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Complex biological systems, by definition, are composed of multiple components

that interact non-linearly. The human brain constitutes, arguably, the most complex

biological system known. Yet most investigation of the brain and its function is carried

out using assumptions appropriate for simple systems—univariate design and linear

statistical approaches. This heuristic must change before we can hope to discover and

test interventions to improve the lives of individuals with complex disorders of brain

development and function. Indeed, amovement away from simplistic models of biological

systems will benefit essentially all domains of biology and medicine. The present brief

essay lays the foundation for this argument.
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INTRODUCTION

Non-invasive neuroimaging has invigorated a deep and abiding interest in understanding the
human brain, the most complex biological system, in health and disease. This burgeoning research
focus has impelled technological innovation in neuroimaging and application of a growing number
of mathematical/computational approaches to analysis, which help visualize the complexity of the
brain in greater depth than previously possible. From our current vantage point we are compelled
to ask whether our capabilities have outstripped the paradigms we use for scientific research,
and whether our conceptual and analytical frameworks have become a barrier to understanding
complex systems.

A deep understanding of complex biological systems requires conceptual and analytical
strategies that respect that complexity. Yet, there continues to be a dominating focus in
experimental design and analysis on univariate, linear, and narrowly defined relationships. These
approaches, including multivariate linear regression (which is an elaboration on the univariate
linear framework), are gratifying because they are conceptually simple and align neatly with the
traditional scientific method, in which emphasis is placed on a single isolatable dependent variable.
However, the univariate/linear approach will necessarily fail when tasked with providing the basis
for deep explanations for complex biological systems.

This essay highlights the need to recognize the fallacy of the univariate conceptual framework
with respect to complex systems and to embrace complexity so as to align the problem to be
solved with the approach taken. We contend that there are some effective ways to study complex
systems through care in study design and sample ascertainment, deep phenotyping, and statistical
approaches. However, the shift to individual-level analysis, the basis for personalized medicine, will
require both methodological advances and a readiness for investigators and reviewers to eschew
biologically implausible reductionist models of complex biology.
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ARGUMENTATION

Study Design and Sample Ascertainment
Standard clinical trial design emphasizes a univariate conceptual
framework—as the Consolidated Standards of Reporting Trials
approach argues (Moher et al., 2001), if randomization is done
correctly, the only difference between a treatment and control
group is the treatment itself. Then, results are framed to reflect
the central tendency of the two groups and whether that central
tendency differs for the defined primary outcome. However, the
central tendency of a treated group does not necessarily inform
the clinician whether the patient currently in the exam room and
seeking help is (or is not) likely to respond to the offered therapy,

particularly if the patient would not have met study inclusion
criteria.

Why would the patient have not been offered entry into

the study? Because the study design, inspired by univariate
approaches to complex problems, mandates inclusion/exclusion
criteria that reduce variability and remove potentially
confounding factors, which necessarily makes the study less
generalizable to the broader population. Further, it undermines

the ability, using study data, to make predictions about treatment
response for individual patients. Such single patient/subject
level prediction, it seems to us, should be a fundamental
and significant priority of clinical trials. Yet, quantifying and
characterizing the central tendency at the group level appear to
be the principal objectives.

Similarly, a commonly employed study design in cognitive

neuroscience is between-group comparison of cases and controls.
For some of the authors, case status might comprise tobacco-
dependent cigarette smokers or patients with Tourette syndrome
(TS), a neurodevelopmental disorder defined by the chronic

presence of motor and vocal tics. Controls, by definition, would
include non-smokers or individuals without TS, respectively.
Comparing cases and controls on brain outcomes would
almost certainly uncover group differences (Azizian et al.,
2009; Rickards, 2009; Eichele and Plessen, 2013; Fedota and
Stein, 2015). However, group differences cannot be ascribed to
case/control status alone: both tobacco dependence and TS are
complex disorders that do not exist simply on the background
of an otherwise typically developed, neuropsychiatrically healthy
individual. Tobacco dependent smokers, relative to non-smokers
are more likely to abuse other substances (Madden and Heath,
2002; John et al., 2003; Agrawal et al., 2012), to have history of
mood or behavioral problems (Grant et al., 2004; Smith et al.,
2014), to experience worse socioeconomic indicators, and to have
family history of substance use and psychopathology (Lessov
et al., 2004; Lawrence et al., 2007; Buu et al., 2009; Xian et al.,
2010; CDC, 2011; Zoloto et al., 2012). TS patients, compared
to non-TS patients, are more likely to suffer from anxiety and
mood disorders, obsessive compulsive disorder (OCD), attention
deficit hyperactivity disorder (ADHD), sleep disorders, learning
disability, and to have family history of such problems (Mathews
and Grados, 2011; O’Rourke et al., 2011; Martino et al., 2013;
Mol Debes, 2013; Ghosh et al., 2014; Eysturoy et al., 2015;
Hirschtritt et al., 2015). In addition, case status may be but one
manifestation that is overt at the moment of investigation. For

example, a tobacco dependent adolescent’s mood disorder may
be subclinical at the time of investigation but emerge later. Or
a 2nd grader with a persistent tic disorder may not manifest
OCD clinically until middle school. The later emergence of those
clinical manifestations belies an earlier determination that the
individual is truly free of those clinical burdens. In monogenic
genetic disorders, such as Rett Syndrome and CDKL5 epileptic
encephalopathy, some individuals with the classic mutation do
not necessarily manifest the phenotype (Amir et al., 2000) or may
have distinctly different developmental trajectories (Hagebeuk
et al., 2015) despite having identical mutations.

Care in sample ascertainment canminimize group differences.
One epidemiologically sound approach is to recruit cases
and controls from the same demographic area to match
socioeconomic characteristics. An alternative approach is to
collect sufficient information during screening of potential
study participants to identify cases and controls that are
matched/similar on background characteristics and to invite
the matched subset of participants into the study. One caveat
in matching unrelated cases and controls is that individuals
who can be matched may represent the tail end of their
respective distribution. For example, dependent smokers who
can be matched to non-smokers likely do not have burden
from known comorbidities and may not be representative of the
average dependent smoker; conversely, non-smokers who can be
matched to smokers may have greater psychiatric history than the
average non-smoker. Another robust approach is to use control
individuals who are related to the cases, such as twin or full
siblings, to match more closely on genetics, family environment,
and other shared history (Lessov-Schlaggar et al., 2013).

In clinical trials, whether random assignment to treatment or
control conditions achieves its intended balance is commonly
not tested. The commonly employed stringent inclusion criteria
that effectively homogenize the study sample likely contribute to
the sense of balance in group differences. For example, suppose
treatment and control groups are matched on sex (equal numbers
of males and females in each group), and socioeconomic status
(SES) (equal numbers from low and high SES in each group).
On the surface, it would seem that as a consequence of this
matching strategy, sex or SES, individually, could not be driving
a treatment effect. However, it remains plausible that a sex by SES
interaction is lurking such that for the treatment group, 70% of
females come from a high SES environment while for the control
group, 30% of females come from a high SES environment. Thus,
a treatment effect could be driven by a sex by SES interaction that
is misattributed. Vigilance in sample ascertainment shows respect
for the complexity of human behavior and the neurobiological
mechanisms that generate it.

Deep Phenotyping
The co-occurrence of two or more problems is the rule and
not the exception in pediatric neuropsychiatric illness (Arcelus
and Vostanis, 2003). Comorbidity can be due to shared genetic
or environmental mechanisms (Mathews and Grados, 2011;
Vrieze et al., 2012), suggesting shared etiology and shared
neurobiological mechanisms. For example, brain mechanisms
of cognitive control (itself a complex construct) have been
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implicated in numerous conditions, including drug addiction
and TS (Kalivas and Volkow, 2005; Mueller et al., 2006;
Church et al., 2009; Garavan and Weierstall, 2012; Jung et al.,
2013). Therefore, when comparing cases and controls care in
the kind and amount of phenotypic data collection is also
necessary. Having data on risk factors allows not only for better
matching algorithms, but also for exploration of phenotypic
subgroups that differ in behavioral phenomenology. For example,
using multiple measures in a large family study of TS, latent
class analysis identified five TS subgroups characterized by
TS+OCD+ADHD, TS+OCD, TS plus obsessive compulsive
behaviors, chronic tics plus OCD, and a subgroup with minimal
symptomatology (Grados and Mathews, 2008). Further, only the
TS+OCD+ADHD subgroup was significantly heritable (Grados
and Mathews, 2008). The differential clustering of symptoms,
diagnoses, and heritability estimates, suggest differences in
disease etiology or similar proximate etiological mechanisms
but disparate additional modifying factors. Identifying potential
differences in etiology and modifying factors is paramount to the
task of identifying effective therapy. If there is an assumption
that all TS manifests from the same underlying cause, then it
would necessarily follow—down a garden path argument—that
all patients with TS should respond to the same therapy. Of
course, inter-individual differences in response to therapy are
obvious; such differences could be the consequence of TS as a
phenocopy for different etiologies, or could be the consequence of
genetic polymorphisms in drug metabolism pathways, unrelated
to the etiology of TS. Approaches to understanding therapy
optimization require reorienting our approach to investigation
so as to determine the reasons that a given patient responds to
treatment B and not treatment A.

It is important to recognize that heterogeneity is not limited
to atypical populations. It may be discomforting to realize that
the composition of a standard group of “healthy controls” is
almost certainly heterogeneous. For example, Fair et al. (2012)
applied a large neuropsychological battery to a cohort of typically
developing children collected as a control sample in a study of
ADHD. They then applied an unsupervised clustering algorithm
to the psychometric data of each individual and identified
subgroups within the cohort of healthy controls that mirrored the
subgrouping identified for the ADHD cohort (Fair et al., 2012).
The implications of clustering individuals into subgroups based
on rich single subject data are substantial given that the standard
case/control statistical analysis assumes (incorrectly, most likely)
that the case and control groups are each representative of the
population of cases and controls, allowing for the application of
standard parametric statistics to test group differences.

In another example, using resting state functional connectivity
MRI data, groups of typically developing children and children
with ADHD could be separated into subgroups based on the
pattern of functional connectivity of the nucleus accumbens with
the rest of the brain (Costa Dias et al., 2015). Differences between
controls and ADHD patients within each subgroup showed
different aspects of atypical connectivity in ADHD (Costa
Dias et al., 2015); the ADHD subgroup demonstrating atypical
connectivity of the nucleus accumbens with attention networks
also had higher impulsivity relative to respective controls and to

the other ADHD subgroups (Costa Dias et al., 2015) suggesting
distinct mechanism(s) that may underlie impulsivity in ADHD.

Using resting state functional connectivityMRI, Laumann and
colleagues showed that collecting data from the same individual
over multiple occasions achieves high level of measurement
accuracy and uncovers individual-specific functional brain
organization (Laumann et al., 2015). The functional organization
of the individual brain shares similarity to group-level functional
organization, in that functional systems are evident on the
individual and group-average brain (Laumann et al., 2015).
However, the functional organization of the individual brain
shows a more complex landscape where adjacent cortical regions
belong to two or more functional systems, and not one system
as in the group-average brain, as well as differences in functional
system boundaries between right and left hemispheres (Laumann
et al., 2015). This level of specificity could only can be achieved
using a large amount of data from the same individual (see
also Poldrack et al., 2015) showing how such an approach can
detect inter-individual differences that might be associated with
individual differences in behavior, disease mechanism, treatment
response, and so forth.

Analysis that embraces complexity provides a richer, more
interesting, and likely more biologically relevant model of
causal mechanisms. By liberalizing phenotypic definitions and
collecting as much data per individual as possible, we will be able
to better understand individual differences and to better identify
deviant or rare phenotypes.

Statistical Approaches
Often, we see lack of capitalizing on good study design
or deep phenotyping when it comes to statistical analysis,
such as longitudinal data being analyzed cross-sectionally or
comorbidity being treated as a confounding variable. Treating
longitudinal data as cross-sectional does not take advantage of the
overall reduction in variability and error estimation with repeat
assessment of the same individuals. A small mean difference in
task-evoked brain activity, as measured by fMRI, between times
1 and 2 may not be significant when analyzed cross-sectionally;
however, if each subject’s low amplitude response moved in the
same direction, the effect could be highly statistically significant
when analyzed longitudinally.

Comorbidity is often treated as nuisance variable(s).
Investigations by the Tourette Syndrome Association
International Consortium for Genetics demonstrate that
the neuropsychiatric comorbidities of TS have very complex
genetic relationships (Mathews and Grados, 2011). It is
simply erroneous to consider comorbidities to superimpose
linearly on the diagnosis of interest. Yet the practice of using
linear regression or covariance to remove the confounding
contribution of a comorbid diagnosis is predicated on such
a linear relationship. Comorbidity shares variation with the
phenotype of interest that affects outcome, and treating it
as a nuisance variable undermines the results by statistically
removing informative variation. Further, a covariate only
controls for the linear relationship of that variable with outcome.
It is likely the case that comorbidity is not captured by additive
effects, but is the result of complex interactions of etiological
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mechanisms. The notion of pure insertion of a phenotype, such
as OCD, onto TS, is problematic. In the neuroimaging literature,
Friston et al. (1996) discussed the problem of pure insertion
in the setting of cognitive subtraction, refuting the implicit
assumption employed in many neuroimaging studies that “there
are no interactions among the cognitive components of a task.”

In the clinical setting, often the most vexing question asked by
the parent of a child diagnosed with a persistent tic disorder is
“what does the future hold for my child?” The ability to provide
real, evidence-based, predictions for that patient and family—not
a summary relevant to the central tendency of the population
of individuals with persistent tics, but predictions that are
specific to the patient in the office—is of paramount importance.
Single patient/subject level prediction requires methodological
approaches to study design and data analysis that capitalize
on the richness afforded by high dimensional data and inter-
individual variance, as shown in Laumann et al. (2015), for
example.

Our own first efforts in this regard used resting state
functional connectivity MRI and support vector machine based
multivariate pattern analysis to predict, on a single subject basis,
age-group membership (adult vs. child) as well as the brain
maturity of single subjects (Dosenbach et al., 2010; Greene
et al., 2014). We have applied similar approaches to predict
whether an individual has TS or not (Greene et al., 2016).
These approaches (Johnston et al., 2015; Kambeitz-Ilankovic
et al., 2015; Stock et al., 2015) are orienting the field toward the
importance of single subject/patient level prediction. Fair and
colleagues (Miranda-Dominguez et al., 2014) introduced a highly
compelling recent exemplar, “connectotyping,” using resting state
functional connectivity MRI, to reveal a functional “fingerprint”
of an individual with substantially less data than needed for the
deep characterization described in Laumann’s (Laumann et al.,
2015) and Poldrack’s work (Poldrack et al., 2015).

One important caveat regarding multivariate pattern analysis
is that, at least to our knowledge, it is not possible to performwhat
would be considered a standard power analysis—constructs like
effect size andmeasurement variance do not readily translate into
the n-dimensional space within which such analysis operates.

Beyond the Cognitive Neurosciences
Potential advantages of single subject, rather than group-
level prediction, are important to consider in other diseases
with complex phenotypes, like cancer. Driving forces for
clinical trial design and conduct included, ethical considerations,
statistical models and simplicity in order to ensure consistency
across multiple trial sites (Meier, 1975). Missing from the
driving forces for trial design is disease biology. Advances in
cancer biology have significantly refined our view of causation,
such that histological diagnoses are giving way to molecular
subtyping within histological diagnostic groups, and patients
are being stratified for therapies that target causative genetic
events (Bautista et al., 2014; Robinson et al., 2015). While
this approach is touted as the foundation for personalized
“precision” medicine, in reality it most frequently perpetuates
a monolithic view of cancer biology and therapeutic responses
that is inconsistent with the state of scientific evidence in cancer
biology.

As we are focused here on central nervous system disease
we will limit our comments to malignant brain tumors.
The combination of surgery, radiation and chemotherapy for
glioblastoma, the most common and malignant of brain tumors,
was first applied in the late 1940s and first studied in clinical
trials in the 1960s (Gunther, 1949; Levin and Wilson, 1976;
Walker and Gehan, 1976). The improvement in survival was
measured in months and for the vast majority of patients this
remains the benefit of therapy today (Stupp et al., 2005). Over
the same period of time, our understanding of the biology of
glioblastoma has advanced remarkably. The complexity of the
mutational landscape has been repeatedly described (Frattini
et al., 2013; van Thuijl et al., 2015). The significance of epigenetic
modulation of the cancer genome to cancer biology and
therapeutic resistance has been recognized (Sturm et al., 2014).
The importance ofmulti-clonality to tumor evolution in response
to treatment has been established (Kim et al., 2015), as has impact
of cancer immune editing and immunological checkpoints to
cancer development (Pellegatta et al., 2011). We also know that
this spectrum of intra-tumoral heterogeneity in each patient
must also be overlaid on the distinct biologies of males vs.
females (Sun et al., 2014) and genome-wide polymorphisms
that determine important phenotypic differences between
individuals in such things as metabolism and circadian rhythm,
which impact on disease risk, progression, and therapeutic
responses.

Among the conclusions of this enormous body of research
is that each glioblastoma patient has multiple genetically
and epigenetically distinct clonal lineages that must be
simultaneously targeted for a reasonable chance of cure.
Despite this knowledge, we continue to “match” groups of
patients and evaluate novel drugs one at a time, and we continue
to dramatically fail to improve outcome (Bastien et al., 2015).
We have neglected to recognize that the complexity of this
disease demands a revolutionary change in approaches to
clinical investigation in which the individual is what is being
interrogated, not the group. Success may require abandoning
current research paradigms and statistical frameworks in favor
of models that can be informative for multiple “n’s” of one.

CONCLUDING REMARKS

Classical statistics, developed before computers and technologies
that can analyze and deliver millions of data points, may be
inadequate for analyzing high-dimensional data sets. Inherent
in the idea of personalized medicine is a translational
approach, whereby basic science and clinical research data
can be used together to predict with high accuracy an
individual patient’s clinical prognosis and treatment. Achieving
personalized medicine will almost certainly require a paradigm
shift toward embracing complexity and developing and funding
complex systems analytics research.
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