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Ticagrelor is the first reversible, direct-acting, potent P2Y12 receptor antagonist
in management of acute coronary syndromes. It is rapidly absorbed and
extensively metabolized. AR-C124910XX, the major active metabolite, antagonizes
the P2Y12 receptor at approximately equal potency. The metabolism of ticagrelor
to AR-C124910XX involves CYP3A4 and CYP3A5. CYP3A polymorphisms have
been well documented, and CYP3A4∗1G (g.20230G>A, rs2242480) and CYP3A5∗3
(g.6986A>G, rs776746) are the most important single nucleotide polymorphisms in
Chinese. Genetic differences in CYP3A4 and CYP3A5 expression in human volunteers
and patients might affect the clearance of ticagrelor or AR-C124910XX in vivo resulting
in subsequent variable patient response. Thus, this study is designed to explore the
effects of CYP3A4∗1G and CYP3A5∗3 polymorphisms on the pharmacokinetics and
pharmcodynamics of ticagrelor in healthy Chinese subjects. The results indicated
that the CYP3A4∗1G polymorphism significantly influenced the pharmacokinetics of
AR-C124910XX, and it may be more important than CYP3A5∗3 with respect to
influencing ticagrelor pharmacokinetics by increasing CYP3A4 activity. However, the
significant effect of CYP3A4∗1G polymorphism on AR-C124910XX plasma levels did
not translate into detectable effect on inhibition of platelet aggregation. Therefore, it
seems not necessary to adjust the dosage of ticagrelor according to the CYP3A4 or
3A5 genotype.

Keywords: ticagrelor, AR-C124910XX, CYP3A4∗1G, CYP3A5∗3, pharmacokinetics, pharmacodynamics, healthy
Chinese volunteers

INTRODUCTION

Ticagrelor, a member of a novel chemical class antiplatelet agent termed cyclopentyl-
triazolopyrimidines, is the first reversibly binding oral adenosine diphosphate receptor
antagonist acting via the P2Y12-receptor (Springthorpe et al., 2007; Husted and van Giezen,
2009). Compared with clopidogrel, ticagrelor significantly reduced the composite endpoint
of cardiovascular death, myocardial infarction or stroke, but with similar overall major or
fatal bleeding rates (Wallentin et al., 2009). Based on above advantages, it’s recommended
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for management of patients with acute coronary syndromes
(ACS) by numerous international treatment guidelines, including
the European Society of Cardiology (ESC) guidelines and the
American College of Cardiology (ACC) guidelines (Wallentin
et al., 2009; Levine et al., 2016).

Ticagrelor is rapidly absorbed and extensively metabolized in
humans, with a total of 10 metabolites characterized by LC-MS
from plasma, urine, and feces (Teng et al., 2010). Of all, only one
metabolite, named AR-C124910XX, whose system exposure is
approximately 30–40% of the parent compound, exhibits almost
the same potency in antiplatelet effect as the parent drug (Husted
et al., 2006; Butler and Teng, 2010; Teng and Butler, 2010; Teng
et al., 2010; Zhou et al., 2011). Cytochrome P450 (CYP) 3A4
and 3A5 are the enzymes predominantly responsible for the
metabolism of ticagrelor to AR-C124910XX (Zeng et al., 2009).

As the most abundant isoenzyme of CYP450 in the
human liver, CYP3A expression varies 40-fold in individual
human livers, and substrate metabolism varies at least 10-fold
in vivo (Thummel and Wilkinson, 1998; Guengerich, 1999).
It’s well documented that genetic polymorphisms contribute to
30–90% of the interindividual variability in the CYP3A activity
(Evans and McLeod, 2003; Hu et al., 2006; Agrawal et al.,
2010). Single nucleotide polymorphisms (SNPs) are the most
common form of genetic variation in CYP3A4 and CYP3A5.
Among the identified SNPs in the CYP3A4 and CYP3A5
genes1, CYP3A4∗1G (g.20230G>A, rs2242480) and CYP3A5∗3
(g.6986A>G, rs776746) variants appear particularly important
considering their relatively high frequency in Chinese subjects.
The frequencies of CYP3A4∗1G and CYP3A5∗3 alleles were 22.7–
38.99% (Hu et al., 2007; Zhang et al., 2010, 2011; Yuan et al., 2011;
Zhu et al., 2012; Xin et al., 2014) and 73.3% (Zhu et al., 2012;
Xin et al., 2014), respectively, and CYP3A4∗1G allele is highly
genetically linked with the CYP3A5∗3 allele. Several studies
indicate that CYP3A4∗1G is associated with altered CYP3A4
activity (Fukushima-Uesaka et al., 2004) and may be responsible
for the interindividual differences in the pharmacokinetics or
pharmacodynamics of tarcolimus (Shi et al., 2011; Zhu et al.,
2012; Li et al., 2013, 2014), atorvastatin (Gao et al., 2008; He
et al., 2014), cyclosporine (Hu et al., 2007; Qiu et al., 2008),
and postoperative fentanyl requirements (Zhang et al., 2010,
2011; Liao et al., 2013); CYP3A5∗3 allele is associated with a
non-functional protein due to a premature termination codon.
Therefore, altered activity of CYP3A4 and CYP3A5 resulting
from genetic polymorphisms may affect the formation of active
metabolite and the antiplatelet effect of the drug subsequently.
However, as far as we know, the evidence is limited about
whether CYP3A4∗1G and CYP3A5∗3 polymorphisms affect the
pharmacokinetics and pharmacodynamics of ticagrelor and AR-
C124910XX in Chinese subjects.

The aim of our study is to explore the role of the two genetic
plymorphisms in pharmacokinetics and pharmacodynamics of
ticagrelor and AR-C124910XX in healthy Chinese subjects.
We hope the results can provide references for future clinical
individualized dosage regimens.

1http://www.cypalleles.ki.se/

SUBJECTS AND METHODS

Subjects
Fourteen healthy male Chinese volunteers who had the
CYP3A4∗1G (g.20230G>A, rs2242480) or CYP3A5∗3
(g.6986A>G, rs776746) variant or both were recruited from 136
male healthy Chinese volunteers. Each subject was physically
healthy with no prior history of significant medical illness
according to a medical history, physical examinations, vital signs,
routine clinical laboratory tests (complete blood count and tests
for renal and hepatic function, and coagulation) and ECGs.
Subjects were required to have the following laboratory values
within normal ranges: body mass index (BMI) of 19–24 kg·m−2,
baseline maximal platelet aggregation (MPA) response to 5 µM
ADP of ≥70%. Volunteers who had donated blood within the
past 2 months, who had a history of conditions affecting drug
disposition (e.g., allergies, genetic diseases); who had a personal
or family history of bleeding disorders/events; who smoked ≥5
cigarettes per week (or the equivalent use of other nicotine-
containing products); who consumed grapefruit products
1 week before the study, or who had taken any prescription
medication within 2 weeks of the start of the study were
excluded.

All subjects provided written informed consent before
participation and the Ethics Committee of the First Affiliated
Hospital of Soochow University approved the study protocol.
Studies were conducted in accordance with the International
Conference on Harmonisation Guideline for Good Clinical
Practice and the Declaration of Helsinki.

Genotyping
Genomic DNA from EDTA-treated blood samples was
extracted using a Wizard Genomic DNA Purification kit
(Promega Corporation, Madison, WI, USA) according to the
manufacturer’s instructions. Genomic DNA extracted from
subjects’ blood was genotyped for CYP3A4∗1G or CYP3A5∗3
alleles by direct sequencing. Briefly, the genomic DNA was
amplified by use of two primers for each genotype. The
sequences of PCR primers are shown in Table 1. PCR was
performed by using Taq DNA polymerase (1.25 U/50 µL),
10× Taq Buffer, 25 mM MgCl2, dNTP and genomic DNA
(50–100 ng/50 µL) with a pair of primers (0.3 µM) on T100TM

Thermal Cycler. The PCR conditions for CYP3A4∗1G were 95◦C
for 5 min, followed by 35 cycles of denaturizing at 95◦C for
30 s, annealing at 59◦C for 30 s, and extension at 72◦C for 30 s,
and a final extension at 72◦C for 10 min. The PCR conditions
for CYP3A5∗3 is almost the same as CYP3A4∗1G except for
the annealing temperature that was 56◦C. Then, the genotyping

TABLE 1 | The sequences of PCR primers for genotyping.

SNP Primers

CYP3A4∗1G Forward: 5′-CACCCTGATGTCCAGCAGAAACT-3′

Reverse: 5′-AATAGAAAGCAGATGAACCAGAGCC-3′

CYP3A5∗3 Forward: 5′-CATGACTTAGTAGACAGATGA-3′

Reverse: 5′-GGTCCAAACAGGGAAGAAATA-3′
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TABLE 2 | Demographics of 14 healthy Chinese male volunteers according to CYP3A4 and CYP3A5 genotypes; values are mean (SD).

SNP No. Age, y Weight, kg Height, cm Body mass index, kg/m2

CYP3A4∗1/∗1 6 26.2 (2.5) 62.5 (3.9) 171.2 (3.7) 21.3 (1.4)

CYP3A4∗1/∗1G 6 26.7 (2.8) 63.3 (5.3) 170.2 (6.7) 21.9 (1.9)

CYP3A4∗1G/∗1G 2 25.0 (0) 59.5 (0.7) 171.0 (5.7) 20.4 (1.6)

CYP3A5∗1/∗1 3 27.7 (2.5) 63.0 (3.6) 166.0 (2.6) 22.9 (1.2)

CYP3A5∗1/∗3 4 25.8 (2.9) 59.4 (3.4) 172.0 (2.6) 20.1 (1.1)

CYP3A5∗3/∗3 7 25.9 (2.2) 63.9 (4.6) 172.0 (5.9) 21.6 (1.6)

was carried out by direct sequencing on an ABI 3730 DNA
Analyzer.

Study Protocol
All subjects were admitted to the clinical trial center the
night before ticagrelor dosing. At 7:00 AM on the subsequent
morning, each subject received one dose (180 mg, po) with
200 mL of water after an overnight fast. Blood samples for
pharmacokinetics (4 mL each) were collected via an indwelling
catheter or direct venipuncture into tubes containing sodium
heparin immediately before and 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8,
12, 16, 24, 36, and 48 h after drug administration. Blood
samples were processed by centrifugation (4,000 rpm at 4◦C
for 5 min), and plasma was harvested and stored at −80◦C
until analysis. Pharmacodynamics samples were collected via
direct venipuncture into tubes containing 0.109 mmol·L−1

sodium citrate before and 1, 2, 4, 12, 24, and 48 h after drug
administration.

Pharmacokinetic Assessments
Plasma concentrations of ticagrelor and the metabolite,
AR-C124910XX, were analyzed by validated UPLC-MS-MS
methods as previously described (Sillen et al., 2010). Protein
in plasma samples was precipitated with acetonitrile, and
samples were chromatographed using a Waters ACQUITY
UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) column with a
mobile phase consisting of acetonitrile and 0.1% formic acid
water (55: 45, v/v) at a flow rate of 300 µL·min−1. The linear
calibration ranges were 0.5–2,000 ng·mL−1 for ticagrelor and
AR-C124910XX (r2

≥ 0.99) and the lower limits of quantification
for ticagrelor and AR-C124910XX were both 0.5 ng·mL−1.
Intraday precision values [relative standard deviations (RSD)]
ranged from 6.0 to 13.2% for ticagrelor and 4.2–11.5% for
AR-C124910XX at three quality control levels. Interday precision
values ranged from 8.7 to 11.4% for ticagrelor and 6.5 to 10.2%
for AR-C124910XX.

Pharmacodynamics Assessments
The inhibition of ADP-induced platelet aggregation of platelet-
rich plasma (PRP) was measured in response to 5 µM ADP as
described elsewhere (Muller et al., 2003; Geiger et al., 2005). The
measurement was achieved on a platelet aggregation profiler-
4 optical aggregometer with temperature maintained at 37◦C.
The observed maximal platelet aggregation was recorded, and
the effects on ADP-induced inhibition of platelet aggregation
(IPA; the primary pharmacodynamics parameter) were calculated

using the following equation:

IPAt (% inhibition) =

[
(MPAbaseline − MPAt)

MPAbaseline

]
× 100%,

(1)
where IPAt represents the IPA at time t, MPAt represents the MPA
at time t, and MPAbaseline represents the MPA value at baseline. In
essence, a higher IPA indicated greater antiplatelet effect.

Pharmacokinetic and
Pharmacodynamics Analysis
Pharmacokinetics was analyzed using non-compartmental
methods and WinNonlin Pro 5.2 (Pharsight Corporation,
Mountain View, CA, USA). Concentration–time curves
were generated for plasma ticagrelor and AR-C124910XX,
and Cmax was estimated directly from observed plasma
concentration–time data. AUC0−t was calculated using
the linear trapezoidal rule, AUC0−∞ was calculated as
AUC0−∞ = AUC0−48 + Ct/ke, where Ct was the last
measured concentration and ke was calculated using
linear regression analysis of the log-linear part of the
plasma concentration–time curve. t1/2 was calculated as
ln2/ke.

The pharmacodynamics effect (IPA) of ticagrelor was
expressed as the percentage change from baseline platelet
aggregation to 48 h after initial administration of the study drugs.
The area under the time-effect curve (AUEC) for the IPA of
ticagrelor was calculated from the time vs. IPA value curve, using
the linear trapezoidal rule.

STATISTICAL ANALYSIS

Statistical analyses were performed using SPSS 16.0.
Continuous variables were presented as means ± SD, and
a Kolmogorov–Smirnov test was used to confirm normal
distribution of continuous data. Data normally distributed were
analyzed using a one-way analysis of variance (ANOVA)
with the least significant difference (LSD) post hoc test
for multiple comparisons and an unpaired Student’s t-test
for two groups as appropriate. Comparison of data not
normally distributed was performed with a Mann–Whitney
U test for comparison of two groups, while a Kruskal–
Wallis H test was used for comparison of multiple groups.
Two-sided P values ≤ 0.05 were considered statistically
significant.
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FIGURE 1 | Mean (SD) plasma concentration–time profiles of ticagrelor
(A) and AR-C124910XX (B) after administration of single 180 mg oral dose for
the different CYP3A4∗1G genotypes.

Tolerability
All participants given the medication evaluated here were
observed closely to preserve their safety. All adverse events
(AEs), such as symptoms and their severity, duration, time of
onset and disappearance, and relationships to the study drug,
were recorded. Physical examinations were performed and vital
signs were evaluated, including systolic and diastolic blood
pressures. Laboratory tests included urinalysis and hematologic,
coagulation, and chemical analysis were performed.

RESULTS

Genotyping
Fourteen healthy Chinese male subjects were recruited from
136 individuals genotyped for CYP3A4∗1G and CYP3A5∗3. All
enrolled subjects completed the study with no major protocol

FIGURE 2 | Mean (SD) plasma concentration–time profiles of ticagrelor
(A) and AR-C124910XX (B) after administration of single 180 mg oral dose for
the different CYP3A5∗3 genotypes.

violations. Subjects’ demographics and SNP characteristics
appear in Table 2, and there were no significant differences in
age, weight, height, or BMI among the six genotypes.

Association of CYP3A4∗1G and
CYP3A5∗3 Polymorphisms with
Ticagrelor and AR-C124910XX
Pharmacokinetics
Mean ± SD plasma concentration–time profiles for ticagrelor
and AR-C124910XX for CYP3A4 and CYP3A5 genotypes are
presented in Figures 1, 2. Pharmacokinetic comparisons for both
genotypes are summarized in Tables 3, 4. Because no significant
differences exist between the CYP3A4: g.20230GA heterozygotes
and CYP3A4: g.20230AA homozygotes, both were combined and
compared to CYP3A4: g.20230GG homozygotes.
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TABLE 3 | Pharmacokinetic properties of ticagrelor and AR-C124910XX after administration of single 180 mg oral dose for the different CYP3A4∗1G
genotypes; values are as mean (SD).

Pharmacokinetic parameters Ticagrelor AR-C124910XX

CYP3A4∗1/∗1 CYP3A4∗1G carriers CYP3A4∗1/∗1 CYP3A4∗1G carriers

n = 6 n = 8 n = 6 n = 8

AUC0− last(ng mL−1 h−1) 8241.8 (1908.9) 9608.9 (4065.5) 2828.7 (329.1)∗∗ 3907.1 (569.5)

AUC0−∞(ng mL−1 h−1) 8379.0 (1943.7) 9831.03 (4268.0) 2887.7 (347.7)∗∗ 4124.4 (659.3)

t1/2(h) 7.9 (1.0) 8.6 (1.2) 7.9 (1.8)∗∗ 11.0 (2.2)

tmax(h) 2.0 (0.6) 1.8 (0.6) 2.1 (0.5) 2.2 (0.7)

Cmax(ng mL−1) 1225.3 (421.70) 1613.4 (570.2) 310.6 (53.6)∗∗ 440.0 (69.8)

∗∗P < 0.01

TABLE 4 | Pharmacokinetics properties of ticagrelor and AR-C124910XX after administration of single 180 mg oral dose for the different CYP3A5∗3
genotypes; values are mean (SD).

Pharmacokinetic parameters Ticagrelor AR-C124910XX

CYP3A5∗1/∗1 CYP3A5∗1/∗3 CYP3A5∗3/∗3 CYP3A5∗1/∗1 CYP3A5∗1/∗3 CYP3A5∗3/∗3

n = 3 n = 4 n = 7 n = 3 n = 4 n = 7

AUC0− last(ng mL−1
·h−1) 11884.0 (6564.2) 7615.4 (941.4) 8601.3 (1720.5) 4144.9 (544.7) 3527.3 (747.2) 3098.0 (604.4)

AUC0−∞ (ng mL−1
·h−1) 12236.1 (6879.7) 7715.7 (948.7) 8764.4 (1754.6) 4375.2 (681.0) 3658.3 (807.4) 3223.2 (730.0)

t1/2(h) 9.0 (1.7) 7.6 (0.5) 8.3 (1.1) 10.7 (3.0) 9.8 (2.1) 9.2 (2.8)

tmax(h) 1.7 (0.6) 2.0 (0.8) 1.9 (0.6) 2.2 (0.8) 2.4 (0.8) 2.0 (0.5)

Cmax(ng mL−1) 1926.7 (773.7) 1181.9 (479.5) 1393.0 (365.7) 440.3 (97.0) 395.8 (120.5) 354.2 (67.3)

FIGURE 3 | Mean (SD) inhibition of platelet aggregation (IPA,%) of
ticagrelor after administration of single 180 mg oral dose for the
different CYP3A4∗1G genotypes.

Ticagrelor
No statistically significant differences were observed in the
AUC0−last, AUC0−∞, t1/2, tmax, or Cmax between the two
CYP3A4 genotypes (P > 0.05). No statistically significant
differences were found in pharmacokinetics for ticagrelor among
the three CYP3A5 genotypes.

FIGURE 4 | Mean (SD) IPA(%) of ticagrelor after administration of
single 180 mg oral dose for the different CYP3A5∗3 genotypes.

AR-C124910XX
The mean AUC0−last, AUC0−∞, and Cmax of AR-C124910XX in
CYP3A4∗1G carriers were 1.38 (P = 0.001), 1.43 (P = 0.001),
and 1.42 (P = 0.003)-fold higher than in those with the
CYP3A4: g.20230GG homozygotes, respectively. The t1/2 of
AR-C124910XX in the CYP3A4∗1G group was also significantly
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TABLE 5 | Inhibition of platelet aggregation [area-under-the-effect curve (AUEC), % inhibition·h] over time of ticagrelor after administration of single
180 mg oral dose for the different CYP3A4 and CYP3A5 genotypes.

Pharmacodynamic parameter CYP3A4∗1/∗1 CYP3A4∗1G carriers CYP3A5∗1/∗1 CYP3A5∗1/∗3 CYP3A5∗3/∗3

n = 6 n = 8 n = 3 n = 4 n = 7

AUEC (%inhibition·h) 2393.33 (283.86) 2417.88 (614.15) 2212.00 (686.93) 2239.75 (366.86) 2586.86 (455.58)

Values are represented as mean (SD).

longer than the CYP3A4: g.20230GG homozygotes (P = 0.015).
The CYP3A4 genotype had no statistically significant effect on
the tmax of AR-C124910XX. The CYP3A5 genotype had no
statistically significant effect on pharmacokinetics parameters of
AR-C124910XX.

Association of CYP3A4∗1G and
CYP3A5∗3 Polymorphisms with
Ticagrelor and AR-C124910XX
Pharmacodynamics
Pharmacodynamics properties of ticagrelor for CYP3A4
and CYP3A5 genotypes are presented in Figures 3, 4.
Pharmacodynamics comparisons for both genotypes are
summarized in Table 5. Strong inhibitory effects on platelet
aggregation were observed. A single oral dose of ticagrelor
(180 mg) induced a maximum inhibition of 75% at an average of
4 h after dosing. No statistically significant difference in IPA was
observed for either CYP3A4 or CYP3A5 genotype.

Tolerability
Ticagrelor was well tolerated, and no study volunteers withdrew
from the protocol, and no clinically significant bleeding event or
thrombocytopenia was documented.

DISCUSSION

Effective antiplatelet treatment is particularly important in
patients with a high risk of cardiovascular events. As an
orally active antiplatelet agent, ticagrelor has been demonstrated
to exert a faster and more powerful IPA in comparison
to clopidogrel in coronary artery disease patients. Although
ticagrelor does not require metabolic activation for antiplatelet
activity, it is still extensively metabolized to an active metabolite,
AR-C124910XX (Teng et al., 2010; Giorgi et al., 2011).
Significantly altered plasma concentration of ticagrelor or
AR-C124910XX has been reported after the concomitant use
of ketoconazole (CYP3A4 inhibitor) or rifampicin (CYP3A4
inducer). Therefore, it is plausible that modified CYP3A4
and 3A5 enzyme activity caused by genetic polymorphisms
may potentially influence the exposure of the parent drug
or metabolite in vivo resulting in subsequent variable patient
response. However, influence of CYP3A4∗1G and CYP3A5∗3
on ticagrelor pharmacokinetics and pharmacodynamics is
still not quite clear. The present study was thus designed
to extensively investigate the effects of CYP3A4∗1G and
CYP3A5∗3 genetic polymorphisms on the pharmacokinetics and

pharmacodynamics of ticagrelor and AR-C124910XX in Chinese
healthy subjects.

Indeed, our results suggest that subjects with the CYP3A4∗1G
allele had greater AR-C124910XX AUC0−last, AUC0−∞, and
Cmax and longer t1/2 compared with those subjects with the
CYP3A4∗1/∗1 genotypes. Thus, the CYP3A4∗1G allele may
enhance CYP3A4 expression and increase biotransformation
of ticagrelor. This finding is consistent with previously
published studies (Hu et al., 2007; Qiu et al., 2008; Zeng
et al., 2009) which showed that the CYP3A4∗1G genotype
significantly affects cyclosporine pharmacokinetics and
increases its CYP-mediated metabolism. In contrast, Zhang
and Qin’s groups (Zhang et al., 2010; Liao et al., 2013) found
that CYP3A4∗18B (CYP3A4∗1G) polymorphism decreased
CYP3A4 activity and modified fentanyl pharmacokinetics.
So, patients with the CYP3A4∗1G/∗1G genotype required
significantly less fentanyl for postoperative pain control
compared to those with wild type or the CYP3A4∗1/∗1G
genotype.

However, statistically significant difference in IPA was
not observed as well as the effects of CYP3A4∗1G on plasma
AR-C124910XX levels. Considering the fact that CYP3A4
and CYP3A5 convert ticagrelor into its active metabolite,
AR-C124910XX, whose potency is almost the same as
ticagrelor in antagonizing P2Y12 receptor, it became not so
surprised. However, it’s important to note that a strong linkage
disequilibrium exists between the CYP3A4∗1G and CYP3A5∗1
polymorphisms, the presence of ∗1G might be only a marker
of yet unstudied allele of greater influence of the variability
on ticagrelor therapy. Therefore, to further examine the
associations of the CYP3A5∗3 and CYP3A4∗1G polymorphisms
on CYP3A activity and to assess the combined influence of
these two polymorphisms, a larger study should be on the
way.

Varenhorst et al. (2015) reported GWAS data regarding
ticagrelor pharmacokinetics in a large cohort of ticagrelor-treated
ACS patients and showed an association of three different
genetic loci (SLCO1B1, CYP3A4, and UGT2B7) with plasma
ticagrelor. Because the CYP3A4:(g.11107G>A, rs56324128) is
infrequent in the Chinese, we selected CYP3A4∗1G for the study,
and our data showed that CYP3A4∗1G significantly affected
AR-C124910XX pharmacokinetics but not the parent drug or
platelet reactivity, which is in agreement with data published
by Christophe’s group. Meanwhile, considering the fact that,
there was no direct evidence whether SLCO1B1 or UGT2B7
participated in the metabolism of ticagrelor, and the effect of
genetic polymorphisms of the two proteins on ticagrelor weren’t
assessed in our study.
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CONCLUSION

In summary, the CYP3A4∗1G polymorphism significantly
influenced the pharmacokinetics of AR-C124910XX, and it may
be more important than CYP3A5∗3 with respect to influencing
ticagrelor pharmacokinetics by increasing CYP3A4 activity.
Dosage adjustment according to the CYP3A4 or 3A5 genotype
seems unnecessary considering their minor impact on platelet
reactivity.
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