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Obesity, characterized by chronic activation of inflammatory pathways, is a critical factor 
contributing to insulin resistance (IR) and type 2 diabetes (T2D). Free fatty acids (FFAs) 
are increased in obesity and are implicated as proximate causes of IR and induction 
of inflammatory signaling in adipose, liver, muscle, and pancreas. Cells of the innate 
immune system produce cytokines, and other factors that affect insulin signaling and 
result in the development of IR. In the lean state, adipose tissue is populated by adipose 
tissue macrophage of the anti-inflammatory M2 type (ATM2) and natural killer (NK) cells; 
this maintains the insulin-sensitive phenotype because ATM2 cells secrete IL10. In con-
trast, obesity induces lipolysis and release of pro-inflammatory FFAs and factors, such as 
chemokine (C–C motif) ligand 2 (CCL2) and tumor necrosis factor alpha (TNF-α), which 
recruit blood monocytes in adipose tissue, where they are converted to macrophages 
of the highly pro-inflammatory M1-type (ATM1). Activated ATM1 produce large amounts 
of pro-inflammatory mediators such as TNF-α, interleukin-1β, IL-6, leukotriene B4,
nitric oxide (NO), and resistin that work in a paracrine fashion and cause IR in adipose 
 tissue. In the liver, both pro-inflammatory Kupffer cells (M1-KCs) and recruited hepatic 
macrophages (Ly6Chigh) contribute to decreased hepatic insulin sensitivity. The present 
mini-review will update the bidirectional interaction between the immune system and 
obesity-induced changes in metabolism in adipose tissue and liver and the metabolic 
consequences thereof.

 

Keywords: obesity, insulin resistance, macrophages, eR stress, reactive oxygen species, type 2 diabetes,  
non-alcoholic fatty liver diseases

inTRODUCTiOn

Multicellular organisms rely on two highly conserved mechanisms for their survival: the ability to 
store energy to prevent starvation (metabolic pathways) and the ability to fight infection (immune 
pathways). When nutrients are in excess, adipose tissue stores lipids and the liver stores glycogen for 
use during starvation or to combat stressful situations. In addition, both adipose tissue and liver are 
populated with innate and adaptive immune cells. Thus, immune cells modulate whole-body metab-
olism [in metabolic syndromes such as type 2 diabetes (T2D) and obesity] via effects on adipocytes 
and hepatocytes, and reciprocally, host nutrition and commensal microbiota-derived metabolites 
modulate immunological homeostasis. This bidirectional interaction between the immune system 
and whole-body metabolism has created the field of immunometabolism, which has witnessed a 
renaissance in the past 15 years. The landmark discovery by Hotamisligil et al. in 1993 suggested 
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that tumor necrosis factor (TNF) levels are elevated in the adipose 
tissue of obese and diabetic rodents and that its neutralization 
improves  insulin-stimulated glucose uptake, which formed the 
cornerstone for immunometabolism (1). The second ground-
breaking discovery in the field of immunometabolism came 
from Ferrante and Chen’s group, who reported simultaneously 
that adipose tissue of obese mice is infiltrated with macrophages 
that contribute to adipose tissue inflammation and IR (2, 3). 
Since these initial discoveries in immunometabolism, it has been 
shown that a large number of immune cells and pathways regulate 
metabolic homeostasis in obese animals (4–11).

Obesity, an epidemic of the twenty-first century, continues 
to rise throughout the world, even in the countries where pov-
erty and malnutrition are major problems. The World Health 
Organization estimates that globally there are more than 1.9 
billion overweight adults [body mass index (BMI) > 27 kg/m2]. 
Of them, 600 million people are obese with BMI more than 
30  kg/m2 (WHO obesity and overweight fact sheet, updated 
in June 2016: http://www.who.int/mediacentre/factsheets/
fs311/en/). Obesity provides bacterial and metabolic danger 
signals that activate a plethora of inflammatory cascades that 
drives M1 macrophage phenotype. In addition, immune and 
metabolic pathways are tightly balanced in that the immune 
response is highly energy demanding and shifts energy away 
from  non-essential functions (12). In contrast, infection and 
sepsis often result in metabolic disruptions including IR (13). 
Obesity- and T2D-induced alterations in components of the 
immune system are most apparent in adipose tissue, the liver, 
and the pancreatic islets. Therefore, this review will focus on 
obesity-induced changes in immune system and metabolism 
in adipose tissue and liver and the consequent development of 
disease states such as IR, T2D, non-alcoholic fatty liver disease 
(NAFLD), and non-alcoholic steatohepatitis (NASH).

OBeSiTY: innATe AnD ADAPTive 
iMMUne ReSPOnSeS AnD THeiR 
SiGnALinG

The mammalian immune system consists of two types of 
immune responses: innate and adaptive. Innate immune cells 
include neutrophils, dendritic cells, macrophages, mast cells, and 
eosinophils, which respond to general danger signals associated 
with invading pathogens. Neutrophils are the first responders to 
invading pathogens and are generally among the first immune 
cells to arrive at the site of inflammation. Macrophages are 
long lived and highly dynamic. They readily switch from anti-
inflammatory M2 type to pro-inflammatory M1-type in resident 
tissues. Besides bacterial danger signals mediated by lipopoly-
saccharide (LPS), the toll-like receptor 4 (TLR4) ligand, obesity-
associated metabolic danger signals also play an important role 
in macrophage polarization. To provide local immune responses, 
macrophages get assistance from other immune cells, such as 
TLR-proficient mast cells (14). Eosinophils are  anti-inflammatory 
in nature and maintain the M2 macrophage population. Adaptive 
immune cells include B-2 and T lymphocytes, which exert 
specific and decisive adaptive immune functions and provide 

immunological memory (15). B-2 and T lymphocytes are also 
involved in sterile inflammation and autoimmune disorders  
(16, 17). TNF-α released by M1 macrophage initiates inflam-
matory signaling through its receptor TNFR1 with consequent 
regulation of gene expression. In the cytoplasm, NF-κB is seques-
tered by the inhibitor of κB (IκB) to prevent nuclear translocation. 
The activation of the IκB kinase leads to phosphorylation of IκB 
and release of NF-κB, which then translocate to the nucleus and 
bind to the promoters of pro-inflammatory genes and initiates 
transcription (9, 18) (Figure 1). Alternatively, the inflammatory 
signaling can be initiated by the microbial-derived LPS, which 
acts through the TLRs. TLRs can sense lipids and saturated fatty 
acids and are able to induce activation of TLR2 and TLR4 through 
myeloid  differentiation primary response protein 88-dependent 
pathways, whereas unsaturated fatty acids block TLR-mediated 
signaling pathways and gene expression (Figure  1). Receptors 
of advanced glycation end product bind to lipids and nucleic 
acids resulting in oxidative stress, activate NF-κB, and promote 
transcription of pro-inflammatory factors (19, 20) (Figure  1). 
The inflammasome, an oligomeric protein complex, comprises 
scaffold, adaptor, and caspase proteins that mediate the matura-
tion and secretion of inflammatory cytokines interleukin-1β 
(IL-1β) and IL-18 (21). The NLR family pyrin domain containing 
3 inflammasome recruits and activates pro-caspase 1 to produce 
caspase-1, which then cleaves pro-IL-1β and pro-IL-18 to mature 
IL-1β and IL-18, respectively (22).

iMMUne CeLLS AnD THeiR 
POLARiZATiOn in ADiPOSe TiSSUe

The adipose tissue comprises adipocytes, immune cells (mac-
rophages and lymphocytes), pre-adipocytes, and endothelial 
cells. Under lean conditions, Th2 T cells, Treg cells, eosinophils, 
and ATM2-like resident macrophages predominate in the adipose 
tissue (Figure  2). ATM2 macrophages express CD11b, F4/80, 
CD301, and CD206 and promote local insulin sensitivity through 
production of anti-inflammatory cytokines, such as IL-10 (18). Treg 
cells not only secrete IL-10 but also stimulate ATM2 macrophage 
to secrete IL-10. Eosinophils, on the other hand, secrete IL-4 
and IL-13. In the lean state, IL-4, IL-10, and IL-13 maintain the 
anti-inflammatory and insulin-sensitive phenotype. In contrast, 
obesity induces lipolysis and release of pro-inflammatory free 
fatty acids (FFAs) and factors such as C–C motif ligand 2 (CCL2) 
and TNF-α that recruit blood monocytes in adipose tissue, where 
they become polarized to the highly pro-inflammatory M1-like 
state (Figure 2). FFAs serve as ligands for the TLR4 complex (23), 
activate classical inflammatory response, and drive accumulation 
of ATM (24, 25). Activated ATM1 express CD11c in addition to 
CD11b and F4/80 and produce large amounts of pro-inflamma-
tory mediators such as TNF-α, IL-1β, IL-6, leukotriene B4, NO, 
and resistin that work in a paracrine fashion and causes IR in 
adipose tissue (26). The anti-inflammatory eosinophil population 
declines in obese adipose tissue. In addition, obesity decreases Treg 
content and an increase in CD4+ Th1 and CD8+ effector T cells, 
which also secrete pro-inflammatory cytokines. Obesity increases 
B cell numbers and activates T cells, which potentiate M1-like 
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FiGURe 1 | Molecular events that connect inflammation to insulin resistance in obesity. Saturated fatty acids (SFAs) bind to Fetuin-A, an endogenous 
ligand of toll-like receptor 4 (TLR4) and TLR2, and initiate transcription of interferon regulatory factor 3 (IRF3) in a myeloid differentiation primary response protein 88 
(MyD88)–TIR-domain-containing adapter-inducing interferon-β-dependent pathway. Activated IRF3 then translocates to the nucleus and binds to target DNA 
sequences. Tumor necrosis factor (TNF) protein binds to its receptor and initiates inhibitor of κB (IκB)–NF-κB signaling pathway leading to translocation of NF-κB to 
the nucleus where it binds to AP-1 DNA sequences. Stimulation leukotriene B4 receptor 1 (LTB41) activates the c-Jun N-terminal kinase pathway, leading to 
phosphorylation and binding of the c-Jun–c-Fos heterodimer to target genes. NF-κB, c-Jun–c-Fos, and IRF3 induce expression of inflammatory factors such as 
cytokines, chemokines, and components of the inflammasome. When inflammasome is assembled, pro-caspase-1 is converted to caspase-1, which then converts 
pro-interleukin-1β (IL-1β) and pro-IL-18 to IL-1β and IL-18, respectively. I, insulin; insulin receptor; IRS, insulin receptor substrate.
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macrophage polarization, inflammation, and IR. Cytokines and 
chemokines are also released from the adipose tissue and promote 
inflammation and consequent IR in liver, muscle, and pancreas.

iMMUne CeLLS AnD THeiR 
POLARiZATiOn in LiveR

In the lean liver, hepatocytes are the major parenchymal cells, 
while the non-parenchymal cells integrate five cell populations 
including resident macrophages of M2-type or Kupffer cells (27), 
recruited hepatic macrophages, resident innate lymphocytes or 
natural killer cells (NKs) (28, 29), fat storing cells termed Ito or 
stellate cells (HSCs) (30), and liver sinusoidal endothelial cells 
(LSECs) (31). Under lean conditions, Kupffer cells (KCs) in 
collaboration with other hepatic immune cell populations clear 
microbial material while maintaining the inflammatory tone of 
the liver at a level sufficient for essential functions such as pathogen 
killing, tissue remodeling, and sinusoidal permeability, but below 
that they would result in overt inflammation and tissue damage 

(32–34). NKs eliminate virus-infected or transformed cells and 
regulate adaptive immune responses via contact-dependent 
signals and the secretion of cytokines (35–38).

Hepatic lipid accumulation and peroxidation lead to chronic 
hepatocyte endoplasmic reticulum stress, the production of 
reactive oxygen species, and TLR activation, which converts 
KCs into an M1 phenotype defined by production of pro-
inflammatory cytokines, oncostatin, and prostaglandins (PGE2) 
(39–41). Circulating cytokines, adipokines, and FFAs released 
from inflamed adipose tissue in the obese state or immunogenic 
material derived from an altered intestinal microbiota can also 
contribute to KC polarization. M1-KCs secrete chemokine CCL2 
(also known as MCP1), pro-inflammatory cytokines (TNF-α, 
IL-1β, and IL-6), macrophage inflammatory protein (MIP)-1a, 
MIP1b, RANTES, oncostatin, and PGE2, which contribute to the 
alteration of the liver homeostasis and worsen the hepatic inflam-
matory response (42). PGE2 regulates cytokine production (IL-
1β, IL-6, TNF-α, and TGF-β) (43, 44), acts synergistically with 
IL-6 to induce IR (45), and induces production of oncostatin M 
(OSM) in KCs (46). Increased OSM contributes to hepatic IR and 
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FiGURe 2 | Schematic diagram showing obesity-induced inflammation in peripheral organs including adipose tissue, the liver, skeletal muscle, and 
the pancreas to cause dysbiosis in the intestine. In adipose tissue, pro-inflammatory signaling induces lipolysis and release of free fatty acids eventuating in the 
development of insulin resistance. In the liver, obesity induces pro-inflammatory cytokine production and M1 macrophage recruitment, resulting in insulin resistance 
and steatosis. In skeletal muscle of obese rodents, accumulations of lipid and pro-inflammatory macrophage inhibit insulin signaling, which result in the development 
of insulin resistance. In the pancreas, obesity induces macrophage infiltration, interleukin-1β secretion, and decreases insulin secretion. Because of the change in the 
composition of the microbial population, dysbiosis occurs in the intestine. AC, adipocyte; KC, Kupffer cell; L, lipid droplets; M1Φ, classically activated macrophages/
pro-inflammatory macrophages; M2Φ, alternatively activated macrophages/anti-inflammatory macrophages; NK, natural killer cell; PMN, polymorphonuclear 
neutrophil; WAT, white adipose tissue.
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the development of NASH (46). High levels of TNF-α released by 
M1-KCs stimulates hepatic expression of CCL2, a powerful mono-
cyte chemoattractant, which recruits CCR2+Ly6Chigh monocytes 
from the vasculature into the liver (47), where they differentiate 
into Ly6Chigh macrophages. The Ly6Chigh macrophages amplify the 
severity of obesity-induced inflammation and hepatic IR through 
secretion of TNF-α and IL-6 (48).

ADiPOSe TiSSUe FiBROSiS AnD 
MeTABOLiC DYSFUnCTiOn

Adipocytes and their progenitor cells (pre-adipocytes) are embed-
ded in a network of extracellular matrix (ECM), which tightly 
regulates the function of adipose tissue (49). Fibrosis, the exces-
sive accumulation of ECM components, is a highly conserved and 
coordinated protective response to tissue injury and is a common 
pathological consequence of inflammatory diseases (50). Fibrosis 
develops from an imbalance between excess synthesis of ECM 
components including collagens (I, III, and VI), elastins, and 
proteoglycans (51, 52), and an impairment in degradation of 
these proteins. Fibrosis limits the expandability of adipose tissue 
and contributes to ectopic fat accumulation and the development 

of IR (53). It has been recently shown that treatment with the 
antidiabetic drug metformin inhibits excessive ECM deposition 
in white adipose tissue (WAT) of leptin-deficient ob/ob mice and 
mice with diet-induced obesity (54). Fibrotic disorders cause 45% 
deaths in the United States (52). In adipose tissues, ECM under-
goes constant remodeling to allow adipocytes to rapidly expand 
and shrink in parallel with weight gain and loss and function in 
adaptation to nutritional clues (55). Adipocytes undergo dramatic 
expansion during the development of obesity. Macrophages are 
believed to be the master “regulators” of fibrosis as they produce 
soluble mediators including TGF-β1 and platelet-derived growth 
factor (PDGF), which directly activate fibroblasts and control 
ECM dynamics by regulating the balance of various matrix met-
alloproteinases (MMPs) and tissue inhibitors of MMP (TIMP) 
(56). Myofibroblasts, macrophages, and endothelial cells also 
produce MMP and TIMP for ECM regulation (57). While MMPs 
are responsible for the degradation of virtually all ECM proteins 
(58), TIMP inhibits MMPs and is responsible for degrading excess 
ECM (59). Macrophages also regulate fibrogenesis by releasing 
chemokines and attract fibroblasts and other inflammatory cells. 
Thus, IL-13 produced by Th2 CD4+ T cells (52, 60, 61) and TGF-
β1 activate fibroblasts to differentiate into α-smooth muscle actin 
(α-SMA) expressing myofibroblasts to produce ECM (62–64).
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LiveR FiBROSiS AnD MeTABOLiC 
DYSFUnCTiOn

Liver fibrosis results from the would-healing response of the 
liver to repeated injury such as hepatitis C virus (HCV) infec-
tion, alcohol abuse, and NASH (65, 66). Fibrosis is increasingly 
appreciated as a major contributor to metabolic dysregulation 
in obese humans and T2D patients (67). Advanced liver fibrosis 
leads to cirrhosis and death (68). Increased gut permeability and 
hepatic TLR4 signaling promotes fibrogenesis. Both KCs and 
recruited Ly6Chigh macrophages contribute to the development of 
hepatic fibrosis (69). HSCs are the main collagen-producing cells 
in liver (70, 71). KCs activate HSCs through increased production 
of profibrotic cytokine TGF-β and mitogenic PDGF (72)  leading 
to fibrosis. TGF-β leads to transdifferentiation of HSCs into 
myofibroblasts. PDGF stimulates myofibroblast proliferation. 
Inhibition of PDGF by anti-sense strategy attenuates liver fibro-
genesis (73). HSC-derived myofibroblasts express α-SMA and 
collagen I. During fibrogenesis, LY6Chigh monocytes are recruited 
to the inflamed liver via the CCL2/CCR2 (C–C chemokine recep-
tor type 2) axis, forming a profibrotic Ly6Chigh macrophage, which 
has been shown to be the predominant pro-fibrogenic popula-
tion in the liver (74, 75). These cells express TNF-α and IL-1β, 
which perpetuate hepatocellular injury and enhance the survival 
of hepatic myofibroblasts. In addition, Ly6Chigh macrophages 
express high levels of TGF-β-activating thrombospondin 1 (76). 
Macrophages also express the potent mitogen PDGF and the Th2 
cell cytokines IL-4 and IL-13, which directly stimulate  collagen 
synthesis in myofibroblasts. Chemokine expression such as 
CCL8 (also known as MCP2) and CCL7 (also known as MCP3) 
by these macrophages promotes the recruitment of monocytes, 
other inflammatory cells, and HSCs (77). Ly6Chigh macrophages 
also interact with HSCs to promote fibrosis through increased 
production of TGF-β, connective tissue growth factor (CTGF), 
and PDGF (78). Inhibition of the main monocyte chemoat-
tractant CCL2 in rats or genetic deletion of its receptor CCR2 
in mice decreased macrophage infiltration in response to injury 
and markedly inhibited liver fibrosis, implicating monocyte 
recruitment as an essential component in liver fibrogenesis 
(78–82). In addition, pharmacological inhibition of CCL2 by 
the RNA-aptamer mNOX-E36 attenuates liver fibrosis, thereby 
strengthening a profibrotic function of Ly6Chigh macrophages 
(83, 84). Hepatic myofibroblasts express TIMP1, which inhibits 
MMP activity and augments the accumulation of ECM in the 
scar tissue.

OBeSiTY, TiSSUe inFLAMMATiOn, AnD 
inSULin ReSiSTAnCe

Components of the immune system are affected in obesity 
and T2D and inflammation participates in the pathogenesis of 
T2D. Thus, obesity affects the immune system and promotes 
inflammation with consequent development of IR (85–87). 
Obesity-induced increased levels of glucose and FFAs create 
stress in pancreatic islets, adipose tissue, liver, and muscle, 
resulting in increased local production and release of cytokines 

and chemokines such as IL-1β, TNFα, CCL2, CCL3, and CXC-
chemokine ligand 8 (CXCL8, also known as IL-8). These changes 
promote recruitment of immune cells in insulin-sensitive tissues 
and contribute to tissue inflammation and further production 
and release of cytokines and chemokines. The augmented release 
of cytokines and chemokines promotes inflammation in liver, 
muscle, and pancreatic islets. Obesity affects insulin signaling and 
causes IR by the following mechanisms: (i) inflammatory stimuli 
phosphorylate IκB resulting its dissociation from IκB/NF-κB 
complex followed by degradation in the cytoplasm. This allows 
translocation of free NF-κB to the nucleus, where it binds to 
cognate DNA response elements and transactivates the transcrip-
tion of inflammatory genes. (ii) Phosphorylation and activation 
of c-Jun N-terminal kinase (JNK) leading to phosphorylation of 
the N-terminus of c-Jun. This initiates a switch of c-Jun dimers 
for c-Jun–c-Fos heterodimers with consequent stimulation of 
transcription of inflammatory target genes. (iii) Production 
of “second messengers,” such as FFAs, that promote IR. (iv) 
Augmented transcription of genes involved in lipid processing, 
including the enzymes that synthesize ceramide, which inhibits 
the activation of AKT (88, 89).

Recent studies in both rodents and humans implicate gut 
microbiota as a contributor to metabolic disorders (90). The gut 
microbiota plays a part in the host’s genomic profile and meta-
bolic efficiency (91). Obesity in humans and rodents is associated 
with changes in the composition of the intestinal microbiota (92, 
93). Dysbiotic microbiota in obesity enhances the digestion of 
complex carbohydrates and macronutrient absorption, leading to 
the development of obesity (94). In addition, gut microbiota has 
the capacity to harvest energy from nutrients and stores energy in 
the form of fat (95). The gut microbiota is also capable of inducing 
“metabolic endotoxemia” by increasing exposure to bacterial LPS 
coming from gut (96). LPS in the bloodstream contributes to IR 
by promoting tissue inflammation (97, 98).

OBeSiTY AnD nAFLDs

Non-alcoholic fatty liver disease, the liver manifestation of the 
metabolic syndrome, has become the most common disorder in 
the United States and other developed countries, affecting over 
a third of the population (99). NAFLD begins with a simple 
steatosis that may evolve into NASH, a medley of inflammation, 
hepatocellular injury, and fibrosis, often resulting in cirrhosis and 
even hepatocellular cancer (100–102). KCs differ in their popula-
tion density, morphological characteristics, and physiological 
functions depending on their position within the liver sinusoids 
(103, 104). Severity of human NAFLD is associated with higher 
population of KCs (105). However, NASH is associated with 
aggregates of enlarged KCs (106). Selective depletion of large KCs 
by administration of gadolinium chloride markedly attenuates 
liver injury induced by thioacetamide (107), carbon tetrachloride 
(108), alcohol (109), and ischemia/reperfusion (110), indicating 
the critical roles played by larger KCs in liver damage in these 
condition. In experimental NAFLD induced by methionine/
choline deficient diet, liposome-encapsulated dichloromethylene 
bisphosphonate (clodronate) effective blunts all histological evi-
dence of NASH (111). These findings indicate that the activation 
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of KCs positioned at the “frontline” is an essential element in the 
pathogenesis of NAFLD similar to other types of liver injury.

THeRAPeUTiC PeRSPeCTiveS On 
iMMUnOMODULATiOn

Although it is yet to be definitely established whether tissue 
inflammation causes IR in humans, several anti-inflammatory 
approaches have been tested in clinical studies of obese individu-
als with IR. Thus, salsalate, an analog of salicylate, has been shown 
to improve insulin clearance and insulin sensitivity (112–115). 
Anti-TNF antibodies were found to decrease blood glucose in 
obese individuals (116). Anti-IL-1β monoclonal antibody therapy 
improved glycemic condition and β-cell insulin secretion (117–
119). The antidiabetic thiazolidinediones (e.g., rosiglitazone and 
pioglitazone) decreased adipose tissue macrophage content (120, 
121) and increase circulating levels of adiponectin and FGF21, 
thereby mediating redistribution of adipose tissue lipid stores  
(122, 123). Orexin-1 receptor antagonist has been shown to exert 
anti-obesity effects in obese leptin-deficient ob/ob mice (124, 
125). While obese mice fed a high-fat diet supplemented with ω-3 
fatty acids caused a decrease in inflammation, improved insulin 
sensitivity, and normalized glucose tolerance (126), fish-oil sup-
plementation yielded mixed results on metabolic end points in 
human studies (127, 128).

COnCLUSiOn AnD FUTURe 
PeRSPeCTiveS

Although the last 15 years has witnessed a renaissance in the field 
of immunology and metabolism, immunometabolism is still a 

young field with many questions to be answered. (i) To what extent 
are obesity and inflammation triggered in parallel or in sequence? 
(ii) What is the ontogeny and fate of stromal cells that populate 
WAT and liver? (iii) Do macrophage localization and origin 
regulate immunometabolic phenotype? (iv) By what pathway(s) 
does inflammation provoke T2D? (v) Can genetic and environ-
mental factors reinforce or dissociate the link between metabolic 
and immunological abnormalities? (vi) Do anti-inflammatory 
strategies target the underlying mechanisms of the disease, and 
if so, would starting these therapies early prevent progression 
or even the overt manifestation of the disease? Answers to the 
above questions and a more detailed understanding of immuno-
metabolism will permit more focused immune therapies to target 
metabolic diseases.
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