stracke
et al., 2001, Dubos et al., 2010, and Du et al., 2013).
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date, only 1R-MYBs belonging to the CPC-like (also called R3-
MYB), and CCA1-like/R-R subgroups, have been associated to
plant abiotic stress responses. The Arabidopsis AtMYBL2 is a
CPC-like MYB protein whose activity is decreased under high
light stress, and which acts as a negative regulator of anthocyanin
biosynthesis (which provide a natural sunscreen for plants), and
(Dubos et al., 2008). Amongt the CCA1-like/R-R group of MYB
proteins, OsMYBS3 has been shown to be involved in cold toler-
ance in rice (Oryza sativa), whereas AtMYBL plays a role in the
Arabidopsis response to salt stress (Su et al., 2010; Zhang et al.,
2011). AtMYBC1 that belongs to the GARP subgroup was found
to be a negative regulator of freezing tolerance in Arabidopsis
(Zhai et al., 2010).

Nutrients availability is also an important environmental fac-
tor which modulates plant growth and development, and there-
fore crop productivity. Consequently, deficiencies in nutrient
supplies are abiotic stresses against which plants have evolved
signaling cascades aiming to improve nutrient acquisition and
homeostasis. Similarly to the above-mentioned abiotic stresses,
MYB proteins have also been found to be involved in the plant
response to nutrient deficiencies. For example, two homologous
R2R3-MYB proteins (namely AtMYB10 and AtMYB72) have
been shown to play a key role in improving growth under Fe-
limiting conditions (van deMortel et al., 2008; Palmer et al., 2013;
Zamioudis et al., 2014). However, most of theMYBproteins iden-
tified so far as involved in the regulation of mineral nutrition were
associated with Pi starvation. For example AtMYB62 participates
in the response to Pi shortage (Devaiah et al., 2009), whereas
AtETC1 (ENHANCER OF TRY AND CPC 1) is a CPC-like
MYB TF acting to modulate root hair density under Pi limited
conditions (Savage et al., 2013).

PHOSPHATE STARVATION RESPONSE 1 (PHR1) and
PHR1-Like 1, (PHL1) are two homologous GARP MYB proteins
that play a critical role in the adaptation of plant to Pi (inor-
ganic phosphate) deficiency. Originally, PHR1 was first identified
as a regulator of Pi nutrition in Chlamydomonas reinhardtii, and
named PSR1. It is required for the transcriptional induction of
Pi-deficiency responsive genes in this green algae (Shimogawara
et al., 1999; Wykoff et al., 1999). A genetic screen enabled to
identify a PSR1 ortholog in Arabidopsis, AtPHR1 (Rubio et al.,
2001). Several years later a redundant gene to AtPHR1 was char-
acterized and named AtPHL1 (Bustos et al., 2010). These two
TFs are able to interact, and they recognize the same cis ele-
ment located in the promoter sequence of their target genes.
A consensus sequence of this element, called PHR1 Binding Site
(P1BS), has been defined as 5′-GNATATNC-3′ (Rubio et al., 2001;
Bustos et al., 2010; Figure 2). Transcriptome analysis revealed
that most of the genes induced in response to Pi deficiency lost
this ability in phr1 phl1 double mutant plants. Furthermore, the
frequency of occurrence of the P1BS element is much higher in
the promoter region of genes induced in response to Pi defi-
ciency than in others (Bustos et al., 2010). Interestingly, two
Arabidopsis PHR1 orthologs, OsPHR1, and OsPHR2, have been
characterized in rice (Zhou et al., 2008), and functional P1BS
cis-elements have been reported in barley (Schünmann et al.,
2004a,b). These data indicate that the regulatory pathway involv-
ing PHR1 to activate the expression of some genes in response

to Pi starvation is likely to be conserved between monocotyle-
donous and dicotyledonous plants. It is noteworthy that a recent
study has pointed out that the expression of AtFer1, a key gene
involved in Fe homeostasis, was transcriptionally regulated by
AtPHR1 and AtPHL1, providing a direct molecular link between
Fe and Pi homeostasis (Bournier et al., 2013, and see below
the “PHR1 involvement in Pi and Fe homeostasis interactions”
section).

PHR1 and the Control of Pi Nutrition

P is an essential macronutrient required by living organisms.
It is found in essential biological molecules including nucleic
acids, ATP (a major energy carrier) and phospholipids. P is
intimately linked with energy metabolism, the production of
numerous metabolic intermediates, and the post-translational
modification of proteins (a key parameter in signal transduction
cascades; Poirier and Bucher, 2002). Its deficiency has deleteri-
ous effects on plant growth and development, evidenced by a
strong decrease in shoot growth, and by the accumulation of
anthocyanins. Plants acquire P by their roots as inorganic Pi.
Pi concentration is heterogeneous in the soil, and often very
low at the root/soil interface (Poirier and Bucher, 2002). Root
architecture responds to Pi deficiency by inhibiting primary
root growth and by increasing lateral root density. This is an
adaptive strategy to explore more soil volume, resulting in an
increased Pi uptake capacity of the plants. After having crossed
the plasma membrane of epidermal and cortical root cells, Pi is
distributed throughout the plant under the control of a cascade
of Pi transporters belonging to the PHT and PHO1 families. For
an extensive review of the Pi transporter gene family, readers are
referred to Poirier and Bucher (2002), and to Nussaume et al.
(2011). Plant adaptation to Pi deficiency involves wide changes in
gene expression. It implicates several TFs. Few of them have been
identified includingWRK75, ZAT6, bHLH32,MYB62, and PHR1
(Yi et al., 2005; Chen et al., 2007; Devaiah et al., 2007a,b, 2009;
Svistoonoff et al., 2007; Ticconi et al., 2009). So far, the major
regulations of the expression of numerous Pi deficiency-induced
genes was attributed to PHR1, via the PHR1-PHO2–miRNA399
pathway described below (Figure 2). In addition to this pathway,
plants respond to Pi deficiency through pathways involving
phytohormones and various metabolites (Buchner et al., 2004).
Among phytohormones, cytokinins suppress the up-regulation
of several genes in response to Pi deficiency, including Pi uptake
transporters. It requires the cytokinin receptor CYTOKININ
RESPONSE 1/WOODEN LEG/ARABIDOPSIS HISTIDINE
KINASE 4 (CRE1/WOL/AHK4) pathway (Maruyama-Nakashita
et al., 2004; Franco-Zorrilla et al., 2005). Among the metabolites,
carbohydrates are involved in the Pi deficiency response. The
expression of Pi transporters is sensitive to the carbon status
of the plant, either upstream or downstream of the hexokinase
(HXK) activity in glycolysis (Lejay et al., 2008).

At a molecular level Pi deficiency is regulated both at the
transcriptional and post-transcriptional levels. The major actors
coordinating these various regulations are PHR1 and PHL1, two
TFs likely conserved amongst flowering plants.
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FIGURE 2 | Schematic representation of the regulatory pathways
required for plant adaptation to Pi deficiency. Under low Pi nutrition
conditions (left) the transcriptional activation of a set of genes necessary for
Pi uptake by the roots (PHT1, PHO1), occurs through binding of the
transcription factor (TF) PHOSPHATE STARVATION RESPONSE 1(PHR1) to
its cis-target present in the promoter region of these genes. Under low Pi
conditions, PHR1 is sumoylated by SIZ1, and this post-translational
modification is likely important for PHR1 activity because Pi-deficient
regulated genes are no more induced in siz1 mutant under this condition
(Miura et al., 2005), although the mechanism of this regulation is unknown.
Post-transcriptional regulators of Pi transporter proteins (PHT1.1, PHO1.H1)
are also transcriptionally up-regulated through PHR1 activity under
Pi-deficiency. Among them the miRNA miR399 negatively regulates the

ubiquitin E2 conjugase PHO2 responsible of the ubiquitination of PHT1 and
PHO1 proteins in order to target them for proteasome degradation.
miR399-dependent inhibition of PHO2 can be titrated under high Pi through
RNA mimicry via its appariement to IPS1, a non-coding RNA positively
regulated by PHR1 under Pi deficiency. Under high Pi nutrition conditions
(right) PHR1 target genes are transcriptionally repressed and PHO2
expression is activated promoting Pi transporters degradation. This
transcriptional repression under these conditions is mediated through Pi
sensing of nuclear SPX proteins which interact with PHR1 via their SPX
domain in Pi-dependent manner in order to inhibit PHR1 binding to its P1BS
cis-acting sequence found in the promoter region of Pi responsive genes.
Green: transcripts, red: proteins, black: post-translational modifications,
arrows thickness is proportional to the strength of the considered flux.

Indeed, sensing of the Pi status of the plant is likely con-
served between mono- and dicotyledonous plants, as recently
reported (Wang et al., 2014a). Expression of AtPHR1 and of its
rice orthologous gene OsPHR2, are not responsive to Pi, raising
the question of how plants sense the intra-cellular variations of
Pi concentrations. In this context, Wang et al. (2014a) recently
reported that rice OsSPX1 and 2, which are nuclear proteins
whose expression is itself activated by OsPHR2 under low Pi
conditions, interact with OsPHR2 by their SPX domain in a
Pi-dependent manner. This interaction results in the inhibition
of OsPHR2 binding on its cis-acting P1BS sequence (Figure 2).
Therefore, this mechanism constitutes a very efficient transcrip-
tional regulatory feedback loop to fine tune the PHR1 dependent
expression of Pi responsive genes, according to the intracellular
fluctuations of Pi concentrations.

Among the genes transcriptionally regulated by PHR1/PHL1
in response to Pi deficiency are the PHT1 genes (Figure 2). They
encode plasma membrane high-affinity H+/Pi co-transporters
(Okumura et al., 1998; Mudge et al., 2002), preferentially
expressed in the root epidermal or cortical cells, and there-
fore directly involved in Pi acquisition (Karthikeyan et al., 2002;
Mudge et al., 2002). Once Pi has entered the root, it is loaded into
the xylem sap for translocation to the shoots via PHO1, which is
specifically expressed in the pericycle (Hamburger et al., 2002).
PHT1 and PHO1 transporters are also post-translationally reg-
ulated during their intracellular trafficking to the plasma mem-
brane, and the C terminus phosphorylation of PHT1 proteins
retains them at the ERupon Pi refilling (Bayle et al., 2011). During
the post-ER trafficking, the ubiquitin E2 conjugase PHO2 modu-
lates the ubiquitination status of PHT1 and PHO1 transporters
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in order to control their rate of degradation by the protea-
some. PHO2 expression is itself post-transcriptionally repressed
by miR399, a small non-coding RNA up-regulated by Pi defi-
ciency at the transcriptional level through PHR1/PHL1 activity
(Fujii et al., 2005; Aung et al., 2006; Bari et al., 2006; Chiou et al.,
2006; Liu et al., 2014; Figure 2). Post-translational control of Pi
loading into the xylem via the degradation of PHO1 under Pi-
sufficient conditions has also been reported to be mediated by
PHO2 (Liu et al., 2012).

Phosphate Starvation Response 1 is itself regulated post-
translationally in response to Pi deficiency through the action
of SIZ1, a sumo E3 ligase (Figure 2). PHR1 can be sumoylated
in vitro by SIZ1, and Pi-deficient regulated genes are no more
induced in siz1mutant in response to Pi deficiency (Miura et al.,
2005). This post-translational regulation of PHR1 could modify
its activity, in order to modulate the transcriptional activation
of its target genes, among which the IPS1 gene (Rubio et al.,
2001). IPS1 encodes a non-coding RNA whose sequence is in
part complementary of the microRNA miR399, enabling post-
transcriptional regulation via RNA mimicry (Liu et al., 2014).
IPS1-miR399 matching would therefore lead to the inhibition of
the miR399 RNA activity (Franco-Zorrilla et al., 2007) known to
target PHO2 (Figure 2). It could explain the increased expres-
sion of PHT1-8 and PHT1-9 in pho2 mutant plants (Bari et al.,
2006), and the decreased expression of PHO2 and of the PHT1-
8 and PHT1-9 Pi transporter genes in miR399 over-expressing
transgenic lines (Aung et al., 2006). The involvement of PHT1-
8 and PHT1-9 in Pi uptake (Remy et al., 2012) and/or in Pi
root-to-shoot translocation (Lapis-Gaza et al., 2014) has been
reported. More recently an iTRAQ based quantitative mem-
brane proteomic approach was used to search for components
downstream of PHO2. It enables to show that PHO2 mediates
the degradation of PHT1 proteins by interacting in the post-
endoplasmic reticulum compartments where ubiquitination of
endomembrane-localized PHT1-1 occurs (Huang et al., 2013).
Finally the systemic effect of miR399 was evidenced by grafting
experiments. It demonstrated the transport of this small RNA
from leaves to root within the phloem sap, explaining why spe-
cific overexpression of the miR399 in leaves led to decrease the
expression of PHO2 in roots (Pant et al., 2008).

Pi, S, and Their Biological Interactions

Sulfur is an essential element for plant growth and development.
The major source of S for plants is inorganic sulfate (SO4; Leustek
et al., 2000). In the cell, S is involved in different functions and
aspects of plant metabolism. It is found both in reduced (amino
acids, peptides, and proteins, lipoic acid, iron–sulfur clusters),
and in oxidized (polysaccharides, lipids, and sulfonate group
modifying proteins) forms (Kopriva, 2006). Thus S deficiency
has profound effects on plant physiology. When challenged by
SO4 deficiency, shoot growth is affected, resulting in a decrease
in the total biomass. Modulation of root system architecture has
also been observed in response to S limitation (Osmont et al.,
2007). The primary root continues to grow, but the lateral roots
form closer to the root tip, with an increased density. During

the last two decades, a comprehensive view of SO4 transport
in Arabidopsis and other plant species has emerged. Numerous
“SULTR” genes encoding SO4 transporters for uptake as well as
for inter-organs and subcellular distribution have been function-
ally characterized (Takahashi, 2010). The first key step for SO4
uptake in Arabidopsis is mainly carried out by the two high-
affinity SO4 transporters SULTR1;1 and SULTR1;2 (Rouached
et al., 2009). The possibility that SULTR1;2 may function as a sen-
sor of S status or as a component of a S sensory mechanism has
recently been proposed (Zhang et al., 2014).

Some key regulatory molecular mechanisms and components
involved in the regulation of SO4 transport have been discov-
ered, among which a regulatory pathway requiring miRNAs,
including miR395 (Kawashima et al., 2009). This microRNA con-
tributes to the regulation of SO4 root-to-shoot transfer involving
the SULTR2;1 gene. The transcript abundance of this gene is
strongly decreased under deficient S conditions (Takahashi et al.,
1997, 2000). It can be explained by the increased level of miR395
under such conditions (Kawashima et al., 2009), leading to a
strictly restricted expression of the SULTR2;1 gene in the xylem
(Kawashima et al., 2009). miR395 acts downstream of the TF
SULFUR LIMITATION 1 (SLIM1), also known as ETHYLENE-
INSENSITIVE3-LIKE 3 (EIL3; Maruyama-Nakashita et al., 2006;
Kawashima et al., 2009).

Plants have evolved tightly controlled mechanisms allowing
the coordination of the S transport and homeostasis with photo-
synthesis and the carbon status, in a similar manner to Pi trans-
port system (Lejay et al., 2008). In addition to these mechanistic
similarities in the regulation of the Pi and SO4 transport systems,
plants have developed coordinated and tightly controlled mech-
anisms to maintain intracellular homeostasis of both elements in
response to their external availability. It has been reported that
plant cells operate a rapid replacement of sulfolipids by phos-
pholipids under S deficiency, and the replacement of phospho-
lipids by sulfolipids during Pi deficiency (Essigmann et al., 1998;
Hartel et al., 1998; Yu et al., 2002; Sugimoto et al., 2007). Such
a metabolic switch attests the P/S nutritional interdependency.
Interestingly, two genes necessary for the replacement of phos-
pholipids by sulfolipids in Pi-deficient plants, SQD1 and SQD2,
contain a PHR1 binding sequence (P1BS) in their promoter, and
are up-regulated by Pi deficiency in a PHR1-dependant man-
ner (Franco-Zorrilla et al., 2004; Stefanovic et al., 2007). The
accumulation of SO4 and Pi was affected in Arabidopsis lines
characterized by a very low inositol-6-phosphate (phytic acid,
PA) content (Belgaroui et al., 2014). The expression of genes
involved in the SO4 and Pi transport or signaling was altered
in these low PA mutants. PA emerged thus as a component of
the co-regulation of SO4 and Pi homeostasis. Hsieh et al. (2009)
reported that the increased accumulation of miR395, known to
be up-regulated by SO4 starvation, is suppressed in Pi-deficient
plants. It could be therefore a mean to increase the S translo-
cation from root to shoot by SULTR2;1, enhancing thus the
sulfolipid biosynthesis in replacement of phospholipids under Pi
deficiency. Evidences for co-regulation of Pi and S signaling path-
ways are starting to emerge from recent data. Rouached et al.
(2011a) reported that the SO4 concentration increases in roots
and decreases in shoots of Arabidopsis Pi-deficient plants. These

Frontiers in Plant Science | www.frontiersin.org 6 April 2015 | Volume 6 | Article 290

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Briat et al. PHR1-dependent mineral nutrition

results indicate an adaptive regulation of the SO4 transport pro-
cess upon Pi deficiency in plants, and particularly the inter-organ
SO4 distribution. Interestingly, PHR1 is required for this pro-
cess to take place, likely through its positive regulatory role on
SULTR1;3 expression (Rouached et al., 2011a). PHR1 has also a
negative effect on the expression of SULTR2;1 and SULTR3;4 in
response to Pi deficiency (Rouached et al., 2011a). Noteworthy,
such a function is also preserved in Chlamydomonas reinhardtii
via the PHR1 ortholog PSR1 (Moseley et al., 2009). An integra-
tive model for the regulation of the expression of genes involved
in intracellular and inter-organ SO4 transport under Pi deficiency
in Arabidopsis has been proposed, in which PHR1 plays an inte-
grative role (Rouached, 2011). Considered together, these data
reveals an unsuspected level of complexity and interconnection
in the regulation of SO4 and Pi homeostasis in plants.

Fe, Zn, and Their Biological
Interactions

Zn is an essential microelement for cell life. It is the only metal
represented in all six classes of enzymes: oxidoreductases, trans-
ferases, hydrolases, lyases, isomerases, and ligases (Coleman,
1998). It also plays a structural role in regulatory proteins (Berg
and Shi, 1996). Despite its essentiality, high concentrations of Zn
can be toxic for the cell, and cause oxidative stress, a decrease in
accumulation of ATP, disintegration of cell organelles, and bio-
genesis of vacuoles (Sresty and Madhava Rao, 1999; Xu et al.,
2013).

Zn deficient plants exhibit deformed and chlorotic leaves,
and interveinal necrosis, leading to decrease biomass produc-
tion. Transport across the plasma membrane is achieved by
transporters belonging to the ZIP (ZRT, IRT-like protein) fam-
ily (Mäser et al., 2001) such as AtIRT1 (Vert et al., 2002;
Barberon et al., 2011). A passive Zn influx can also occur
through the depolarization-activated non-selective cation chan-
nel (DA-NSCC; Piñeros and Kochian, 2003), or by the voltage-
independent NSCCs (VI-NSCCs; Demidchik and Maathuis,
2007). Zn loading into the xylem sap involves plasma membrane
transporters which are members of the P1B-ATPases family,
namely AtHMA2, and AtHMA4 (Hussain et al., 2004; Verret
et al., 2004). For further information on the Zn transport in
plants, readers are referred to Sinclair and Krämer (2012). So far,
how plants sense and transmit the signal of Zn deficiency remains
poorly understood.

Fe, as Zn, is essential. It is also potentially toxic when in
excess because of its reactivity with oxygen which catalyzes the
formation of free radicals able to oxidize organic molecules, ulti-
mately leading to cell death (Briat et al., 2010b). Fe is a key
element to ensure the electron flow through the PSII-b6f/Rieske-
PSI complex. It is therefore essential for CO2 fixation by the
photosynthesis process. Indeed it has been well documented that
Fe is a limiting factor for biomass production, as well as for
the quality of plant products (Briat et al., 2014). Fe enters the
plant via the roots, from where it is distributed within the plant.
According to the plant family considered – i.e., graminacea plants
versus other plants – two mechanisms prevail for mining Fe

from the soil solution. They involve, respectively, chelation of
the ferric iron (Fe3+) by small organic molecules, among which
methionine derivatives constitute the mugineic acid (MAs) fam-
ily, or its reduction in its ferrous form (Fe2+) prior to transport
across the plasma membrane of root epidermal cells (Curie et al.,
2009; Morrissey and Guerinot, 2009; Conte and Walker, 2011).
This transport is achieved by transmembrane proteins exhibiting
transporter activities, such as YS1 responsible of the transport of
Fe3+-MAs complexes in graminacea, or IRT1 responsible of the
root uptake of Fe2+ by non-graminacea plants (Curie et al., 2001;
Vert et al., 2002). Many other transporters, as well as soluble pro-
teins, responsible for Fe long distance distribution, sub-cellular
compartmentation, and storage have also been characterized this
last decade (Morrissey and Guerinot, 2009; Briat et al., 2010a;
Kobayashi and Nishizawa, 2012). The expression of these genes
encoding proteins responsible of Fe homeostasis at the whole
plant level is precisely regulated through integrated pathways
modulated by the sensing of the Fe status of the plant. These
controls mainly operate at the transcriptional level via a net-
wotk of TFs, most of them belonging to the bHLH family (Ivanov
et al., 2012; Kobayashi and Nishizawa, 2012; Hindt and Guerinot,
2012), but also at the post-transcriptional level (Ravet et al., 2012).
How plants sense their Fe status is now the new frontier in this
field of research. It could be achieved, at least in part, by some
TFs and/or by Hemerythrin motif-containing Really interesting
new gene and Zinc-finger proteins (HRZs)/BRUTUS (BTS), that
were recently identified both in rice and Arabidopsis, respectively
(Kobayashi and Nishizawa, 2014).

Fe deficiency in Arabidopsis leads to the activation of expres-
sion of IRT1, the primary transporter responsible of root Fe
uptake. IRT1has a weak substrate specificity and contributes
therefore to the accumulation of a broad range of divalent tran-
sition metals including Zn (Vert et al., 2002; Arrivault et al.,
2006; Haydon et al., 2012). Conversely, excess Zn causes phys-
iological Fe deficiency. Early studies reported an absence of
IRT1 protein in Arabidopsis roots from plants grown under
Zn excess conditions (Connolly et al., 2002), suggesting that
the known post-translational regulation of IRT1 protein levels
through ubiquitin-mediated proteasomal degradation (Kerkeb
et al., 2008; Barberon et al., 2011) might predominate under
this condition. However, it was reported more recently that
IRT1 protein in Arabidopsis grown under excess Zn increased
in abundance, comparatively to plants grown under standard
Zn nutrition conditions (Fukao et al., 2011; Shanmugam et al.,
2011). IRT1 could therefore be a major contributor to Zn defi-
ciency.

MTP3 (a member of the Cation Diffusion Facilitator fam-
ily), HMA3 (belonging to the P1B-type ATPase family), and
ZIF1 (a member of the Major Facilitator Superfamily trans-
porters) are vacuolar membrane proteins required for Zn toler-
ance, and encoded by genes which are transcriptionaly activated
in response to excess Zn or Fe deficiency (Becher et al., 2003;
Arrivault et al., 2006; van de Mortel et al., 2006; Haydon and
Cobbett, 2007; Haydon et al., 2012). Indeed MTP3 and HMA3
gene expression is decreased in the fitmutant. This mutant lacks a
bHLHTF that activates root Fe deficiency responses, in particular
the transcriptional up-regulation of the Fe(III)-chelate reductase
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FRO2 and of the Fe2+ transporter IRT1 (Colangelo andGuerinot,
2006). Interestingly, transcriptional regulation of the ZIF1 gene
under Fe deficiency is independent of Fe deficiency-induced
Zn accumulation (Arrivault et al., 2006; Haydon et al., 2012).
The bHLH TF POPEYE, controlling a set of genes expressed
in the stele and important for the control of Fe homeostasis
was reported to directly interact with the ZIF1 promoter and
to repress its transcription, although there is a concurrent net
increase in ZIF1 transcript levels, under Fe deficiency (Long et al.,
2010).

These results evidence the complexity of the cross-talks
between the pathways at work to regulate Fe deficiency and
Zn excess in order to establish an integrated response, and
the necessity of additional work in the future to decipher
them.

The two macro-elements Pi and S on one hand, and the two
metals Zn and Fe on the other hand, do not only interact between
themselves as reported above. Indeed Pi and S status of the plant
can also influence Zn and Fe nutrition, and these aspects will now
be reviewed below.

S and Fe Homeostasis Interactions

From a biochemical point of view, Fe and S are known to
interact for the building of Fe–S clusters, which are a major
sink for Fe, and known to be essential for photosynthesis,
respiration, and many cellular enzymatic reactions (Couturier
et al., 2013). However, it is only recently that Fe and S inter-
actions have been documented at physiological and molecular
levels, although the cross-talks between the pathways regulat-
ing the integrated homeostasis of these two elements remain
to be deciphered. It is well established that leaf Fe concen-
tration decreases in S-deficient tomato, comparatively to S-
sufficient control plants. This is consistent with the observation
that the expression level of the LeFRO1 gene encoding a root
Fe3+-chelate reductase, the activity of this reductase, and the
reduction based of 59Fe uptake, are decreased in response to S
starvation (Zuchi et al., 2009). In agreement with these obser-
vations a strong repression of expression of the Arabidopsis
thaliana IRT1 Fe2+ transporter in response to S deficiency was
recently reported (Forieri et al., 2013). Reciprocally, it has been
observed that Fe starvation modifies S uptake and assimila-
tion. At a genome wide level, data mining of transcriptomes
from Fe deficient Arabidopsis plants revealed a cluster of S-
metabolism related genes (including genes encoding plasma
membrane and tonoplast S transporters, and enzymes of the S
assimilation pathway such as adenosine phosphosulfate reduc-
tase) co-expressed with Fe-deficient genes (Schuler et al., 2011).
Also, the high affinity S transporter SULTR1;1 mRNA abun-
dance is 2.5-fold lower in absence of Fe (Forieri et al., 2013).
However, a contrasted report was recently published concern-
ing this last point (Paolacci et al., 2014). It indicated that the
expression of most of the group 2 and 4 S transporters were
up-regulated in Fe starved tomato plants. It turned out to be
also the case of the SIST1;1 and SIST1;2 tomato high affinity
transporters of the group 1, to which belongs the SULTR1;1

transporter from Arabidopsis. Resolution of these discrepan-
cies concerning the impact of Fe deficiency on the regulation
of expression of high affinity SO4 transporters clearly requires
further work.

The interaction between Fe and S metabolisms has not only
been studied in plants acquiring Fe from the soil through a
reduction-based strategy as it occurs in tomato (Solanum lycop-
ersicum) or Arabidopsis. It has also been investigated with gram-
inaceous plants. Synthesis of Fe3+-chelators of the MAs family
(Kobayashi and Nishizawa, 2012) and their release in the rhi-
zosphere were reduced in barley (Hordeum vulgare L.) plants
grown under S starvation (Kuwajima and Kawai, 1997; Astolfi
et al., 2006). However, transcript abundance of the YS1 gene
encoding the Fe3+-MAs transporter (Curie et al., 2001) increased
in response to Fe deficiency at the same level, whatever the S
nutrition conditions imposed (Astolfi et al., 2012). The modifi-
cations of S metabolism occurring in response to Fe deficiency
have also been investigated in durum wheat (Triticum turgidum
L.; Ciaffi et al., 2013). These authors have shown that Fe defi-
ciency under S sufficient nutrition conditions led to a S deficiency
response at a molecular level. This response was characterized
by an increase in abundance of some of the transcripts encoding
enzymes of the S assimilation pathway, including APS reductase,
ATP sulfurylase, sulfite reductase, and serine acetyltransferase.
Furthermore, the activity of the corresponding enzymes was
also found to be increased by Fe shortage. However, changes
in mRNA abundance of some other genes of the S assimilation
pathway, and the activity of the corresponding enzymes, were
observed to be uncoupled in their response to Fe or S depri-
vation. In addition, the expression of the wheat SULTR1;3 high
affinity SO4 transporter was significantly increased in roots and
shoots in response to both S or Fe shortage, with the high-
est expression level observed under Fe deficiency conditions.
In contrast, the expression of the SULTR1.1 transporter gene,
mainly expressed in roots, was strongly induced in response
to S deficiency, but unaffected by Fe deficiency (Ciaffi et al.,
2013).

In conclusion, the interactions between Fe and S metabolisms
are attested both in graminaceous and non-graminaceous plants.
These interactions have started to be documented at a molecu-
lar level, reporting that Fe deficiency modifies the expression of
genes involved in S transport and assimilation, and vice-versa.
Nevertheless, the characterization of these interactions is still in
its infancy, and more work is needed to understand the com-
plexity of the integration of the various pathways involved. Of
particular interest would be the study of a possible role of the
synthesis of Fe–S cluster, and of their relative abundance in
response to various nutritional stress, as driving forces of the Fe–S
interactions (Couturier et al., 2013; Forieri et al., 2013).

PHR1 Involvement in Pi and Fe
Homeostasis Interactions

Clear physiological links have been established between Fe and Pi
(Hirsch et al., 2006; Ward et al., 2008). The complexation of Fe
by Pi in soils leads to the formation of precipitates, decreasing the
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FIGURE 3 | Schematic representation of the macro- and
micronutrients homeostasis crosstalks. The interactions between
phosphorus (P), sulfur (S), iron (Fe), and zinc (Zn) homeostasis are indicated
by left right arrows. At a molecular level, the PHR1 transcription factor was
initially identified as a key regulator of the expression of phosphate starvation
induced (PSI) genes, including phosphate transporters PHT1;1, PHO1;H1,
and genes involved in phosphate deficiency sensing and signaling including
SPX1, miR399, and miR827. PHR1 appeared also as a regulator of the
expression of genes involved in sulfate transport including the sulfate
transporters SULTR1;3, SULTR2;1, and SULTR3;4. The arrowheads and flat
ended lines indicate the positive and negative effects of PHR1, respectively.
The transcriptional regulation of some genes involved in maintaining Fe and Zn
homeostasis has also been shown to be PHR1-dependent; it includes the
FER1 gene encoding the Fe storage protein ferritin, and the ZIP2 and ZIP4
genes encoding zinc transporters.

availability of these two elements for plants. As a consequence,
the high affinity root Fe2+ uptake system, which is induced by
Fe deficiency, is also activated under Pi excess conditions (Ward
et al., 2008). Conversely, Pi starvation promotes metal accumu-
lation in plants, mainly aluminum, and Fe (Misson et al., 2005;
Hirsch et al., 2006; Ward et al., 2008). From a developmental
point of view, it is also well documented that a decrease of pri-
mary root growth under Pi deficiency is partly due to Fe toxicity
(Ward et al., 2008; Ticconi et al., 2009). Once taken up by the
roots, Pi is translocated to the shoots, and Fe can interact with Pi
inside roots leading to a reduced Pi translocation to the shoots
(Cumbus et al., 1977; Mathan and Amberger, 1977). The same
kind of interaction has been described in leaves in which high
Pi content favors chlorosis, even if the leaf Fe level is sufficient
(Dekock et al., 1978). Finally, in seeds Fe is stored in vacuoles
under the form of globoids composed in part of phytate (inosi-
tol hexakisphosphate = IP6)-Fe complexes (Lanquar et al., 2005).
These observations indicate that Pi is a very efficient Fe chela-
tor. As a consequence, changes in Pi homeostasis will strongly
influence Fe availability.

At the molecular level, transcriptome analysis of Pi defi-
cient plants revealed an increase in abundance of transcripts

from Fe excess responsive genes, and reciprocally a decrease in
abundance of transcripts from Fe deficiency responsive genes
(Misson et al., 2005; Müller et al., 2007; Thibaud et al., 2010).
In this context, the induction of expression of the AtFER1 gene,
encoding the Fe storage protein ferritin, in response to Pi defi-
ciency was interpreted by some authors as a consequence of an
increase in available Fe under such conditions (Hirsch et al.,
2006). Indeed this interpretation is likely wrong since the abun-
dance of AtFER1mRNA in response to Pi starvation was recently
shown to be mediated by PHR1 and PHL1, through their binding
to a P1BS cis-element found in the AtFER1 promoter, inde-
pendently of the plant Fe nutrition conditions (Bournier et al.,
2013). Furthermore, the Fe-dependent IDRS cis-acting element
present in the AtFER1 proximal promoter (Petit et al., 2001a)
is not required for Pi-deficient induction of AtFER1 expression
(Bournier et al., 2013). Moreover, AtFER3 and AtFER4 ferritins
genes, lacking P1BS cis-element in their promoter and known to
be induced by Fe excess (Petit et al., 2001b), have their expres-
sion unchanged by Pi starvation (Bournier et al., 2013). Finally,
induction of AtFER1 expression in response to Fe excess is not
altered in phr1 (Bournier et al., 2013) nor in phr1xphl1 (Bustos
et al., 2010) mutant plants.

At a cellular level, Fe distribution around the vessels was
abnormal in phr1x phl1 double mutant (Bournier et al., 2013),
suggesting that PHR1 and PHL1 may link Fe and Pi homeostasis
not only by regulatingAtFER1 gene expression, but also by having
a broader regulatory function of Fe metabolism. Indeed, genome
wide analysis of Pi starved wild-type (Misson et al., 2005; Müller
et al., 2007; Thibaud et al., 2010) and double phr1xphl1 mutant
(Bustos et al., 2010) plants revealed other Fe homeostasis related
genes such as NAS3 (NICOTIANAMINE SYNTHASE 3) and
YSL8. These genes were induced upon Pi starvation in wild type,
and exhibit a decreased induction in the double mutant plants.
Moreover, Fe deficiency responsive genes, including FRO3, IRT1,
IRT2, NAS1, and FRO6 were repressed upon Pi starvation in wild
type and miss-regulated in the phr1xphl1 double mutant plants.
These observations strengthen a global role of PHR1 and PHL1
in the overall control of Fe homeostasis that is, by this mean,
integrated to the Pi status of the plant.

PHR1 Involvement in Pi and Zn
Interactions

Pi and Zn homeostasis in plants are known to strongly interact
(Loneragan et al., 1982; Cakmak and Marschner, 1986; Huang
et al., 2000; Zhu et al., 2001; Misson et al., 2005; Bouain et al.,
2014a; Khan et al., 2014). Nevertheless, the molecular bases of
the Pi–Zn interactions remain so far poorly understood. Long-
term Pi deprivation leads to Zn over-accumulation (Misson et al.,
2005), and inversely Zn starvation appears to cause an over-
accumulation of Pi (Loneragan et al., 1982; Huang et al., 2000;
Bouain et al., 2014a; Khan et al., 2014). Transcriptome data
from roots of Pi- or Zn-deficient Arabidopsis plants (Hammond
et al., 2003; Wintz et al., 2003; Wu et al., 2003; Misson
et al., 2005; van de Mortel et al., 2006; Müller et al., 2007;
Bustos et al., 2010; Rouached et al., 2011b; Woo et al., 2012),
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FIGURE 4 | A wider role for PHR1 and PHL1 in the regulation of plant
mineral nutrition. Transcript abundance values of genes involved in iron (Fe)
homeostasis or that respond to phosphate (Pi) or sulfur (S) deficiency in wild
type or phr1 and phr1 phl1 mutants, in the presence or absence of Pi, were
selected from microarrays data (Bustos et al., 2010). These data were
hierarchically clustered using EPCLUST with the default parameters

(http://www.bioinf.ebc.ee/EP/EP/EPCLUST/). (A yellow square): Genes whose
mRNA abundance is positively dependent (at least) on PHR1 activity in
shoots and roots, or in shoots only (dashed lines); (B pink square): Genes
whose mRNA abundance is negatively dependent (at least) on PHR1 activity
in shoots and roots or in roots only (dashed lines); (C green square):

(Continued)
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FIGURE 4 | Continued

revealed that Zn deficiency Genes whose mRNA abundance is positively
dependent on PHR1 activity but negatively dependent on PHL1 activity both
in shoots and roots or in shoots only (dashed lines). (D orange square): Genes
whose mRNA abundance is negatively dependent on PHR1 activity but pos-
itively dependent on PHL1 activity both in shoots and roots. (E blue square):
Genes whose mRNA abundance is negatively dependent on both PHR1 and
PHL1 activities in shoots and roots or in shoots only (dashed lines). Red
star, Pi deficiency response; blue star, S deficiency response; green star, Fe
homeostasis.

could induce the expression of many Pi-related genes (van de
Mortel et al., 2006), and that Pi starvation modifies the expres-
sion of genes involved in the maintenance of metal homeostasis
such as Zn and Fe (Misson et al., 2005; Bustos et al., 2010).
Considered together, this transcriptome data reinforce the evi-
dence of a cross-talk between Pi and Zn signaling pathways in
planta. Cross-analysis of these expression data showed that Pi and
Zn deficiencies often act in anopposite manner on these sets of
genes. Many genes induce by Zn deficiency are repressed by Pi
deficiency (Bustos et al., 2010; Bouain et al., 2014b). Interestingly,
it was observed that most of these genes were further repressed in
the phr1 mutant genetic background (Bustos et al., 2010; Bouain
et al., 2014a). This observation further supports the implication
of PHR1 in the regulation of expression of Pi-related genes under
Zn limitation in Arabidopsis (Bouain et al., 2014b). It agrees
with a report by Khan et al. (2014) showing the involvement of
AtPHR1 in the cross-talk between Pi and Zn homeostasis. As
aforementioned, PHR1 was already known as a major regulator
of Pi deficiency signaling through its involvement in the PHR1-
miR399-PHO2 regulatory pathway (Bari et al., 2006). However,
this regulatory pathway is not involved in the over-accumulation
of Pi in the shoot in response to Zn deficiency (Khan et al.,
2014). The Zn-responsive signaling pathway in which PHR1 is
involved thus remains to be elucidated. Khan et al. (2014) also
identified two additional genes that are involved in the control
of Pi accumulation in response to Zn deficiency, namely PHO1
and its homolog PHO1;H3. PHO1 is a well-characterized root-
to-shoot Pi transporter (Hamburger et al., 2002). It is likely one
of the final targets of the Zn-deficiency signaling pathway. Since
its level of expression is unchanged in response to Zn deficiency,
one favorite hypothesis is that its activity would be regulated
through a protein–protein interaction, considering that a sim-
ilar mechanism involving PHO1 and PHO2 has already been
reported (Liu et al., 2012). The PHO1;H3 gene appeared to be
specifically and strongly induced by Zn deficiency (Khan et al.,
2014). PHO1;H3 constitutes thus an interesting entry point to
study Pi–Zn crosstalk and the regulation of Pi transport under
Zn limitation. A first model illustrating Pi–Zn crosstalk in plant
has been proposed (Bouain et al., 2014b; Kisko et al., 2014). In
the future, this model would benefit from an in depth charac-
terization of the molecular mechanisms underlying the effect of
Pi starvation on Zn nutrition, together with the effects of Zn
deficiency on Pi nutrition. The identified and characterized key
genes and mechanisms acting in the coordination of Pi and Zn
transport and signaling in plants could help to point to specific
mutants or genetic variants that could be used in breeding pro-
grams. Taken together, this knowledge should have important

consequences for both basic and applied research in agronomy
and should be valuable to plant biologists, agronomists and
breeders.

PHR1 as an Integrator of Multiple
Nutrition Signals and Beyond

PHR1 was initially described as a major transcriptional reg-
ulator of Pi homeostasis. It activates the transcription of Pi
deficiency responsive genes encoding Pi transporters (Rubio
et al., 2001), as well as regulatory RNA (Fujii et al., 2005)
and proteins involved in the post-transcriptional and post-
translational regulation of these transporters, respectively (Aung
et al., 2006; Bari et al., 2006; Liu et al., 2012; Figure 2). More
recently, few reports indicated that PHR1 regulated also the
expression of genes required for S, Fe, and Zn transport and
homoeostasis (Rouached et al., 2011a; Bournier et al., 2013;
Khan et al., 2014), linking the metabolism of these nutri-
ments to Pi nutrition (Figure 3). PHR1 is therefore the first
molecular link common to various pathways controlling min-
eral nutrition of both macro- and micro-elements. It can be
extended to some aspects of the control of plant response to
water stress, for which AtPHL1 activity is required (Elfving
et al., 2011). As mentioned above, in response to Pi starva-
tion PHR1 controls the transcription of post-transcriptional and
post-translational regulators such as miR399, IPS1, and PHO2
(Figure 2). Whether or not these PHR1-dependent regulators
play a role in the regulation of S, Fe, or Zn metabolisms is
unknown, and would deserve to be investigated. Furthermore,
the requirement of PHR1 has been documented in the case of
two by two interactions of only some of the elements consid-
ered: Pi and S, Pi and Fe, Pi and Zn but to our knowledge no
reports mentioned a direct role of PHR1 in the Fe–S or Fe–Zn
interactions.

PHR1 has been the most studied regulator of Pi deficiency
response, but it is known that other regulators are involved.
Among them TFs including WRKY75 (Devaiah et al., 2007a),
ZAT6 (Devaiah et al., 2007b), MYB62 (Devaiah et al., 2009),
PTF1 (Yi et al., 2005), bHLH32 (Chen et al., 2007), and
WRKY45 (Wang et al., 2014b) have been reported. Furthermore,
not only additional TFs have to be considered. In addition
to the well-characterized role of miR399 in the regulation
of Pi homeostasis in Arabidopsis, other miRNAs (miRNA778,
miRNA827, and miRNA2111) were reported to be specifi-
cally and strongly induced in response to Pi starvation (Fujii
et al., 2005; Hsieh et al., 2009; Pant et al., 2009). The role
of these miRNA in the potential cross-talks between path-
ways regulating homeostasis of various mineral nutriments has
already been suggested for miRNA82, involved in the cross-
talk between Pi-limitation and nitrate-limitation signaling path-
ways affecting anthocyanin synthesis (Pant et al., 2009; Liu
et al., 2014). Finally, chromatin modification could also be con-
cerned through H2A.Z histone deposition via the nuclear actin-
related protein ARP6 in order to activate the expression of
many genes related to the Pi deficiency response (Smith et al.,
2010).

Frontiers in Plant Science | www.frontiersin.org 11 April 2015 | Volume 6 | Article 290

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Briat et al. PHR1-dependent mineral nutrition

Integration of pathways controlling two by two nutri-
ment homeostasis has started to be documented. However
a survey of transcriptome data reveals that the role played
by PHR1 and PHL1 in these interactions could be wider
(Figure 4). Indeed PHR1 and PHL1 control transcript accu-
mulation of key genes of Fe homeostasis as well as genes
whose expression is directly dependent on S or Pi avail-
ability. In consequence, a major challenge in the future
will be to consider mineral nutrition as a system, and to
develop tools enabling to model integrative gene networks

that will take into account the availability of a maximum of
macro-and micro-elements, and their interactions, at a given
time.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.
00290/abstract
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