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Cytotoxic T  lymphocytes and NK cells play an important role in eliminating malignant 
tumor cells and the number and activity of tumor-infiltrating T cells represent a good 
marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint 
blockade, has received considerable attention during the last couple of years. However, 
for the majority of patients, immune control of their tumors is gray theory as malignant 
cells use effective mechanisms to outsmart the immune system. Increasing evidence 
suggests that changes in tumor metabolism not only ensure an effective energy supply 
and generation of building blocks for tumor growth but also contribute to inhibition of the 
antitumor response. Immunosuppression in the tumor microenvironment is often based 
on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and 
NK cell activation leads to an increased demand for glucose and amino acids, a well-
known feature shown by tumor cells. These close metabolic interdependencies result in 
metabolic competition, limiting the proliferation, and effector functions of tumor-specific 
immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in 
metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead 
to local immunosuppression, thereby facilitating tumor progression and metastasis. In 
this review, we describe the metabolic interplay between immune cells and tumor cells 
and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic 
(re)education of tumor cells is not only an approach to kill tumor cells directly but could 
overcome metabolic immunosuppression in the tumor microenvironment and thereby 
facilitate immunotherapy.

Keywords: tumor metabolism, immune cell metabolism, immune escape, glycolysis and oxidative phosphorylation, 
cytokines, immune cell functions

TUMOR MeTABOLiSM

Accelerated Glucose Metabolism in Tumor Cells—The “warburg 
effect”
Cells need energy to carry out their various functions. Glucose is the primary energy source for most 
cells and central to cell proliferation and survival. In addition, cells use lipids or amino acids such 
as glutamine to generate energy in form of ATP and to build biomolecules for cell growth. In non-
malignant cells glucose is mainly metabolized via oxidative phosphorylation (OXPHOS), whereas 
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tumor cells primarily use glycolysis for glucose metabolism, a 
phenomenon first described by Otto Warburg almost a century 
ago (1). It is clear that this metabolic alteration is important for 
tumor development and progression and is a hallmark of cancer 
(2). Vander Heiden and coauthors proposed that highly prolifer-
ating cells switch to glycolysis because mitochondria are needed 
as anabolic organelles for the generation of building blocks (3, 
4). Accelerated glycolysis is regulated by hypoxia, oncogenes, and 
tumor suppressor genes, as well as kinases such as the mammalian 
target of rapamycin (mTOR).

Hypoxia-inducible factors (HIFs) are stabilized in response 
to hypoxia and induce transcription of the glucose transporter 
GLUT-1 and lactate dehydrogenase (LDH) (5, 6). HIF proteins 
are expressed in the majority of human tumors and can also be 
induced by the glycolytic end products pyruvate and lactate (7). 
HIFs also operate in conjunction with oncogenic MYC, an onco-
gene overexpressed in about 30% of human cancers and known 
to upregulate glycolytic enzymes such as LDH (8). The mTOR 
pathway is one of the most dysregulated signaling pathways in 
human cancer, leading to accelerated glucose metabolism by 
regulating HIF-1α and MYC (9). It was also shown that the BRAF 
oncogene causes upregulation of genes involved in glycolysis 
and its knockdown results in reduced glycolysis (10). Genetic 
alteration or loss of p53, one of the most frequently mutated 
genes in cancer, also leads to a decreased oxygen consumption 
and increased lactate production (11). Accordingly, tumor cells 
are typically characterized by increased uptake of glucose and 
positron emission tomography exploits this feature to identify 
tumors diagnostically.

Glucose is metabolized to lactate, the latter is exported from 
tumor cells in cotransport with protons by monocarboxylate-
transporters (MCT), MCT-1 and MCT-4, which results in an 
accumulation of lactate lowering the pH in the tumor microenvi-
ronment (12). Gatenby and Gillies proposed that the “glycolytic 
phenotype” of tumor cells confers a growth advantage and is 
necessary for the evolution of invasive human cancers (13). 
This hypothesis was confirmed by Walenta et  al. who found a 
correlation between lactate concentration in tumor tissues and 
the incidence of metastases, as well as a reduced overall survival 
in cancer patients (14).

Interestingly, tumors can display the Warburg phenotype and 
possess intact OXPHOS, with some cancer subtypes and cancer 
stem cells actually depending on mitochondrial respiration (15). 
Nonetheless, the “Warburg effect” is only one part of the complex 
tumor metabolome puzzle. Amino acid, lipid, and adenosine 
metabolism are also adapted to fulfill the metabolic needs of 
tumor cells.

Alterations in the Key enzymes of Lipid, 
Adenosine, and Amino Acid Metabolism
A considerable increase in the extracellular adenosine concentra-
tion has been reported for hypoxic tissues. Accordingly, HIF-1α 
has been shown to regulate the ecto-5′-nucleotidase CD73, which 
metabolizes adenosine monophosphate to adenosine. CD73 is 
expressed on the surface of tumor cells and elevated activity is 
found in many cancer entities (16–18). By contrast, expression 

of methylthioadenosine phosphorylase (MTAP), which catalyzes 
the conversion of 5′-deoxy-5′methylthioadenosine (MTA) to 
adenine and methylthioribose 1-phosphate, is reduced in many 
tumors including malignant melanoma (19) and hepatocellular 
carcinoma (20) due to either gene disruption by chromosomal 
rearrangement or epigenetic silencing. This results in accumula-
tion of MTA in the tumor environment. In case of malignant 
melanoma, the loss of MTAP expression is linked to a higher 
invasive potential, leading to the hypothesis that loss of MTAP 
expression might contribute to metastasis of malignant mela-
noma (21).

Hypoxia-inducible factor also regulates genes important for 
lipid metabolism such as cyclooxygenase (COX)-2 (5, 22). COX 
enzymes are responsible for the synthesis of prostaglandins. 
While COX-1 is constitutively expressed in almost all tissues, its 
isoenzyme COX-2 is primarily found in tumors (23) and overex-
pression is associated with a poor prognosis in breast and ovarian 
cancer (24, 25). Pharmacological inhibition of COX-2 can block 
arginase (ARG)-1 induction in mouse lung carcinoma (26, 27) 
indicating that prostaglandins are important for ARG expression 
that hydrolyzes arginine to ornithine and urea. ARG is not only 
expressed in tumor cells but also in tumor-infiltrating myeloid-
derived suppressor cells (MDSCs), causing depletion of arginine 
from the tumor environment (28). Interestingly, in myeloid cells, 
prostaglandins are not only involved in the regulation of ARG 
but also upregulate indoleamine 2,3-dioxygenase (IDO) (29), 
which is the rate-limiting enzyme of tryptophan catabolism 
through the kynurenine pathway. IDO is overexpressed in many 
cancers (e.g., melanoma, colon, and renal cell carcinoma) and 
depletes tryptophan, thus inhibiting T cell proliferation in tumor 
tissues (30, 31).

Glutamine is the most abundant amino acid in the body and 
tumors act as “glutamine traps” as high rates of glutamine uptake 
are characteristic for many tumor cells. The increased turnover of 
glutamine is in part based on the higher activity and expression 
of glutaminase (GLS), the first enzyme in glutamine metabolism 
(4, 32, 33). Accordingly, intra-tumoral glutamine levels are low, 
and cancer patients exhibit lowered plasma glutamine levels and 
conversely elevated glutamate concentrations (34).

iMMUNe CeLL MeTABOLiSM

The metabolism of immune cells has gained increasing attention 
recently since it is now recognized as a sensitive factor influencing 
immune cell activation and differentiation. Here, we will focus on 
glycolytic activity and OXPHOS in immune cells.

Glucose Metabolism in immune Cells
Early on Otto Warburg observed increased glycolytic activity in 
leukocytes comparable to tumor cells; however, he interestingly 
attributed this phenomenon to a preparation artifact (35). It is 
now accepted that immune cell stimulation causes a shift toward 
increased glucose metabolism. In proliferating cells, the obvious 
reason for accelerated glycolysis is the generation of nucleotides 
and building blocks, e.g., via the connected pentose-phosphate 
pathway. While several studies have shown that T cell prolifera-
tion depends on glucose metabolism (36–41), this concept has 
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been challenged recently since T cell proliferation is not affected 
by Ldha knockout (42). Besides supporting proliferation, glyco-
lysis is crucial for the functional activity of immune cells. Among 
these effects, glycolysis has been linked to cytokine production in 
lymphoid and myeloid cells (42–45). While glycolysis guarantees 
rapid energy provision, it also participates in posttranscriptional 
and epigenetic control of IFNγ production (42, 43, 46).

The same signaling pathways are essential for the metabolic 
regulation in immune cells and tumor cells. AKT, rapidly acti-
vated upon T cell receptor (TCR) stimulation, is involved in the 
induction of glycolysis (47, 48) and determines expression of 
cytokines and adhesion molecules (47, 49). Furthermore, MYC 
is transiently upregulated in activated T cells (38) and increases 
the expression of genes related to glucose and glutamine 
metabolism (50). Another example is the mTOR complex that is 
a central regulator of immune cell metabolism and consequently 
differentiation of T cells into effector or regulatory phenotypes 
(47, 48, 51). Inhibition of T cell mTORC1 via rapamycin results 
in inhibition of glycolysis (46) and enhances CD8 memory 
generation (52, 53).

Not only lymphoid cells but also myeloid cells switch to glucose 
metabolism upon activation by a wide range of stimuli including 
lipopolysaccharides (54–56). The shift from OXPHOS toward 
glycolysis sustains ATP production, while oxygen and NADPH 
are available for reactive oxygen species (ROS) and nitric oxide 
(NO) production. ROS promotes IL-6 and TNF production and is 
important for bacterial defense (57–59). As a result of a truncated 
citrate cycle, elevated levels of citrate and succinate are detected in 
activated myeloid cells (60, 61). Succinate stabilizes HIF-1, which 
can trigger IL-1β synthesis, and accumulation of citrate serves as 
a precursor for lipid biosynthesis (62).

Role of OXPHOS in immune Cell 
Activation
In contrast to lipopolysaccharides, IL-4 stimulation of mac-
rophages does not increase the glycolytic activity but rather 
commits these cells to OXPHOS and to increased mitochondrial 
biogenesis (61, 62). Besides glycolysis, OXPHOS is also imme-
diately elevated upon anti-CD3/CD28 stimulation in T cells and 
supports the transition from quiescent to effector cells (41, 43, 
63). OXPHOS can compensate for glucose restriction and IFNγ 
production is maintained (41, 64, 65). Moreover, mitochondrial 
ROS production synergizes with Ca2+ influx to activate NF-kB 
and AP-1 (66, 67) and is important for antigen-specific T  cell 
activation (68). With regard to controlling immune responses, 
OXPHOS is particularly important for regulatory T cells (Tregs) 
(69) since their suppressive function is linked to glucose and 
lipid oxidation (70). Consistent with this general effect, FOXP3 
stability is increased by acetyl-CoA and inhibition of lipid 
oxidation reduces FOXP3 expression and its related suppressive 
capacity (71). FOXP3 itself shifts metabolism toward oxidation by 
inhibiting AKT activation and thereby GLUT-1 expression (72). 
However, proliferating Tregs switch to glycolysis (73) and the 
induction of Tregs depends on glycolysis (74). Differing results 
have been published regarding the role of OXPHOS on memory 
T  cell formation. Buck et  al. have shown that mitochondrial 

fusion, favoring OXPHOS, is important for the generation of 
memory T  cells (75), whereas Phan et  al. have demonstrated 
that OXPHOS is not essential for memory T cell differentiation. 
The observed difference may relate to subset variations between 
effector memory and central memory T cells (76). In summary, 
it seems that T cells exhibit some metabolic flexibility and do not 
rely on a single energy providing pathway.

Amino Acid Metabolism in immune Cells
T cells, like all immune cells, are auxotroph for many amino acids 
and proliferation as well as activation results in an increased need 
for amino acids. Glutamine is essential for proliferation (38, 77, 
78) during the initial growth phase as well as for protein and 
lipid biosynthesis in T cells (38) and for inflammasome activity, 
phagocytosis, and antigen expression in myeloid cells (79, 80). 
Glutamine supports OXPHOS, protein biosynthesis, and fuels 
protein glycosylation (81). Other amino acids such as arginine, 
tryptophan, and cysteine are also essential for T  cell prolifera-
tion as well as for macrophage and MDSC function. Depletion 
of those amino acids by myeloid cells leads to cell cycle arrest in 
T cells (82–84). Arginine deprivation-induced cell cycle arrest is 
mediated in part by Rictor/mTORC2 which controls an amino 
acid-sensitive checkpoint that allows T cells to determine whether 
the microenvironment contains sufficient resources for prolifera-
tion (84). Elevating arginine levels induces a shift from glycolysis 
to OXPHOS in activated T cells and promotes the generation of 
central memory-like cells with enhanced survival and antitumor 
activity (85).

iNTeRPLAY BeTweeN TUMOR  
AND iMMUNe CeLL MeTABOLiSM

Tumor stroma consists of diverse cell populations such as T cells, 
NK cells, macrophages, dendritic cells, fibroblasts, and endothelial 
cells. Tumor-infiltrating immune cells represent a double-edged 
sword as they can support or inhibit tumor growth. Activated 
lymphoid cells can control tumor growth and malignancies, as 
shown in reports where dense infiltration with T cells correlates 
with a better prognosis (86). However, tumors often blunt the 
activity of tumor-infiltrating lymphocytes (87, 88) and support 
the differentiation of tumor-associated macrophages (TAMs) or 
MDSCs that promote tumor growth, e.g., by inhibiting T cells or 
secreting growth factors (89).

impact of Rapid Tumor Glucose 
Metabolism on immune Cells
The Warburg effect in tumor cells may limit glucose availability 
and results in lactate accumulation. In renal carcinoma, we 
showed that accelerated glucose metabolism correlates with low 
CD8 T  cell infiltration (90). Consistent with this finding, high 
glucose consumption by tumors restricts T  cells in a mouse 
sarcoma model, leading to attenuated mTOR activity, glycolytic 
capacity, and IFNγ production (91, 92). However, Ho et al. dem-
onstrated that overexpression of phosphoenolpyruvate (PEP) 
carboxykinase 1 could restore PEP levels and thereby improve 
T cell function even under glucose restriction (92).
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Several studies have demonstrated that (patho)physiologi-
cally relevant concentrations of lactate modulate immune cell 
function in vitro and high levels of lactate correlate with tumor 
progression and metastatic spread in  vivo. Regarding myeloid 
cells, lactate has been shown to inhibit monocyte activation and 
dendritic cell differentiation (93, 94). Furthermore, Shime et al. 
demonstrated that lactate increases the transcription and secre-
tion of IL-23, a tumor-promoting cytokine involved in the gen-
eration of Th17 cells, in human monocytes/macrophages (95). 
Lactic acid also induces M2-polarization in TAMs via HIF-1α 
stabilization (96). Moreover, reduced Ldha expression in tumor 
cells resulted in diminished tumor growth and decreased the 
frequency of splenic MDSCs (97). Furthermore, lactate strongly 
inhibits the activity of antitumor effector cells such as T  cells 
and NK  cells. Husain et  al. demonstrated that NK  cells from 
Ldha-depleted tumors showed improved cytolytic function 
and lactate treatment of NK cells diminished their cytotoxicity. 
We and others have shown that proliferation and activation 
of human T cells is suppressed by lactic acid in vitro (98, 99). 
Treatment of T cells with lactic acid prevented TCR-triggered 
phosphorylation of JNK, c-Jun, p38, and NFAT activation (100, 
101). Recently, our group demonstrated that human melanoma 
metastases exhibit a “‘Warburg phenotype’” that associated with 
lactate accumulation. In melanoma patients, LDHA expression 
correlated with T  cell activity and LDHA-associated lactic 
acid production and acidification impaired IFNγ expression 
in tumor-infiltrating T  cells and NK  cells, thereby inhibiting 
tumor immunosurveillance and promoting tumor growth (101). 
Increasing evidence supports the view of an immunosuppressive 
effect of rapid glucose metabolism on development of tumor 
immunity.

Changes in Tumor Amino Acid and 
Adenosine Metabolism Suppress  
T Cell Function
Tumor cells and activated immune cells require a continuous sup-
ply of amino acids such as tryptophan, arginine, and glutamine 
for anabolic macromolecule synthesis. A metabolic competition 
between tumor cells and immune cells can therefore lead to 
nutrient deprivation. Regarding availability of tryptophan, IDO is 
overexpressed in many cancers and IDO-expressing tumor cells 
are not rejected by specific T cells (30). Accordingly, in colorectal 
cancer, IDO expression is associated with low T cell infiltration 
and reduced survival (102). IDO-expressing tumor cells secrete 
tryptophan metabolites like kynurenines, suppressing cytotoxic 
effector functions via downregulation of TCR CD3 ζ-chain and 
induce FOXP3+ Treg differentiation (103). In line, upregulation 
of IDO is associated with a high infiltration of FOXP3+ cells in 
thyroid carcinoma (104). Arginine depletion occurs in ARG or 
NO synthase overexpressing tumors, subsequently leading to 
unresponsive T  cells (105). Furthermore, arginine deprivation 
by tumor-infiltrating MDSCs impairs T  cell function (106). 
Interestingly, arginine depletion not only blunts the antitumor 
T cell responses but can also induce MDSC generation in vivo 
(107). Moreover, MDSCs resembling tumor-associated M2 
macrophages rely on glutamine metabolism, whereas M1 

macrophages are characterized by increased glycolytic flux (60). 
Glutamine deprivation promotes Treg generation (108) and often 
results in glutamate accumulation, which in turn suppresses 
T cell activity (109, 110). Therefore, the balance of amino acids 
within a tumor has substantial effects on the development of the 
local immune response.

CD73 expression on tumor cells results in adenosine accumu-
lation in the tumor microenvironment that inhibits activation 
and cytotoxic capacity of T and NK  cells (111, 112). Besides 
T  cell inhibition, adenosine has a positive impact on myeloid 
cells. Adenosine-generating mouse Lewis lung carcinoma cells 
attract myeloid cells that differentiate into TAMs, which promote 
tumor growth (113). Additionally, we could show that MTA 
suppresses antigen-specific T cell proliferation, activation, and 
cytokine production via inhibition of AKT and protein methyla-
tion (114). CD73 and COX-2 both are regulated by hypoxia and 
HIF. Tumor cells frequently display increased COX-2 activity 
and prostaglandin secretion, thus suppressing T  cell function 
and inducing MDSCs (115). Other lipids such as gangliosides are 
synthesized and shed by tumor cells, especially under hypoxia. 
Circulating gangliosides have been shown to suppress T  cell 
function thereby contributing to immunosuppression (116). 
However, a competition for lipids between tumor cells and 
immune cells as shown for glucose has not been reported so far, 
thus immune cell function should not be restricted due to limited 
fatty acid availability.

TARGeTiNG TUMOR MeTABOLiSM

Alterations in tumor cell metabolism represent attractive targets 
for the development of anticancer drugs. However, targeting 
tumor cell metabolism may also harm immune cell functions 
that contribute to tumor elimination. This influence on target-
ing overlapping metabolic requirements of tumor and immune 
cells needs to be considered especially when immunotherapy is 
combined with antimetabolic drugs.

Targeting the “warburg effect”  
and Mitochondrial Activity
Early after Warburg’s observation that tumor cells show major 
differences in glucose metabolism compared to non-malignant 
cells, some attempts focused on the inhibition of tumor glucose 
metabolism for cancer treatment (117). These studies used 
2-deoxyglucose (2-DG), a non-metabolizable glucose analog 
and inhibitor of hexokinase, the enzyme that catalyzes the initial 
step of glycolysis. This approach has regained attention during 
the last years (118, 119) and new drugs have been developed 
such as the hexokinase inhibitor 3-bromopyruvate (120). We 
and others have shown that inhibition of glycolysis by 2-DG 
sensitizes acute lymphoblastic leukemia cells to glucocorticoids 
(121, 122). 2-DG severely disturbs T cell proliferation and activa-
tion, although its effects may reach beyond glycolysis inhibition 
(41, 46). These results suggest that anti-glycolytic drugs should 
inhibit T cell function. Surprisingly, deletion of Ldha in T cells did 
not appreciably affect proliferation and growth, but did reduce 
IFNγ production (42). Therefore, immunological “side effects” of 
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between tumor cells and immune cells. Tumor cells exhibit high 
expression of glucose transporteres (GLUT), lactate dehydrogenase (LDH), 
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and secretion via monocarboxylate-transporters (MCT). Lactate and other 
metabolites, such as glutamate, prostaglandins (PGE2), and kynurenines, 
affect immune cells. Overexpression of the ecto-5′-nucleotidase (CD73) leads 
to adenosine formation; loss of methylthioadenosine phosphorylase (MTAP) 
results in methylthioadenosine (MTA) accumulation in the tumor environment.
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LDH inhibitors like that of the small-molecule inhibitor FX11 or 
Galloflavin should be considered when administered for tumor 
therapy (123, 124).

Conflicting results have been reported regarding dichloroac-
etate (DCA), which induces a shift from glycolysis to OXPHOS 
and inhibits growth of tumor cells in vitro and in murine tumor 
models. DCA was found to synergize with 2-DG in complex IV 
deficient cells (125), whereas other researchers have demonstrated 
that it suppresses apoptosis induction by cisplatin and doxoru-
bicin. Unfortunately, DCA is not tumor cell specific, therefore, 
the same shift in glucose metabolism occurs in immune cells, 
leading to induction of FOXP3+ Tregs (126).

Targeting the lactate transporters MCT-1 to -4 represents 
another approach to overcome the “Warburg effect” in cancer cells. 
The second-generation MCT-1/MCT-2 inhibitor (AZD3965) 
is currently in phase I clinical trials for advanced solid tumors 
and diffuse large B  cell lymphomas (http://www.clinicaltrials.
gov/ct2/show/NCT01791595). However, inhibition of MCT-1/-2 
also reduces T  cell proliferation (127). Recently, Eichner et  al. 
described that thalidomide, lenalidomide, and pomalidomide 
destabilize the CD147–MCT-1 complex that results in a loss of 
cell surface expression of MCT-1 (128). However, MCT-1 sup-
pression may be of limited efficacy as many tumor cells express 
not only MCT-1 but also MCT-4. Lenalidomide has been shown 
to promote IL-2 expression in T cells (129), raising the possibil-
ity that application of lenalidomide could suppress tumor cell 
proliferation without affecting T cells.

We have investigated the effect of diclofenac, a non-steroidal 
anti-inflammatory drug, on glucose metabolism and showed that 
diclofenac is taken up by tumor cells and interferes with lactate 
secretion (130). Recently, the impact of diclofenac on lactate 
transport was confirmed in MCT-expressing oocytes (131). 
In a glioma model, diclofenac lowered lactate levels, decreased 
tumor growth, and tumor-infiltrating dendritic cells regained 
their capacity to produce IL-12. Moreover, diclofenac reduced 
the number of tumor-infiltrating Tregs (132). Application of 
diclofenac should therefore be feasible even in combination with 
immunotherapies.

A well-known master regulator of tumor and immune cell 
metabolism is mTOR. Analogs of rapamycin, an immunosup-
pressive drug, have been approved for treatment of some 
cancers based on direct effects on tumor cell proliferation, gly-
colysis and inhibition of angiogenesis (133, 134). From another 
perspective, however, treatment with rapamycin reduces the 
proliferation of effector T  cells and stabilizes/expands Tregs 
(135, 136), but at the same time can increase the presence of 
antitumor CD8 effector memory cells (137, 138). Therefore, 
mTOR inhibition has both potentially positive and negative 
effects on tumor immunity, which are worthy of further investi-
gation. Interestingly, these dual properties of immunosuppres-
sion and immune activation may be taken advantage of in the 
setting of posttransplantation malignancies that plague organ 
transplant recipients (139).

Besides glycolysis, OXPHOS is also a possible target structure 
in cancer cells. Several reports have described anticancer effects 
of biguanides, such as the diabetes therapeutics metformin and 
phenformin, which are known to inhibit the mitochondrial 

complex I. Interestingly, those effects seem to be partially 
immune-mediated as metformin improved T  cell function 
in vivo (140). Furthermore, sorafenib limits respiration in tumor 
cells and concomitantly decreases Treg numbers in patients 
(141). Further investigations along this line should prove to be 
informative.

Direct and indirect Targeting of Amino 
Acid Metabolism
The dependency of tumor cells on extracellular arginine led to 
the development of arginine-depleting drugs, most prominently 
ADI-PEG20 (142). However, arginine depletion is clearly a 
double-edged sword in tumor immunology as arginine avail-
ability is crucial for proper T cell function. The same holds true 
for the application of GLS inhibitors. Such drugs might not only 
affect tumor cells but also impede T cell function. As arginine, 
tryptophan, and glutamine are essential for T  cell function, it 
might be more appropriate to prevent amino acid depletion by 
tumor cells or myeloid cells instead of reducing amino acid levels. 
This approach is currently tested in a clinical trial with CB-1158, 
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an ARG inhibitor, in combination with checkpoint therapy 
(NCT02903914).

In line, pharmacological inhibition of COX-2 blocks ARG-1 
expression in MDSC and prevents the local and systemic expan-
sion of MDSCs, leading to a lymphocyte-mediated antitumor 
response (26, 27). Immunotherapeutic approaches might there-
fore benefit from a concurrent blockade of COX-2 activity (143). 
Moreover, COX is involved in the upregulation of IDO expression 
in myeloid cells (29). Therefore, pharmacological inhibition of 
COX could also reduce tryptophan depletion by IDO-expressing 
tumor and tumor-infiltrating cells. Direct targeting of IDO with 
siRNA promoted antitumor immunity in vivo in a murine bladder 
tumor model (144) and IDO-silenced dendritic cells enhanced 
tumor antigen-specific T cell proliferation, cytotoxic activity, and 
decreased Treg numbers (145). Drugs targeting this pathway are 
already in clinical trials with the aim to revert cancer-induced 
immunosuppression (146).

Combination of Antimetabolic Targeting 
with immunotherapy
Clinical benefits from immune-checkpoint inhibition are still 
modest due to the tumor microenvironment facilitating immune 
escape. Therefore, an immune- and antimetabolic combination 
treatment could be a promising strategy. Allard et  al. demon-
strated that targeted blockade of CD73 significantly enhances the 

therapeutic activity of anti-PD-1 and anti-CTLA-4 monoclonal 
antibodies (147). In line, Zelenay and colleagues showed that 
combination of COX-1 and COX-2 inhibitors with checkpoint 
blockade immunotherapy can result in melanoma eradication 
(148). Combining these basic forms of therapy holds real promise 
for the future.

SUMMARY AND CONCLUSiON

The antitumor immune response is not only suppressed by an 
altered tumor metabolism but also by the metabolism of tumor-
associated cell populations. Tumor cells and immunoregulatory 
myeloid cells such as MDSCs deprive neighboring cells of 
essential amino acids or sugars thus removing fuels for antitumor 
immunity. In addition, accumulation of “waste products” such as 
lactate, glutamate, PGE2, or kynurenines further limit lymphoid 
antitumor effector functions (Figure 1).

Several therapeutic strategies aim to target tumor metabo-
lism (Figure  2). However, stimulated immune cells with 
antitumor potential are known to be metabolically active and 
thus potentially sensitive to metabolic modulation. Therefore, 
pharmacological strategies should optimally target metabolic 
pathways that are differently utilized by pro-tumor and antitu-
mor cell populations. This approach is exemplified by the effect 
of COX inhibitors, where they re-educate MDSCs by decreasing 

FiGURe 2 | Metabolic target structures in tumor cells and possible inhibitors. Glucose metabolism is an attractive target for cancer therapy. Rapamycin 
(Rapa) inhibits the mammalian target of rapamycin pathway and glycolysis. 2-Deoxyglucose (2-DG) and bromopyruvate (3-BP) target hexokinase II, the rate-limiting 
enzyme of the glycolytic pathway. The lactate dehydrogenase (LDH) inhibitors FX11 and galloflavin block lactate production. Diclofenac (Diclo), lenalidomide, and 
AZD3965 limit lactate secretion via blocking lactate transporters (MCT). Oxidative phosphorylation (OXPHOS) is diminished by metformin and sorafenib. CB-389 is a 
glutaminase (GLS) inhibitor elevating glutamine levels while concomittantly decreasing glutamate. CB-1158 inhibits arginase (ARG) and thereby increases arginine 
levels, whereas ADI-PEG20 depletes arginine. Antibodies against the ecto-5′-nucleotidase (CD73) inhibit adenosine formation. Non-steroidal anti-inflammatory drugs 
(NSAIDs) block cyclooxygenase (COX) activity and decrease prostaglandin (PGE2) production. Indolamine 2,3-dioxygenase (IDO) can be targeted by Epacadostat 
and 1-methyl-tryptophan (1-MT), which results in lower kynurenine secretion and higher tryptophan levels.
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