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Although autophagy is a process that has been studied for several years its link with 
antigen presentation and T cell immunity has only recently emerged. Autophagy, which 
means “self-eating,” is important to maintain cell homeostasis and refers to a collection 
of mechanisms that delivers intracellular material for degradation into lysosomes. Among 
them, macroautophagy pathway has many implications in different biological processes, 
including innate and adaptive immunity. In particular, macroautophagy can provide a 
substantial source of intracellular antigens for loading onto MHC class II molecules 
using the alternative MHC class II pathway. Through autophagosomes, endogenous 
self-antigens as well as antigens derived from intracellular pathogens can be delivered to 
MHC class II compartment and presented to CD4+ T cells. The pathway will, therefore, 
impact both peripheral T cell tolerance and the pathogen specific immune response. 
This review will describe the contribution of autophagy to intracellular presentation of 
endogenous self- or pathogen-derived antigens via MHC class II and its consequences 
on CD4+ T cell responses.

Keywords: macroautophagy, antigen presentation/processing, MHC class ii, tolerance mechanisms, CD4-positive 
T-lymphocytes

introduction

A regulated balance between biosynthesis and degradation of different cellular components is required 
to maintain cell homeostasis. In eukaryotic cells, two main protein degradation systems co-exist: the 
ubiquitin–proteasome and the lysosome (1). Classically, the proteasome degrades soluble short-lived 
proteins in a large cytosolic proteolytic complex, whereas long-lived proteins and organelles are 
degraded in vesicles by lysosomal enzymes via autophagy.

More than five decades ago, autophagosomes were observed in isolated rat liver cells. Indeed, 
membrane vesicles containing semi-digested mitochondria and other cytoplasmic components were 
visualized using electron microscopy (2) and were shown to contain lysosomal enzymes (3). These 
observations came soon after the discovery of a new organelle with lytic function, named the lyso-
some (4). In 1963, de Duve created the term autophagy to describe the presence of double membrane 
vesicles containing cytoplasmic organelles in various degrees of disintegration.
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Today, autophagy [from Greek: auto (self), phagos (to eat), 
meaning “self-eating”] refers to the breakdown mechanism that 
enables cells to recycle cytoplasmic constituents by degrad-
ing defective organelles and long-lived proteins in lysosomes. 
Initially considered to be an important alternative energy source 
in response to starvation, autophagy has now been implicated 
in multiple biological processes, including development, aging, 
and regeneration (5). Aberrant regulation of autophagy induces 
cancer, neurodegenerative diseases, and many other disorders 
(6). Autophagy also has diverse functions in innate immunity: 
pathogen recognition, elimination of microorganisms, control 
of inflammation, and secretion of immune mediators (7). In 
addition, autophagy contributes to adaptive immunity through 
diverse mechanisms: endogenous antigen presentation via MHC 
class II molecules (8, 9) control of B and T cell function, and 
control of thymic T cell selection (7).

Currently, three different pathways of autophagy have been 
described: macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA) (10). They differ mainly on the 
molecular pathway the products (cargo) are delivered into 
lysosomes.

Substrates of CMA carry a KFERQ-like signal peptide and 
are recognized by the chaperone HSC70 (heat shock cognate 70), 
forming a substrate/chaperone complex. This complex is imported 
into the lysosome via LAMP2a (lysosome-associated membrane 
protein 2a) transporter, assisted by another HSC70 member in 
the lysosomal lumen. This is a unique selective pathway for the 
delivery of proteins into lysosomes (11, 12) (Figure 1).

During microautophagy, cytoplasmic components directly 
gain access to the lysosome lumen via invagination and budding 
of its membrane. The cargo is enclosed through the formation 

FiGURe 1 | Pathways of autophagy. Autophagy can deliver cytosolic 
components to lysosomes for degradation via three different pathways. In 
chaperone-mediated autophagy (CMA), proteins having a KFERQ-like motif 
are translocated into the lysosome via the LAMP-2A transporter, with the 
help of Hsp70 chaperones. Microautophagy involves the sequestration of 
substrates via the invagination of the lysosomal membrane, while in 
macroautophagy, the substrates are engulfed in a double membrane vesicle, 
called autophagosome, which subsequently fuses with the lysosome to 
deliver its content for degradation.

of autophagic bodies, which are then degraded by lysosomal 
hydrolysis (13) (Figure 1).

Macroautophagy is the best-characterized route for lysosomal 
degradation of cytoplasmic constituents. During this process, 
cytoplasmic contents or organelles are delivered to lysosomes 
for degradation. The hallmark of macroautophagy is the de novo 
formation of a cytosolic double membrane vesicle. Different 
membrane sources can contribute to the formation of the 
autophagosomal membrane, including the plasma membrane, 
the endoplasmic reticulum (ER), and the outer mitochondrial 
membrane (14). The autophagosome will then fuse with late 
endosomes and lysosomes to deliver its contents for enzymatic 
degradation. The resulting macromolecules are recycled back into 
the cytosol, where they can be reused for anabolic or catabolic 
reactions (15, 16) (Figure 1).

Autophagosome formation is a complex multi-step event 
that is controlled by different autophagy-related genes (ATGs). 
At least 30 ATGs contribute to autophagy in yeast and are 
highly conserved among eukaryotes (17). Initial nucleation and 
assembly of the phagophore membrane (isolation membrane in 
mammals) require the action of the class III phosphatidylino-
sitol 3-kinase (PtdIns3K) complex, which recruits multiple Atg 
proteins. In this process, the ubiquitin-like conjugation system 
Atg12–Atg5–Atg16 and Atg8 (known as LC3 in mammals) 
regulates autophagosome membrane elongation (18). Upon 
completion, all Atgs from the outer membrane are recycled. 
Importantly, Atg8, which is incorporated into both the inner and 
outer membrane of the forming autophagosome, remains associ-
ated in the inner membrane after fusion with lysosomes. Given 
its unique association with autophagosomes and autolysosomes, 
Atg8 is widely used as a marker of autophagosome formation and 
autophagy induction (19).

Autophagy has been described to substantially impact several 
aspects of innate and adaptive immunity (20). Autophagy has 
an intrinsic role in different cell types of the adaptive immune 
system. Autophagy abrogation in B cells (21), T cells (22–24), 
and NKT cells (25) results in decreased differentiation, effector 
function, and maturation. In parallel, Atg16 deficient dendritic 
cells (DCs) exhibit a more activated phenotype, including 
overexpression of co-stimulatory molecules and increased 
NF-kappaB activation (26). In addition to this cell intrinsic role, 
autophagy can impact different aspects of the adaptive immune 
response through its direct or indirect role in antigen presenta-
tion. Indeed autophagy can, for example, indirectly contribute 
to antigen presentation through its implication in the activation 
of various pattern-recognition receptors (PRRs) and damage-
associated molecular patterns (DAMPs). In parallel, the pathway 
can  control the secretion of different cytokines, mainly IL-1 beta, 
and therefore, contribute to the amplification or skewing of the 
T cell. The direct role of autophagy in antigen presentation has 
been described either in the donor cells or in the professional 
antigen-presenting cells (APCs).

This review will focus on the direct role of autophagy in APCs 
and its implication in delivering endogenous self- and pathogen-
derived ligands for presentation via major histocompatibility 
complex (MHC) class II molecules. In this review, we will not 
discuss the implication of unusual pathways of autophagy to 
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antigen processing. Indeed, a mini-review of the same Frontiers 
topic specially focuses on that point (27). Rather, we will discuss 
the implication of macroautophagy in MHCII-mediated antigen 
presentation of intracellular proteins and its effects on peripheral 
CD4+ T cell responses in inflammatory and infectious diseases.

Autophagy in the immune System: 
endogenous MHC Class ii Antigen 
Processing and Presentation

MHC Class i and Class ii Classical Antigen 
Processing Pathways
Antigen presentation refers to pathways involved in the effective 
delivery of antigens to MHC molecules. Relatively small peptides 
(8–10) or (15–20) amino acids are generated by proteolytic cleav-
age of protein substrates and displayed in the peptide-binding 
groove of surface expressed MHC class I or class II molecules, 
respectively. T cells, with their specific T-cell receptor (TCR), scan 
for the presence of cognate peptide–MHC complexes displayed at 
the cell surface of APCs. Recognition of antigenic fragments by 
CD4+ or CD8+ T cells is crucial to T cell activation and effector 
function (28).

Classically, MHC class I bound peptides are generated in the 
cytosol from various intracellular sources, such as cytosolic or 
nuclear self-proteins, proteins from intracellular pathogens or 
endogenous tumor antigens (29). Ubiquitinylation often targets 
these antigens for proteasomal degradation (30). Proteasomal 
products are then imported into the lumen of the ER by the 
transporter associated with antigen processing (TAP) (31), where 
they are loaded on MHC class I heterodimers. Within the ER, 
peptide binding is required for the correct folding of MHC class 
I molecules and its release from the ER. Stable peptide–MHCI 
complexes are exported to the cell surface via the golgi apparatus 
for presentation to CD8+ T cells (Figure 2).

In contrast, MHC class II bound epitopes classically originate 
from extracellular antigens (derived from foreign- or self-origin) 
phagocytosed by APCs and degraded by lysosomal proteolysis. 
These antigenic fragments are loaded onto MHC class II mol-
ecules in the so-called MHC class II compartments (MIICs) or 
late endosomes. MHC class II molecules are synthesized in the 
ER and associate with a chaperone known as the invariant chain 
(Ii; also known as CD74). Ii prevents premature peptide loading 
onto MHC class II molecules in the ER and guides newly assem-
bled MHC class II molecules to late MIIC. Ii is then degraded 
in MIIC by lysosomal hydrolysis leaving the class II-associated 
invariant chain peptide (CLIP) in the peptide-binding groove. 
CLIP is replaced by high-affinity peptides with the help of the 
non-classical MHC class II molecule HLA-DM. Following pep-
tide loading, peptide–MHC class II complexes are delivered to 
the cell surface for CD4+ T cell presentation (32) (Figure 2).

According to this classical view, MHC class I and class II 
molecules are specialized in presenting peptides derived from 
different origins. Through this division of labor, cytotoxic CD8+ 
or CD4+ helper T cells monitor the intracellular and the extracel-
lular niches, respectively, for the presence of pathogens or for the 
maintenance of peripheral tolerance. However, this segregated 

origin of peptides can be bypassed by unconventional pathways 
(33). For instance, “cross-presentation” is a pathway allowing DCs 
to present extracellular antigens through MHC class I molecules 
(34, 35). Consequently, cross-presentation is an important 
pathway for the initiation of anti-viral cytotoxic CD8+ T cell 
responses and for the maintenance of CD8+ T cell tolerance (36, 
37). Similarly, peptides of intracellular origin can be loaded onto 
MHC class II molecules.

Indeed, sequencing of peptides eluted from MHC class II 
molecules revealed that 20–30% of natural MHC class II ligands 
originate from intracellular cytosolic and nuclear proteins (38–
40). These ligands can be generated either after cleavage by the 
proteasomal machinery (41) or via a group of processes, includ-
ing CMA (reviewed elsewhere in this topic) and macroautophagy 
(Figure 2). In agreement, characterization of the MHC class II 
peptide repertoire expressed at the cell surface either under 
steady-state or after starvation-induced autophagy suggests that 
autophagy might influence CD4+ T cell-mediated responses to 
intracellular antigenic sources (42).

endogenous Processing of intracellular 
Antigens via Autophagy for MHC Class ii 
Presentation to CD4+ T Cells: Model Antigens
Pharmacological inhibitors provided the first evidence of the 
involvement of autophagy in endogenous MHC class II presenta-
tion to CD4+ T cells. Stockinger’s group compared the antigen 
presentation capacity of different cells transfected with C5 protein 
(fifth component of mouse complement). They found that B cells 
and fibroblasts were able to present epitopes derived from the 
intracellular C5 protein to CD4+ T cells. Interestingly, in the pres-
ence of a non-specific inhibitor of autophagy, 3-MA (3-methyl 
adenine) – known to inactivate class III PI3 kinase) – MHC class 
II presentation of endogenous C5 was abrogated (43).

Subsequent studies took advantage of the same inhibitory 
mechanism to show that autophagy was involved in the presen-
tation of epitopes derived from cytosolic antigens. Transfection 
of a model antigen, the neomycin phosphotransferase II (NeoR) 
into two different cell lines, showed that MHC class II-dependent 
presentation of NeoR was abrogated by 3-MA inhibition, and 
therefore, likely to be mediated via autophagy. In parallel, upon 
3-MA treatment antigen degradation was inhibited (44). In 
another study, using DCs transfected with in  vitro-transcribed 
RNA coding for a tumor-associated cytoplasmic antigen (MUC1), 
the authors demonstrated that the presentation of MUC1 on 
MHC class II molecules required lysosomal/endosomal process-
ing (45). Furthermore, antigen presentation of MUC1 to CD4+ 
T cells was abrogated in the presence of 3-MA, suggesting an 
involvement of autophagy in MUC1 processing and delivery to 
class II compartment.

More recently, autophagy has been shown to play a role in the 
presentation of citrullinated peptides from the hen-egg-white 
lysozyme (HEL) to CD4+ T cells (46). This model antigen was 
overexpressed at the membrane of APCs resulting in strong pres-
entation of an immune-dominant CD4 epitope (47). Blocking 
autophagy in DCs, using either 3-MA treatment or Atg5 siRNA 
silencing, specifically inhibited the presentation of citrullinated 
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but not native HEL peptides. In parallel, presentation of HEL-
citrullinated peptides by B cells required the engagement of the B 
cell receptor, which was also inhibited by 3-MA treatment (46). 
As the presentation of citrullinated proteins plays a key role in 
pathogenesis of rheumatoid arthritis (48), such findings highlight 
the potential contribution of autophagy to the pathogenesis of 
a common autoimmune disease. Nevertheless, the physiological 
relevance of this finding needs to be expanded to more relevant 
autoantigens in rheumatoid arthritis.

The limitation of these studies is that they relied on artificial 
overexpression of model antigens, and therefore, they can only 
suggest an implication of autophagy pathway in the endogenous 
MHC class II antigen processing of physiologically expressed pro-
teins. In addition, another major drawback, which may impede 
a proper assessment of how autophagy influences physiological 

CD4+ T cell responses, is the use of the pharmacological inhibitor 
3-MA, which not only blocks autophagy but also affects addi-
tional biological processes (19).

The generation of labeled markers for autophagosome 
formation provided a better demonstration of how autophagy 
is involved in MHC class II presentation. To further support a 
broader relevance of autophagy under basal normal conditions 
and not only under starvation, Schimd et  al. showed that low 
constitutive autophagosome formation occurred in a variety 
of human APCs, such as DCs, macrophages, and B cells (9). 
In this study, autophagosome formation was monitored by the 
accumulation of Atg8/LC3 into vesicles upon treatment with 
chloroquine, a blocking agent of lysosomal proteolysis. Since LC3 
(the human ortholog for ATG8 in yeast) is specifically incorpo-
rated into the autophagosomal membrane upon its formation, 
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LC3 turnover can, therefore, be used to measure autophagic 
activity. Autophagosomes were shown to fuse with MIIC, as 
evidenced by immunofluorescence co-localization of LC3-GFP, 
MHC class II, and HLA-DM, in both DCs and human epithelial 
cell lines. Importantly, silencing of Atg12 inhibited autophago-
some formation and fusion with MIIC (9). In addition, a proof 
of concept experiment demonstrated that autophagosomes could 
efficiently deliver antigens to MIIC. Influenza viral protein MP1 
was expressed in a fusion construct by coupling Atg8/LC3 to the 
C-terminus of MP1. This strategy efficiently targeted MP1 to 
autophagosomes and significantly enhanced its antigen presenta-
tion to CD4+ T cell-specific clones (9).

endogenous MHC Class ii Processing of 
Pathogen-Derived Antigens via Autophagy
The main contribution of autophagy to antigen processing 
of endogenous proteins and their delivery to MIIC has been 
described in the context of viral or bacterial infection. Indeed, 
autophagy is required for efficient presentation of endogenous 
pathogen-derived antigens on MHC class II molecules to enhance 
specific CD4+ T cell activation.

The first viral antigen shown to be delivered to MIIC by 
autophagy was the Epstein–Barr virus (EBV) nuclear antigen 1 
(EBNA-1) (8). In this study, the authors used EBV-transformed 
lymphoblastoid cells (LCLs) and EBNA-1-specific CD4+ T cell 
clones. Immunofluorescence analysis of LCLs showed that upon 
inhibition of lysosomal acidification, and therefore, autophago-
some maturation, EBNA-1 could accumulate in cytoplasmic 
vesicles, which expressed the lysosomal marker LAMP1. In 
parallel, EBNA-1 was visualized in autophagosomes by electron 
microscopy. Furthermore, blocking autophagy, by treatment 
with 3-MA or by siRNA-mediated silencing of Atg12, resulted 
in reduced MHC class II-restricted CD4+ T cell recognition of 
EBNA1 (8). In the same line of this pioneer study, Leung et al. 
have shown that autophagy can play a role in the processing of 
specific CD4+ T cell epitopes of the EBNA-1 antigen along with 
other endogenous pathways (49). Interestingly, the location of 
native EBNA-1 within the nucleus leads to less processing and 
presentation on MIIC, due to the absence of autophagy within 
the nucleus. Indeed by mutating the nuclear localization signal 
of EBNA-1, the range of CD4+ T cell epitopes processed through 
autophagy was broader since the protein was more accessible for 
cytoplasmic autophagic degradation (49).

Another pathogen-derived antigen processed through 
autophagy is the immunodominant Ag85B antigen, from 
Mycobacterium tuberculosis (Mtb) (50). Mtb, amongst other 
pathogens, can survive in phagosomes, as part of an evasion 
mechanism to avoid degradation. In this context, stimulation 
of phagosomal maturation and lysosomal degradation via the 
induction of autophagy enhances Mtb clearance (51, 52), and may 
be required for optimal immune responses against Mtb. Indeed, 
in  vivo, activation of autophagy in DCs significantly increased 
the presentation of Ag85B to specific CD4+ T cells. Mice vac-
cinated with Mtb-infected and rapamycin-treated DCs, exhibit 
a stronger specific CD4+ T cell response after Mtb challenge. In 
parallel, blocking autophagy in DCs, prior to vaccination, leads to 
a reduced Mtb-specific CD4+ T cell response (50).

A further in  vivo study focusing on the role of autophagy 
during respiratory syncytical virus (RSV) infection in mice has 
also shown that autophagy plays a role in anti-viral CD4+ T 
cell responses. Mice having a defect in Beclin-1 (Beclin-1+/−), 
thus resulting in reduced autophagosome formation, exhibit 
exacerbated lung inflammation upon RSV infection, with 
increased Th2 responses and decreased IL-17 and IFN-γ 
responses. Furthermore, in  vitro analysis of pulmonary DC 
from Beclin-1+/− mice showed a reduction in MHC II level and 
co-stimulatory molecule expression. Finally, adoptive transfer 
of RSV-infected Beclin-1+/− DC into wild type mice prior 
to virus challenge confirmed that the absence of autophagy 
within DCs leads to reduced Th1 responses and increased lung 
pathology (53). Recently, the same authors further dissect the 
contribution of autophagy in initiating and maintaining aber-
rant Th17 responses during RSV infection. Using mice deficient 
in the autophagy-associated protein, Map1-LC3b (LC3b−/−), 
they observed increased Th17 cells in lungs upon infection. 
In addition, airway epithelium appeared to be the primary 
source of IL-1β during RSV infection, whereas blockade of IL-1 
receptor signaling in infected LC3b−/− mice abolished IL-17-
dependent lung pathology (54). Such findings highlight the role 
of autophagy for antigen presentation of RSV and how it can 
shape the adaptive anti-viral immune response.

Autophagy is also involved in antigen presentation of proteins 
derived from extracellular pathogens, such as the bacterium 
Yersinia. Through the type III secretion system, Yersinia utilizes 
carrier proteins, the Yersinia outer proteins (Yop) for the delivery 
of bacterial proteins into the cytosol of host cells. Interestingly by 
constructing a fusion antigen with the cytoplasmic translocated 
YopE protein, Russman et  al. could demonstrate that chimeric 
fusion proteins are processed by autophagy, in macrophages, 
and presented via MHC class II to induce CD4+ T cell activation 
(55). Nevertheless, the relevance of this mechanism for Yersinia 
epitopes was not demonstrated.

Together, these studies suggest that autophagy induction 
in DCs and macrophages can enhance antigen presentation of 
MHC class II epitopes from intracellular pathogens in order to 
induce efficient CD4+ T cell responses. However, this scenario 
might not happen in all instances. Indeed, despite the fact that 
influenza A virus manipulates autophagy, no significant contri-
bution of this pathway to the anti-viral CD4+ T cell response was 
demonstrated (56).

In parallel, many bacteria and viruses have developed escape 
mechanisms to inhibit autophagy, resulting in increased intra-
cellular pathogen load (57–59). Whether this will negatively 
influence pathogenic CD4+ T cell responses remains to be further 
investigated.

Autophagy in Positive and Negative Selection of 
T Cell Repertoire
Autophagy plays a major role in thymic selection of a diverse T 
cell repertoire, and therefore, has important consequences for 
central tolerance induction (60).

During T cell development, T cell precursors undergo posi-
tive selection in the thymic cortex and negative selection in the 
thymic medulla. Positive selection allows the establishment 
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of a functional and diverse T cell repertoire, whereas negative 
selection eliminates potentially auto-reactive T cells, in order to 
establish central tolerance toward self-antigens (61). Central tol-
erance is based on the presentation of self-peptides at the surface 
of thymic APCs, especially in thymic epithelial cells (TECs) and 
thymic DCs, either via MHC class I or MHC class II molecules 
for CD8+ or CD4+ T cell development, respectively.

The generation of a functional and self-tolerant CD4+ T-cell 
repertoire relies on the availability of a full range of self-peptides 
displayed by thymic APCs. The peptides presented should cover 
most of, if not all tissue antigens, which T cells might encounter 
in the periphery. Thymic APCs utilize different mechanisms in 
order to present a broad range of self-peptides.

Significant progresses have been made to clarify how TECs, 
which have low endocytic activity, can obtain self-peptides for 
MHC class II presentation and induction of a diverse CD4+ T cell 
repertoire devoid of auto-reactive cells (62). Recently, autophagy 
has been implicated in the unconventional MHC class II self-
peptide loading and presentation in the thymus.

Indeed, TECs exhibit high constitutive autophagosome forma-
tion in a starvation-independent fashion (63). Neonatal lethality 
of mice lacking autophagy, such as ATG5−/− or ATG7−/− mice (64, 
65), impedes the direct assessment of T-cell development in these 
conditions. Nevertheless, by transplanting embryonic Atg5−/− 
thymi under the renal capsule of normal adult recipients, it was 
demonstrated that autophagy in thymic epithelium is essential for 
the establishment of a broad T-cell repertoire and for tolerance 
induction (63). In comparison to controls, transplanted thymi 
from knockout mice were smaller but exhibited normal epithelial 
differentiation and organization. In this setting, positive selection 
of some MHC class II-restricted TCR specificities was impaired 
in Atg5 deficient thymi. In contrast, absence of autophagy in 
TECs did not affect CD8 T cell repertoire (63). Importantly, self-
tolerance was compromised when thymi from Atg5−/− embryos 
were grafted in athymic nude mice. In this system, because of 
the complete deficiency of endogenous thymus, development of 
T cells completely relies on transplanted TECs. Between 4 and 
6 weeks after grafting, transplanted mice with autophagy-deficient 
thymi exhibited clear signs of autoimmunity, such as progressive 
weight loss and inflammatory cell infiltrates, in different organs 
(63). These results should be, however, taken with caution since 
the experimental system could be geared toward autoimmunity 
due to the lymphopenic recipients.

In addition, autophagosomes were shown to co-localize with 
MIIC in both cTECs and mTECs (66) emphasizing the potential 
role of the pathway in thymic selection. However, more recently, 
the importance of autophagy in TECs for T cell development and 
self-tolerance establishment has been re-challenged and suggests 
that the lack of autophagy in TECs had a minor impact on T cell 
repertoire development. Transgenic mice bearing a specific sup-
pression of Atg7 or Atg5 in epithelial cells (ATG7f/f K14-Cre mice) 
or (ATG5f/f K5-Cre mice), exhibit unaltered thymic structure, a 
normal T cell repertoire, and no evidence of autoimmunity (67, 
68). Even though endogenous autophagy was efficiently deleted 
in epithelial cells of both the thymic medulla and cortex, no 
activation of CD4+ T cells nor enhanced tissue inflammation or 
autoimmune manifestations were observed in these models.

The difference between these models and the study by Klein 
et al. could be explained first by the different approaches used to 
abrogate autophagy in the thymus. In the first study, complete 
autophagy-deficient thymi were transplanted, whereas autophagy 
was specifically deleted in epithelial cells in the second study. A 
second possible explanation for this difference could also be that 
the two studies were carried on different mouse backgrounds. 
Finally, lymphopenic hosts used in the Klein’s study are known 
to be more permissive to autoimmunity development (69, 70).

Recently, a more refined model addressing the role of 
autophagy in thymic epithelium for central tolerance was car-
ried out. A model antigen was expressed associated either to the 
mitochondria or to the plasma membrane. Both intracellular and 
membrane-bound forms of the antigen were directly presented 
by TECs, when transgenic thymi were transplanted under the 
kidney capsule of MHC class II-deficient mice. Using this sce-
nario, a role for hematopoietic APCs in negative selection was 
excluded. Importantly, expression of both neo-antigen forms 
resulted in clonal deletion of TCR specific CD4+ thymocytes (71). 
Additionally, when autophagy was abrogated using Atg5−/− thymi 
transplanted into transgenic mice, negative selection of T cells 
recognizing the membrane-associated form of the protein was 
not affected. However, negative selection of T cells recognizing 
the intracellular antigen was dependent on autophagy since it was 
abrogated in Atg5−/− mice, firmly establishing a role for autophagy 
in central tolerance toward some endogenously expressed intra-
cellular antigens.

The direct implication of efficient endogenous Ag loading into 
MHC class II by autophagy in mTECs was further characterized. 
By coupling an antigen to LC3 molecules, a new elegant model 
was designed to directly target the antigen to autophagosomes. 
In addition, expression of the fusion protein was settled under 
the transcriptional control of the Aire promoter. Despite the fact 
that both mTECs and DCs express Aire, only mTECs were able 
to induce effective cognate CD4+ T cells response, in ex vivo cul-
tures, in an autophagy-dependent fashion. Moreover, using the 
same model, clonal CD4+ thymocyte deletion was also observed 
in vivo. Interestingly, mice expressing a mutated version of the 
fusion protein, unlinked to autophagosomes, exhibited similar 
negative selection of CD4+ thymocytes. Under these conditions, 
indirect presentation of this particular Ag by DC compensated the 
impaired direct presentation by mTECs. In addition, autophagy 
requirements in TECs for efficient negative selection could rely 
on the amount and the distribution of a given antigen (71).

Finally, a recent study has also reported an important role of 
autophagy in TECs for T cell selection. Using Clec16a knock-
down mice in the non-obese diabetic (NOD) mouse model for 
type 1 diabetes, the authors unexpectedly found that these mice 
were protected from diabetes (72). The phenotype was related to 
a decrease in autophagosome formation in TECs from mice in 
which Clec16a was silenced. Interestingly, a general reduction of 
CD4+ T cell activation was observed. The precise mechanism of 
how Clec16a affects autophagy levels in TECs and, consequently, 
CD4+ T cell selection remains unclear. In addition, it is difficult 
to link a reduction in autophagosome formation in TECs with an 
overall hypo responsiveness of CD4+ T cells. The authors specu-
late that the quality of the selected repertoire is different, but no 
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particular auto-antigen specificity was addressed to explain why 
autoimmunity is dampened. Instead, a global increased negative 
selection was hypothesized, as shown by a general decrease in 
CD4SP maturation. How this deficiency will exclusively affect self 
reactive T cell function without impairing pathogen specific T 
cell responses, is difficult to understand. Despite that the precise 
mechanism needs further investigations, the novelty of the study 
resides in the fact that this is the first demonstration of how 
CLEC16A can affect autoimmune responses. Indeed, the genetic 
association of CLEC16A with multiple autoimmune diseases is 
finally linked to a molecular mechanism impacting autophagy 
and central tolerance.

Therefore, using non-redundant mechanisms, thymic APCs 
contribute to efficient CD4+ thymocyte differentiation and 
establishment of CD4+ T cell repertoire. Intrinsic features of each 
subset determine the pathways by which they obtain and process 
antigens for MHC class II loading. TECs constitute a unique 
non-hematopoietic cell subset expressing constitutively high 
levels of MHC class II but exhibiting a poor efficacy in captur-
ing extracellular antigens. With disparities between cTECs and 
mTECs, macroautophagy has been convincingly demonstrated 
to participate in the effective loading of intracellular antigens 
onto MHC class II molecules for the essential process of central 
tolerance (Figure 3).

Conclusion

With the advance of the molecular era of autophagy and the 
identification of ATG genes and pathways, increasing research 

has demonstrated a prominent role for autophagy in previously 
unknown biological functions, including adaptive immunity 
(73). In this regard, autophagy plays an important new role in 
endogenous antigen processing and presentation of intracellular 
antigens through MHC class II molecules, with an important 
effect on CD4+ T cell responses. Indeed, the presentation of 
self-antigens in the thymus via autophagic pathways significantly 
contributes to shaping the T cell repertoire and to establishing 
central T cell tolerance.

In addition through enhancing MHC class II presentation of 
intracellular pathogen-derived antigens, autophagy contributes 
to efficient CD4+ T cell priming and actively shapes adap-
tive immune responses. Therefore, a better understanding of 
autophagic functions could be explored to increase the efficiency 
of vaccines. Moreover, it still remains to be elucidated whether 
autophagy is also involved in the presentation of self-antigens 
outside the thymus and if it would, then, play a role in peripheral 
CD4+ T cell tolerance induction and maintenance. Whether 
activation or suppression of autophagy could have therapeutic 
benefits in autoimmunity as well as inflammatory disorders 
requires further clarification.
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