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Genotype imputation is a vital tool in genome-wide association studies (GWAS) and meta-
analyses of multiple GWAS results. Imputation enables researchers to increase genomic
coverage and to pool data generated using different genotyping platforms. HapMap sam-
ples are often employed as the reference panel. More recently, the 1000 Genomes Project
resource is becoming the primary source for reference panels. Multiple GWAS and meta-
analyses are targeting Latinos, the most populous, and fastest growing minority group in
the US. However, genotype imputation resources for Latinos are rather limited compared
to individuals of European ancestry at present, largely because of the lack of good reference
data. One choice of reference panel for Latinos is one derived from the population of Mex-
ican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000
Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes
derived from the public reference panels has not yet been reported. Using simulation stud-
ies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the
MACH software package, we evaluated the accuracy of genotype imputation in Latinos.
Our results show that the 1000 Genomes Project AMR+CEU+YRI reference panel pro-
vides the highest imputation accuracy for Latinos, and that also including Asian samples
in the panel can reduce imputation accuracy. We also provide the imputation accuracy
for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our
results serve as a guide to future imputation based analysis in Latinos.
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INTRODUCTION
Genotype imputation has become a vital tool in genome-wide
association studies (GWAS) and meta-analyses of multiple GWAS
results. Imputation enables researchers to increase genomic cover-
age of each individual GWAS and to meta-analyze data generated
using different GWAS chips. Based on a reference panel of samples
from identical or similar populations that are genotyped using
a dense set of genetic markers, imputation methods infer geno-
types at markers that were not directly typed in a study sample.
HapMap (Frazer et al., 2007; Altshuler et al., 2010) samples are
often employed as the reference panel. More recently, the 1000
Genomes Project (1KGP; Durbin et al., 2010) resource is becoming
the primary source for reference panels.

Genome-wide association studies are expanding to minority
populations, e.g., Latinos (Gao and Edwards, 2011). While the
Latino population is the most rapidly growing and largest minority
group in the US, it has historically been understudied. At present,
there is no consensus on how to carry out genotype imputation
in individuals of Latino ancestry and different studies seem to
have adopted different approaches. For example, Fu et al. (2010)
used the HapMap Phase 3 (HM3) MEX as the reference panel;
Shi et al. (2011) used the CEU, YRI, JPT, and CHB individu-
als in the HapMap Phase 2 as the reference panel; and Parra

et al. (2011) used a combination of the HapMap Phase 2 sam-
ple and the HM3 MEX as the reference (see Table 1 for population
labels).

1KGP reference panels have clear advantage over HapMap for
genotype imputation. First, the 1KGP benefited from the whole-
genome sequencing technology, which significantly increased the
genomic coverage. This allows more variants, both common and
rare, to be imputed in a study sample. Second, the 1KGP has also
increased the panel size of each population,which can also improve
genotype imputation accuracy. To date, no detailed evaluation of
genotype imputation in Latinos has been reported using either
the HapMap or 1KGP data; the details of how one should con-
duct imputation for Latino populations using either panel has not
been determined (e.g., what is the best make-up for the reference
panel?)

As GWAS and meta-analyses are expanding to Latinos (Fu et al.,
2010; Parra et al., 2011), it is particular important to evaluate
genotype imputation in Latinos using public imputation panels,
particularly those from 1KGP. In this study, we evaluated geno-
type imputation in Latinos using simulated data and the Illumina
OmniExpress GWAS data from the Los Angeles Latino Study
(LALES). We elected to use the MACH software (Li and Abecasis,
2006; Li et al., 2010) for imputation because it is highly accurate
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Table 1 | Phased haplotypes downloaded from the MACH website.

Population Code HapMap phase 3 1000 Genomes project

Number of haplotypes Number of haplotypes Group code

Mexican ancestry in Los Angeles, California MEX 104 132 AMR

Colombian in Medellin, Colombia CLM 120

Puerto Rican in Puerto Rico PUR 110

CEPH in Utah residents CEU 234 174 EUR

Tuscans in Italy TSI 176 196

Finnish individuals from Finland FIN 186

British individuals from England and Scotland GBR 178

Iberian populations in Spain IBS 28

Yoruba in Ibadan, Nigeria YRI 230 176 AFR

African ancestry individuals from Southwest, US ASW 122

Luhya in Webuye, Kenya LWK 194

Han Chinese in Beijing, China CHB 168 194 ASN

Japanese in Tokyo, Japan JPT 172 178

Han Chinese South, China CHS 200

Total 1084 2188

The population labels were obtained from the HapMap and the 1000 Genomes Project websites.

based on previous reports (Pei et al., 2008; Huang et al., 2009; Li
et al., 2010) and is easy to use. We report imputation accuracy as
a function of reference panels using the HM3 and 1KGP data and
provide the accuracy estimate for each autosomal chromosome.
We thus provide guidance for imputation in future studies using
Latino data.

MATERIALS AND METHODS
STUDY SAMPLE
We conducted this research using the data from LALES, a
population-based study of 6,357 Latinos, aged 40 years and older,
living in six census tracts in the city of La Puente, Los Angeles
County, California. The Los Angeles County, University of South-
ern California Health Sciences Campus Institutional Review Board
Ethics Committee approved this study. Written, informed con-
sent was obtained from all participants. The data obtained from
this study have been used to document the prevalence, incidence,
and impact of visual impairment, e.g., diabetic retinopathy, age-
related macular degeneration, open angle glaucoma, and ocular
hypertension in Latinos (Varma et al., 2004).

GENOTYPING
We genotyped 665 Latinos recruited in LALES using the Illu-
mina OmniExpress BeadChip (∼733 K markers). We also included
18 duplicates to verify reproducibility. The genotyping was per-
formed at the Cedars-Sinai Medical Center. SNPs were called using
the Illumina GenomeStudio (v2011.1) software. The average call
rate was greater than 99.32%. The reproducibility was greater than
99.99%. We used the software PLINK (Purcell et al., 2007) to per-
form quality control. Individuals were excluded if genotyping call
rates were less than 97%. Markers were excluded if minor allele
frequencies were less than 0.01, call rates were less than 95%,

or if Hardy–Weinberg equilibrium p-values were less than 10−6.
This resulted in there being 647 individuals in the final analysis.
SNPs were coded on the forward strand to facilitate the imputation
process.

SIMULATION STUDY
To evaluate the performance of genotype imputation in Latinos
in situations in which the true genotypes are known, we simu-
lated SNP data using the HAPGEN2 software (Su et al., 2011).
HAPGEN2 is capable of simulating genotypes conditional on a set
of known haplotypes and creating levels of LD structure sim-
ilar to those in the reference panel (Su et al., 2011). We used
the combined recombination rate file for chromosome 22 down-
loaded from the IMPUTE website (see web resources) and set the
effective population size to 11,418 for the HAPGEN2 simulation.
Based on phased HM3 MEX haplotypes, we generated 5,000 sim-
ulated Latinos, genotyped across 20,085 SNPs on chromosome
22. Principal components analysis by the EIGENSOFT software
(Patterson et al., 2006) showed that the simulated individuals over-
lapped with the HM3 MEX individuals (Figure A1 in Appendix),
indicating our simulation mimicked those in real data. We then
constructed two reference panels of different sizes: we randomly
selected 52 (the current size of the HM3 MEX reference panel) and
200 simulated individuals without replacement and phased their
haplotypes using MACH. We then assessed genotype imputation
accuracy in an additional 500 simulated individuals. We treated
the latter 500 individuals as having known SNPs genotyped using
the Illumina OmniExpress, and compared the true (simulated)
genotypes with the imputed genotypes for the remaining 11,825
HM3 SNPs on chromosome 22 (those not present on the Illumina
OmniExpress chip).
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REFERENCE HAPLOTYPES FROM THE HAPMAP PHASE 3 AND THE 1000
GENOMES PROJECT
We downloaded HM3 r2 and 1KGP Phase I (α) phased haplo-
types from the MACH website (see Web Resources). In particular,
we downloaded the CEU (n= 234), YRI (n= 230), TSI (n= 176),
MEX (n= 104), and JPT+CHB (n= 340) population references
from the HM3 r2 data and the EUR (n= 762), AFR (n= 492),
ASN (n= 572), and AMR (n= 362) population references from
the 1KGP Phase I data. The 1KGP reference panels, with the inclu-
sion of whole-genome sequencing data, contain a much larger
number of variants than the HM3 reference panels: 38.9 versus
1.4 million. Population labels and the number of haplotypes in
each population are shown in Table 1.

IMPUTATIONS USING MACH
We used MACH (Li and Abecasis, 2006; Li et al., 2010) for carrying
out genotype imputation because it is one of the leading programs
and has been shown to work well in a variety of settings (Pei et al.,
2008; Huang et al., 2009; Li et al., 2009; Nothnagel et al., 2009;
Sung et al., 2011). MACH employs a Markov Chain algorithm
and imputes missing genotypes taking phased haplotypes as tem-
plates (Li et al., 2010). MACH version 1.0.16 was downloaded from
the software’s website (see Web Resources). To evaluate genotype
imputation accuracy for missing genotypes, we used the “mask”
option in MACH to randomly mask 2% of the genotypes in our
study sample and then compared the imputed genotypes with the
masked genotypes. To evaluate genotypes of untyped markers, we
used the standard genotype imputation approach recommended
by the authors of MACH. We used 50 iterations of the Markov
sampler to ensure reliable results and specified 400 haplotypes
when updating the phase for each individual to keep computations
tractable.

RESULTS
RESULTS OF SIMULATION STUDY
We first evaluated genotype imputation in Latinos using simula-
tion. Our first question was: how does the HM3 MEX reference
panel perform? The concern here is that it includes just 104 haplo-
types. In Figure 1 we show plots of imputation accuracy for data
simulated to reflect 500 Latinos. Data was imputed from reference
panels constructed from 52 references (104 haplotypes) or 200
references (400 haplotypes). Figures 1A–C show histograms of
imputation errors (i.e., cases in which the imputed genotype was
incorrect) and MACH Rsq estimates for the imputed genotypes.
MACH Rsq is an estimate of the dosage r2, the squared correlation
between true genotypes and estimated allelic dosage, so higher
Rsq corresponds to better imputation quality (Li et al., 2010).
Figure 1A shows the distribution of the number errors per indi-
vidual, whereas Figure 1B shows the distribution of the number of
errors per SNP. In Figure 1C we show boxplots of the MACH Rsq
estimates across imputed SNPs. Results for the 200-reference and
52-reference panels are shown in pink and blue, respectively. In
Figure 1A, the mean (standard deviation) of the number of errors
per individual is 127 (24) versus 418 (48) for imputation based
on the 200- and 52-reference panels, respectively, showing a clear
improvement when the larger reference panel is used. In Figure 1B,
performance is again better for the 200-reference panel than for

the 52-reference panel. In Figure 1C, the median (inter quartile
range) MACH Rsq is 0.987 (0.998, 0.929) and 0.93 (0.986, 0.656)
for the 200-individual and the 52-individual panels, respectively.
If we consider Rsq≥ 0.80 as a criteria for selecting well imputed
SNPs, the 200-individual panel gave 25% more well imputed SNPs
than the 52-individual panel. Overall, the 200-individual reference
panel gave much lower imputation error rate and better imputed
SNPs than the 52-individal reference panel. This clearly demon-
strates that when using a reference panel drawn from the same
population, the size of that panel has a significant impact on impu-
tation accuracy for Latinos, with larger panels performing better.
This is consistent with reports from non-Latino studies (Li et al.,
2009, 2010; Marchini and Howie, 2010).

RESULTS FROM EMPIRICAL DATA
We downloaded phased haplotypes from the MACH website (see
Table 1). The current imputation resources for Latinos are rather
limited compared with resources for European ancestry. In the
HM3 data, there are only 104 MEX haplotypes, compared to 410
haplotypes of European ancestry (234 CEU+ 176 TSI). In the
1KGP data, there are only 362 Latino haplotypes, compared to
762 haplotypes of European ancestry (174 CEU+ 196 TSI+ 186
FIN+ 178 GBR+ 28 IBS). Given the limited imputation panel
size for Latinos, how should researchers best carry out genotype
imputation? In particular, it is not clear how best to choose the
reference panel. Here we compare several possible approaches.
One approach is only to include haplotypes from the ancestral
populations. Another tested approach is to use a “cosmopolitan”
panel, which contains all the haplotypes available, regardless of
ancestry (Howie et al., 2011). To shed light on this question, we
carried out a series of imputation experiments to seek the optimal
imputation panel based on HM3 and 1KGP data.

We randomly selected chromosomes 22 for evaluation pur-
poses. Table 2 shows the imputation error rates for chromosome
22 as a function of the make-up of the reference panel. For
imputation using HM3 data, the CEU+YRI+ JPT+CHB panel
(804 haplotypes) gave lower per genotype error rate (PGER)
than the MEX panel (104 haplotypes). This is likely due to
the extremely small size of the MEX panel. Adding the CEU
and YRI haplotypes to the MEX panel, we see that the PGER
is reduced from 6.09 to 5.11% and from 5.11 to 4.19% with
the addition of each respective reference panel, which shows
the value of adding ancestry related haplotypes to the MEX
panel given its small size, and all performed better than the
CEU+YRI+ JPT+CHB panel. However, when further adding
JPT+CHB to the MEX+CEU+YRI panel,PGER increased from
4.19 to 4.24%. We also evaluated the impact of including TSI
in the MEX+CEU+YRI panel as a way to increase the Euro-
pean proportion, which resulted in the lowest PGER, 4.00%. The
subsequent addition of JPT+CHB to MEX+CEU+YRI+TSI
increased the PGER to 4.12%.

For the imputation experiments using 1KGP data, the AMR
panel, a combination of MEX, Colombian, and Puerto Rican,
gave lower PGER (3.72%) than the MEX panel alone (4.84%),
which indicated the value of adding other Latino data to the
MEX panel. We then added EUR, AFR, and ASN sequentially
to the AMR panel. The PGERs were 3.72, 3.69, and 3.27% for
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FIGURE 1 | Distributions of per individual and per SNP errors and the
imputed MACH Rsq. Pink and blue denote the 200-individual and
52-individual reference panels, respectively. Genotype imputation accuracy is
tested in an additional 500 simulated individuals. The true (simulated)

genotypes of 11,825 SNPs on chromosome 22 (those HapMap Phase 3 SNPs
not present on the Illumina OmniExpree Beadchip) are compared with the
imputed genotypes. (A) Distribution of per individual errors. (B) Distribution of
per SNP errors. (C) Boxplots of the MACH Rsq for the imputed SNPs.

the AMR, AMR+ EUR, and AMR+ EUR+AFR panels, which
showed the decreasing pattern of PGER when ancestry related hap-
lotypes were added to the AMR panel. However, adding ASN to the
AMR+ EUR+AFR panel increased the PGER from 3.27 to 3.35%.
Therefore, adding Asian haplotypes to the AMR+ EUR+AFR
panel increases imputation errors for Latinos. We also tried includ-
ing only CEU and YRI haplotypes to the AMR panel, in an attempt
to make the imputation panel “cleaner and leaner” by only includ-
ing haplotypes closely related to Latinos. In Table 2, we see that the
AMR+CEU+YRI panel gives the lowest PGER 3.23% among all
the reference panels considered, while further adding JPT+CHB
increases PGER to 3.35%. Therefore, adding Asian haplotypes to

the AMR+CEU+YRI panel can reduce accuracy for the geno-
type imputation for Latinos. The results in Table 2 show that
the AMR+CEU+YRI panel gives the best imputation accu-
racy for Latinos among all the reference panels considered. We
have validated this on another randomly chosen chromosome 9
(Table A1 in Appendix). We also included the per allele error rates,
which were approximately half of their corresponding PGERs. The
running time was roughly proportional to the memory used, e.g.,
it took about 4 and 10 days for runs using 4.5 and 11.4 GB memory
using our workstation with Xeon 5680 CPUs.

Thus far, we have investigated how genotype imputation per-
forms for Latinos for genotyped SNPs by randomly masking 2%

Frontiers in Genetics | Statistical Genetics and Methodology June 2012 | Volume 3 | Article 117 | 4

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Gao et al. Genotype imputation for Latinos

Table 2 | Genotype imputation accuracy for chromosome 22 based on the HM3 and 1KGP reference panels.

Reference data Reference panels Number of haplotypes Memory used (GB) Per genotype

error rate (%)

Per allele

error rate (%)

HM3 CEU+YRI+ JPT+CHB 804 2.3 5.17 2.67

MEX 104 0.2 6.09 3.13

MEX+CEU 338 1.7 5.11 2.63

MEX+CEU+YRI 568 2.3 4.19 2.16

MEX+CEU+YRI+ JPT+CHB 908 2.3 4.24 2.18

MEX+CEU+YRI+TSI 744 2.3 4.00 2.06

MEX+CEU+YRI+TSI+ JPT+CHB 1084 2.3 4.12 2.12

1KGP MEX 132 1.3 4.84 2.49

AMR 362 3.5 3.72 1.91

AMR+EUR 1124 4.5 3.69 1.90

AMR+EUR+AFR 1616 4.9 3.27 1.68

AMR+EUR+AFR+ASN 2188 5.3 3.35 1.73

AMR+CEU 536 4.1 3.58 1.84

AMR+CEU+YRI 712 4.3 3.23 1.66

AMR+CEU+YRI+ JPT+CHB 1084 4.5 3.35 1.73

HM3, HapMap project phase 3; 1KGP, 1000 genomes project; seeTable 1 for population labels.

genotypes. In practice, it will also be important to know how
genotype imputation performs for SNPs that are untyped for
all samples in the study, which is commonly characterized by
the MACH Rsq (Li et al., 2010). Using chromosome 22 as an
example, we masked all SNPs that are included on the Illumina
OmniExpress chip but not included on the Illumina Human-
Hap610 chip (4,535 SNPs for our GWAS data set). This is anal-
ogous to the situation that would arise in a meta-analysis that
combined two studies, each of which used one of these two plat-
forms. Then, we compared the dosage r2 with the MACH Rsq
to check how they agree with each other for the imputation in
Latinos. Figure 2 shows the pairwise plot of the dosage r2 by
the MACH Rsq using the AMR+CEU+YRI panel for chromo-
some 22. The diagonal red line is a perfect fit between r2 and
Rsq. We see that Rsq is highly correlated with r2 and gives very
good estimate of r2 in general. We saw this pattern on another
randomly chosen chromosome 9 (Figure A2 in Appendix). There-
fore, it is reasonable to use MACH Rsq to select high-quality
imputed SNPs for downstream association analyses in Latinos.
Rsq > 0.30 is recommended and often used for Caucasian samples
(Scott et al., 2007; Li et al., 2010). However, previous genotype
imputation augmented GWAS and meta-analyses using Caucasian
samples typically used HapMap phase 2 as the reference panel
and filtered imputed SNPs based on both minor allele frequency
(MAF) >1% and Rsq > 0.30 (Scott et al., 2007; Kottgen et al.,
2010). HapMap is a resource for common SNPs. Moreover, using
a MAF > 1% as a filter, it was likely that many of the poorly
imputed SNPs would already have been filtered out, therefore an
Rsq threshold of 0.30 would not have had much additional effect.
Considering the direct relationship between r2 and the effective
number of sample size necessary for association tests (Pritchard
and Przeworski, 2001), we think a more stringent Rsq thresh-
old, e.g., 0.80, may be more desirable, especially for the impute
based on 1KGP data, which include an enormous amount of rare
variants.

FIGURE 2 | Pairwise plot of the dosage r 2 by the MACH Rsq. Diagonal
line (red) is a perfect match between the MACH Rsq and the dosage r 2.
Further off the diagonal line means poorer estimate. The correlation
coefficient between Rsq and r 2 is 0.96.

We then carried out genotype imputation based on the 1KGP
Phase I AMR+CEU+YRI reference panel in our LALES GWAS
samples. Figure 3 shows the boxplot of Rsq for 485,313 imputed
SNPs on chromosome 22 (all typed SNPs were excluded). The Rsq
median is 0.11, 0.03, and 0.87 for no MAF filter, MAF < 0.01, and
MAF≥ 0.01, respectively. It is clear that the majority of common
SNPs were imputed very well, with 80% of them (83,990 out
of 146,642) having Rsq > 0.8, while most of the rare SNPs were
poorly imputed, with only 3.2% of them (11,112 out of 348,333)
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FIGURE 3 | Boxplot of the MACH Rsq for the imputed SNPs stratified
by the minor allele frequency. Boxplot of the MACH Rsq for 485,313
imputed SNPs on chromosome 22 (with all typed SNPs by the Illumina

OmniExpress excluded) based on the 1000 Genomes Project
AMR+CEU+YRI reference panel. Abbreviations: MAF, minor allele
frequency.

having Rsq > 0.8. 1KGP aims at capturing rare variants through
sequencing technology (Durbin et al., 2010). However, at its cur-
rent sample size, most of the rare variants were not imputed
well for Latinos. But compared with the number of variants on
the Illumina OmniExpress chip (10,678 for chromosome 22), the
imputation yield (95,102 imputed SNPs had Rsq≥ 0.80) from it
is still very useful with almost ninefold increase in the number of
variants that can be interrogated. Therefore, it is a good strategy to
include 1KGP imputation in the downstream GWAS analysis. We
also carried out imputation using the AMR+ EUR+AFR+ASN
panel (a cosmopolitan panel) as a comparison. The average Rsq
derived from the AMR+ EUR+AFR+ASN panel was 0.291,
lower than 0.307 from the AMR+CEU+YRI panel. Moreover,
the AMR+CEU+YRI panel gave 8.33% more well imputed SNPs
(Rsq≥ 0.80) than the AMR+ EUR+AFR+ASN panel. Again,
we saw that the AMR+CEU+YRI panel gave better imputation
results.

It is also of interest to assess the performance for each chromo-
some. For this reason, we randomly masked 2% of the genotypes in
the LALES GWAS data and compared them with MACH imputed
genotypes. The PGER for each autosomal chromosome is summa-
rized in Figure 4. The PGER is much higher for chromosomes 15–
22 than for chromosome 1–14. Larger chromosomes tend to have
less recombination events and longer stretch of LD (The Inter-
national HapMap Consortium, 2005), and hence lower PGER.
Chromosome 19 appears to be particularly difficult to impute,

while imputation for chromosome 13, 11, and 10 is more success-
ful. It is interesting to note that chromosomes 19 and 13 have the
highest and the lowest gene density, respectively (Semple, 2004).

DISCUSSION
Historically, Latinos have been understudied in genetic research.
Taking chromosomes 22 and 9 as an example, we carried out
an evaluation of genotype imputation in Latinos using simula-
tion and the empirical GWAS data from LALES. Among all the
reference panels that we considered, the 1KGP AMR+CEU+YRI
panel gave the best imputation accuracy. We further picked chro-
mosomes that have the lowest (chromosome 13) and highest
(chromosome 19) gene density and validated the same results, i.e.,
the 1KGP AMR+CEU+YRI panel gave better genotype impu-
tation accuracy than the cosmopolitan panel and the panel with
Asian references included (Tables A2 and A3 in Appendix). We
also presented imputation accuracy for each autosomal chromo-
some based on the 1KGP AMR+CEU+YRI panel. From our
results, we see that there are several factors that affect the accuracy
of genotype imputation for Latinos: the size of the reference panel,
the make-up of the reference panel, MAF, and the chromosome
concerned.

There are many other genotype imputation software pack-
ages, e.g., IMPUTE2 (Howie et al., 2009), BEAGLE (Browning
and Browning, 2007, 2009), and fastPHASE (Scheet and Stephens,
2006). Each method may have its advantage over other approaches
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FIGURE 4 | Genotype imputation accuracy by chromosome. Genotype imputation accuracy is measured by per genotype error rate by randomly masking
2% genome-wide SNPs.

in some special situations (Li et al., 2009; Marchini and Howie,
2010; Browning and Browning, 2011). When genotype reference
panels become larger and larger and cover more populations, it
is computationally impractical for one study to be able to cover
all available imputation methods using the latest 1KGP reference
data. Therefore, we focused on using MACH, one of the leading
genotyping imputation software packages, and evaluated genotype
imputation for Latinos in this study.

For this study, we aimed to seek high imputation accuracy
regardless of the memory used. MACH can be run in two ways.
We used the standard genotype imputation approach instead of
the alternative approach (see MACH online tutorial) because it
was reported that the standard approach gave better accuracy (Pei
et al., 2008). But the standard approach requires intensive com-
puting. There are many possible ways to reduce memory usage and
to improve computing speed, e.g., (1) break a chromosome into
pieces and use a parallel computing cluster; (2) use pre-phasing
(Fuchsberger et al., 2011); (3) use minimac, an efficient imple-
mentation of MACH, e.g., phase the haplotypes by MACH first
and then run the genotype imputation by minimac (Huang et al.,
2012); (4) with the advance in graphical processing unit (GPU)
devices, it is also attractive to use GPU for accelerating genotype
imputation (Kai and Chen, 2011).

There are several limitations of our study. We only included
reasonable guesses of the best reference panel for Latinos in our
imputation evaluation. There are 14 ethnic groups in 1KGP data
(see Table 1) and hence 91, 364, and 1001 for two-way, three-
way, and four-way combinations, respectively. It is impossible to
enumerate all possible combinations of different ethnic groups.
We randomly picked chromosomes 22 and 9 for evaluation and
further validated the results on chromosomes 13 (has the lowest
gene density) and 19 (has the highest gene density). In practice,
genotype imputation for big chromosomes and large sample size

can be very computationally intensive using MACH through our
brute force approach. Due to the extensive computing resources
required, a detailed evaluation of the genotype imputation for
Latinos based on 1KGP in other chromosomes is left for future
studies. Moreover, our LALES GWAS data were genotyped by the
Illumina OmniExpress chip, which has limited coverage for rare
variants.

Rare variants have been claimed to be the culprit for the miss-
ing heritability for many disease phenotypes. 1KGP is a growing
resource to address this issue consisting of an extremely high-
density reference panel, which covers an enormous number of
rare variants. However, the sample size for each ethnic group is
still limited, especially for minority populations. Recent studies
have shown that thousands of reference samples may be required
to successfully impute rare SNPs (Li et al., 2011). This level of
reference panel size requirement can be easily understood through
a probability calculation. With 200 references (400 haplotypes), the
probability to observe an allele/haplotype of MAF= 0.01 at least
once is equal to 1− (1− 0.01)400

= 0.98. However, it requires 400
references (800 haplotypes) and 2000 references (4000 haplotypes)
to observe an allele/haplotype of MAF= 0.005 and MAF= 0.001,
respectively, with a similar level of probability. Therefore, the yield
of 1KGP based imputation for rare variants will still be constrained
by the limited panel size of each ethnic group. It may help to bring
in references from other ethnic backgrounds. But the effectiveness
of this strategy will depend upon the genetic distance between the
reference and target samples.

Among all the tested reference panels, we found that the 1KGP
AMR+CEU+YRI panel gave the lowest error rate for genotype
imputation in Latinos. This is not totally unexpected because the
Latino population is considered as primarily the result of a three-
way admixture of European, Native American, and West African
populations (Mao et al., 2007; Price et al., 2007). Admixture
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analysis by STRUCTURE (Pritchard et al., 2000; Falush et al.,
2003) indicated that our Latino subjects had 53, 43, and 4% Cau-
casian, Native American, and African ancestry, respectively (data
not shown). Therefore, when the reference resource is limited in
sample number for a particular population, it can help to bring
in references of other ancestral populations. Some researchers
reported a cosmopolitan panel, which includes all the references,
gave better imputation results in some situations (Huang et al.,
2009; Li et al., 2010; Howie et al., 2011). We believe use of the
cosmopolitan panel is most likely to improve results when the
imputation resource of the same population for a target sam-
ple is sparse. In HM3, even CEU+YRI+ JPT+CHB (which
contains no MEX) gave better results than MEX alone. Thus,
the relative utility of a reference consisting of a combination
of Caucasian, African, and Asian references, and one consist-
ing of just MEX, will depend upon the size of each reference
panel.

To date, most of genotype imputation evaluations were done
in samples of European, African, and Asian ancestry (Pei et al.,
2008; Huang et al., 2009, 2011; Fridley et al., 2010; Shriner et al.,
2010; Howie et al., 2011; Li et al., 2011) and only limited reports
explored the imputation using 1KGP data (Sung et al., 2011). We
present the first extensive evaluation of genotyping imputation
for Latinos using the HapMap and 1KGP reference panels. Our
results show that (1) The cosmopolitan panel, which includes all
the references in 1KGP, is not an optimal solution for the geno-
type imputation for Latinos; (2) The 1KGP AMR+CEU+YRI
reference panel provides the highest imputation accuracy for Lati-
nos, and that also including Asian samples in the panel can reduce

imputation accuracy. We also provide the imputation accuracy for
each autosomal chromosome using the 1KGP panel for Latinos.
Therefore, our results serve as a guide to future imputation based
analysis in Latinos.

WEB RESOURCES
The URLs for data presented herein are as follows:
HAPGEN, https://mathgen.stats.ox.ac.uk/genetics_software/
hapgen/hapgen2.html
IMPUTE, https://mathgen.stats.ox.ac.uk/impute/impute_v1.html
#Using_IMPUTE_with_the_HapMap_Data
EIGENSOFT, http://genepath.med.harvard.edu/∼reich/Software.
htm
MACH, http://www.sph.umich.edu/csg/abecasis/MACH/
download/
HapMap Phase 3 haplotypes, http://www.sph.umich.edu/csg/
abecasis/MACH/download/HapMap3.r2.b36.html
1000 Genomes Project Phase I haplotypes, http://www.sph.umich.
edu/csg/abecasis/MACH/download/1000G-PhaseI-Interim.html
1000 Genomes Project, http://www.1000genomes.org/
HapMap Project, http://hapmap.ncbi.nlm.nih.gov/
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APPENDIX

Table A1 | Genotype imputation accuracy for chromosome 9 based on the 1000 Genomes Project reference panels.

Reference panels Number of haplotypes Memory used (GB) Per genotype error rate (%) Per allele error rate (%)

MEX 132 4.5 3.75 1.93

AMR 362 11.4 2.79 1.44

AMR+EUR 1124 14.9 2.79 1.43

AMR+EUR+AFR 1616 16.0 2.64 1.40

AMR+EUR+AFR+ASN 2188 17.4 3.21 1.68

AMR+CEU 536 13.5 2.68 1.38

AMR+CEU+YRI 712 13.9 2.36 1.22

AMR+CEU+YRI+ JPT+CHB 1084 14.8 2.51 1.29

Table A2 | Genotype imputation accuracy for chromosome 13 based on the 1000 Genomes Project reference panels.

Reference panels Number of haplotypes Memory used (GB) Per genotype error rate (%) Per allele error rate (%)

AMR+EUR+AFR 1616 13.0 2.14 1.11

AMR+EUR+AFR+ASN 2188 14.1 2.68 1.46

AMR+CEU+YRI 712 11.4 2.05 1.06

AMR+CEU+YRI+ JPT+CHB 1084 12.0 2.22 1.15

Table A3 | Genotype imputation accuracy for chromosome 19 based on the 1000 Genomes Project reference panels.

Reference panels Number of haplotypes Memory used (GB) Per genotype error rate (%) Per allele error rate (%)

AMR+EUR+AFR 1616 7.2 3.88 2.05

AMR+EUR+AFR+ASN 2188 7.9 4.09 2.16

AMR+CEU+YRI 712 6.3 3.58 1.89

AMR+CEU+YRI+ JPT+CHB 1084 6.7 4.01 2.12
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FIGURE A1 | Principal components analysis of the simulated individuals and the HapMap Mexican–American individuals.
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FIGURE A2 | Pairwise plot of the dosage r 2 by the MACH Rsq for chromosome 9. Diagonal line (red) is a perfect match between the MACH Rsq and the
dosage r 2. Further off the diagonal line means poorer estimate.
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