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There is increasing interest in using quartz crystal microbalance with dissipation

monitoring (QCM-D) to investigate the interaction of nanoparticles (NPs) with model

surfaces. The high sensitivity, ease of use and the ability to monitor interactions in

real-time has made it a popular technique for colloid chemists, biologists, bioengineers,

and biophysicists. QCM-D has been recently used to probe the interaction of NPs

with supported lipid bilayers (SLBs) as model cell membranes. The interaction of NPs

with SLBs is highly influenced by the quality of the lipid bilayers. Unlike many surface

sensitive techniques, by using QCM-D, the quality of SLBs can be assessed in real-time,

hence QCM-D studies on SLB-NP interactions are less prone to the artifacts arising

from bilayers that are not well formed. The ease of use and commercial availability of

a wide range of sensor surfaces also have made QCM-D a versatile tool for studying

NP interactions with lipid bilayers. In this review, we summarize the state-of-the-art on

QCM-D based techniques for probing the interactions of NPs with lipid bilayers.
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INTRODUCTION

Quartz crystal microbalance with dissipation monitoring (QCM-D) is an acoustic surface sensitive
technique for studying phenomena at a wide range of interfaces. QCM-D is essentially a
piezoelectric quartz crystal which oscillates at its fundamental frequency in response to an applied
AC voltage (Reviakine et al., 2011). As the name suggests, QCM-D is a microbalance in which
deposition and detachment of species result in changes in the oscillation frequency (Figure 1A). In
addition, when the AC voltage is turned off, the dissipation of energy in the crystal is influenced
by the viscoelastic properties and bond stiffness of the adhered species (Kunze et al., 2011).
Commercially available QCM-Ds can detect mass depositions as small as a few ng/cm2, thus they
can be used in detection of small molecules, proteins, viruses, and NPs (Reviakine et al., 2011).

Due to their high specific surface area and enhanced mechanical, optical, electrical, and
chemical properties, NPs are being widely used in many engineering applications; however, their
environmental fate and transformations, as well as their interaction with cells are subjects of
ongoing research. Although, several surface sensitive techniques have been developed for studying
the interaction of NPs with model surfaces and membranes, many of them lack the ability to probe
their course of interaction in real-time, with molecular level precision and without the use of probe
molecules such as dyes. Even in methods such as atomic force microscopy (AFM), the interaction
of the probe tip with sample can create experimental artifacts (Picas et al., 2012). QCM-D, on the
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FIGURE 1 | (A) Deposition of mass onto a quartz crystal sensor results in changes in its oscillation frequency and dissipation, (B) measured QCM-D frequency and

dissipation shifts during formation of an SVL and an SLB; Adapted by permission from Macmillan Publishers Ltd: Nature Protocols (Cho et al., 2010), copyright (2010),

(C) confocal laser scanning microscope image of a lipid raft formed on a QCM-D silica crystal (scale bars represent 2 µm); Adapted from Melby et al. (2016) -

Published by the Royal Society of Chemistry, (D) pore formation on an SLB by hydrophobic polystyrene NPs (scale bars represent 20 µm); Reprinted with permission

from Jing et al. (2014). Copyright (2014) American Chemical Society, (E) deposition of positively charged polystyrene NPs on negatively charged SLBs results in a

kinetic process of bilayer disruption; Reprinted with permission from Yousefi et al. (2016). Copyright (2016) American Chemical Society, and (F) a weaker interfacial

interaction between SLBs and their underlying substrates results in faster disruption of bilayers by polystyrene NPs; Reprinted with permission from Yousefi et al.

(2016). Copyright (2016) American Chemical Society.
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other hand, provides a label-free and contact-free method
for studying the interaction of NPs with model surfaces and
supported lipid bilayers (SLBs).

SLBs are planar arrangements of phospholipids that are
extensively used as model membranes of mammalian and
microbial cells (Chen and Bothun, 2013). Although, mammalian
cell membranes are far more complex than SLBs, often
containing hundreds of different phospholipids, proteins, and
sterols, SLBs replicate their mechanical and barrier properties to
a large degree and as such, they can be used for initial probing
of the non-specific interactions of NPs with cell membranes
(Sackmann, 1996). SLBs are mostly formed by incubation of
lipid vesicles with a suitable substrate such as silica or mica,
which result in their coalescence and rupture into planar bilayers
(Richter et al., 2006). What makes QCM-D an ideal candidate
for characterization of SLBs among other surface sensitive
techniques, is its sensitivity to differentiate a nearly defect free
SLB from amixture of intact vesicles and SLB patches; while SLBs
act like solid films and yield negligible shifts in energy dissipation,
vesicles result in much higher dissipation shifts due to their
rocking motion in response to crystal oscillations (Richter et al.,
2003, 2006). Most optical methods cannot differentiate between
SLBs and SLB-vesicle mixtures. In addition, with techniques such
as AFM, the interaction of the cantilever tip with any remnant
vesicles can result in their disruption (Richter et al., 2006).

The interaction of NPs with SLBs usually starts with
their deposition on the bilayers. The deposition of NPs is a
phenomenon that can be readily detected using the frequency
and dissipation signal of QCM-D (Yousefi et al., 2016). The
dissipation to frequency shift ratio (1D/1f) is also a valuable
tool which is influenced by the bond stiffness between the
adsorbed mass and its underlying substrate (Quevedo et al., 2013,
2014), e.g., the stiffness of the bond between an SLB and the
underlying crystal surface. Although, the amount of deposited
NPs can be estimated using the frequency shift values, the
position and the degree of interaction of NPs with SLBs cannot
be resolved by only resorting to the frequency and dissipation
shifts. Use of complementary characterization techniques such
as fluorescence microscopy, ellipsometry, or AFM is typically
necessary to investigate the integrity of the SLBs upon their
interaction with NPs. Some of these techniques (e.g., fluorescence
microscopy and ellipsometry) can be utilized in situ in a QCM-
D flow chamber (Olsson et al., 2016), which makes it possible
to couple the QCM-D frequency and dissipation data with the
complementary method’s measurements.

In this mini-review, we will focus on the current advances in
using QCM-D for studying NP interaction with SLBs. QCM-D
has been also used to probe the interaction of proteins and other
biomolecules with SLBs; however, these topics are beyond the
scope of this review and we will focus on probing the interaction
of NPs with SLBs.

FORMATION AND CHARACTERIZATION
OF SLBs USING QCM-D

Formation of SLBs using QCM-D is typically achieved by the
vesicle fusion method. An aqueous dispersion of lipid vesicles

is exposed to a chosen substrate through static incubation or
continuous flow, which results in the adhesion of vesicles to
the substrate. As a result of substrate crowding by neighboring
vesicles, they spontaneously collapse to form planar lipid bilayers
(Cho et al., 2010). The collapse of vesicles into planar SLBs is
accompanied by the release of the vesicular trapped water which
results in a positive frequency shift until the final frequency
shift is stabilized at approximately –21 to –25Hz (Richter et al.,
2003, 2006; Yousefi et al., 2016). Another significant difference
between a supported vesicular layer (SVL) and SLBs is their
dissipation shift responses, which is usually <0.2 × 10−6 units
for SLBs due to their rigid homogeneous nature while vesicles
result in much higher dissipation shifts (Richter et al., 2006;
Figure 1B).

In addition to simple single component lipids, binary and
ternary lipid mixtures have been successfully used for formation
of SLBs (Frost et al., 2011, 2012; Karlsson et al., 2013; Yousefi
et al., 2016). More realistic SLBs incorporating sterols such
as cholesterols (Melby et al., 2016) and lipopolysaccharides
(Jacobson et al., 2015) have been successfully formed and
characterized using QCM-D. A recent study also reports the
formation of phase segregated lipid rafts on a silica coated QCM-
D crystal (Melby et al., 2016; Figure 1C).

As mentioned previously, one advantage of QCM-D is the
commercial availability of quartz sensors with a wide variety
of surface coatings such as gold, silica, alumina, titania, and
other metals, metal oxides, and polymers. Coating the sensors
with molecules such as l-cystine and self-assembled monolayers
(SAMs) has also been reported (Yi and Chen, 2013; Liu and Chen,
2015, 2016). The versatility of surfaces provides opportunities for
tailoring the surface interaction of SLBs with their substrates; for
example, while gold is electrostatically neutral at physiological
pH, silica and alumina carry negative and positive charges,
respectively. In addition, surfaces such as alumina and titania are
amphoteric; hence, their surface charge can be tuned by changing
the medium pH (Yousefi et al., 2016). This principle was recently
used in our laboratory for tailoring the interfacial interaction of
electrostatically charged SLBs with their underlying substrates (in
this case, alumina; Yousefi et al., 2016).

QCM-D can also be used to monitor the phase transition
temperature of SLBs (Wargenau and Tufenkji, 2014). It was
shown that the gel-to-fluid phase transition of SLBs can be
precisely detected as a peak in the derivative of the frequency
shift of QCM-D, when the temperature is varied at a constant rate
from below to above the transition temperature (or vice versa).

PROBING THE INTERACTION OF NPs
WITH SLBs USING QCM-D

There is growing interest in QCM-D as a valuable method for
studying NP interactions with SLBs. Table 1 summarizes the
scientific literature on the use of QCM-D for studying SLB-NP
interactions.

The interaction of a wide variety of NPs such as gold, graphene
oxide (GO), multiwalled carbon nanotubes (MWCNTs), silver,
polystyrene, silica, metals/metal oxides, and even environmental
particulate matter has been studied. The objectives of these
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TABLE 1 | Summary of the literature on probing NP interactions with SLBs using QCM-D.

NP type NP size (nm) Lipid type Studied parameter References

Gold 2, 4, 10, 40 α-PC Natural organic matter Bailey et al., 2015

Polyamidoamine 200 POPC:POPS Drug release Frost et al., 2011

GO – POPC:POEPC Interaction mechanism Frost et al., 2012

Gold 4 DOPC+LPS NP interaction with LPS Jacobson et al., 2015

Polystyrene latex 28, 62, 140 α-PC Hydrophobicity and size Jing and Zhu, 2011

Polystyrene latex 130 α-PC Ionic type and strength Jing et al., 2014

Cu, CuO, Cu-Zn 20–200 POPC:POPS Interaction mechanism Karlsson et al., 2013

Cu, CuO, Cu-Zn 20–200 POPC:POPG Interaction mechanism Karlsson et al., 2013

Polystyrene latex 40, 100 POPC Hard NP corona Lesniak et al., 2013

Silica 50 POPC Hard NP corona Lesniak et al., 2013

GO – DOPC Ionic type and strength Liu and Chen, 2015

Silica 36 DOPC Ionic type and strength Liu and Chen, 2016

Ceria 39 DOPC Ionic type and strength Liu and Chen, 2016

Alumina 38 DOPC Ionic type and strength Liu and Chen, 2016

Gold 4 DOPC+Chol.+SM Lipid raft Melby et al., 2016

Gold 4 DOPC Interaction mechanism Troiano et al., 2014

Gold 4 DOPC:DOTAP Interaction mechanism Troiano et al., 2014

Silver 49–65 DOPC Soft NP corona Wang et al., 2016

MWCNTs – DOPC Ionic type and strength Yi and Chen, 2013

CdSe – DOPC pH and ionic strength Zhang and Yang, 2011

CdSe – DOPC:DOTAP pH and ionic strength Zhang and Yang, 2011

Airborne particles <2.5 µm DOPC, DOPG Simulated lung fluid Zhou et al., 2016

Polystyrene latex 20 POPE:POPG Interfacial interactions Yousefi et al., 2016

studies range from investigating the effect of solution conditions
such as pH, ionic strength, and valence on the aggregation and
deposition of NPs on SLBs to more complex studies where the
effect of substrate-SLB interfacial interactions are investigated.
In the following sections, some of these studies are discussed in
more detail.

Effect of Solution Chemistry on the
Interactions of NPs with Lipid Bilayers
Due to the flow-through nature of QCM-D experiments,
changing experimental variables such as solution pH, ionic
strength, and valence is facile and many of the studies have
primarily focused on studying the effect of solution chemistry
and other environmental variables on the aggregation and
deposition of NPs on SLB coated surfaces (Chen and Bothun,
2013). Yi and Chen (2013) investigated the effect of solution
chemistry on the deposition kinetics of carboxylated MWCNTs
on zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) SLBs. They showed that MWCNTs do not deposit
on DOPC in presence of NaCl due to repulsive hydration
forces between the carboxyl groups of the nanotubes and
the SLB; however, in presence of CaCl2, favorable deposition
was achieved. The authors related this favorable deposition
to the bridging effect of Ca2+ ions. They also investigated
the interaction of MWCNTs with lipid vesicles by forming
SVLs on gold coated QCM-D sensors. By means of cryogenic
transmission electron microscopy (cryo-TEM) and SVL studies,

they concluded that MWCNT attachment did not compromise
the integrity of the lipid bilayers.

In a similar work, Liu and Chen (2015) also investigated the
effect of solution chemistry on the interaction of GO, another
carbon nanomaterial, with DOPC SLBs and SVLs. They showed
that GO deposits on DOPC SLBs in presence of NaCl and CaCl2
and similar to MWCNTs, presence of Ca2+ ions resulted in a
larger mass and faster deposition kinetics due to their bridging
effect. Similar to MWCNTs, no disruption of SVLs was detected;
however, dye leakage assay proved pore formation in the presence
of GO nanosheets. Thus, QCM-D is not sensitive enough to
detect small liquid leakage due to reversible pore formation and
complementary techniques such as fluorescence microscopy and
dye leakage assays are necessary to confirm the integrity of the
lipid bilayers.

In an early study, Zhang and Yang (2011) investigated the
effect of Ca2+ ion and net electric charge of lipids on the
interaction of anionic and cationic CdSe quantum dots (QDs).
Using QCM-D, they concluded that the interaction of these QDs
with SLBs are purely electrostatic in nature and can be controlled
by solution chemistry, such as pH and presence of Ca2+ ions.
One particular observation was that the QDs favorably deposit
on SLBs within a pH window where they are electrostatically
attractive to each other. They also showed that the range of the
favorable pH window can be controlled by the presence of Ca2+

ions.
A clearer picture on the effect of various cations and anions

on the interaction of NPs with SLBs is given by Jing et al. (2014).
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They probed the interaction of semi-hydrophobic carboxylated
polystyrene latex NPs with zwitterionic L-α-phosphatidylcholine
(α-PC) SLBs using QCM-D. In another study by the same
researchers, these NPs had been shown to induce pores in α-
PC SLBs (Jing and Zhu, 2011). The degree of hole formation
was investigated using fluorescence microscopy (Figure 1D).
It was concluded that the degree of SLB-NP interactions,
as demonstrated by the amount of hole formation by NPs,
follows the Hofmeister series (the order by which ions cause
protein precipitation from solution) for various anions such as
CH3COO−, Cl−, NO−

3 , and SCN
−, while for cations such as Cs+,

Rb+, Na+, N(CH3)
+

4 such order is not observed (Jing et al., 2014).

Effect of Environmental and Biological
Transformations on the Interaction of NPs
with Lipid Bilayers
Once they interact with their surrounding environments, most
NPs are transformed by processes such as dissolution, adsorption,
oxidation, and reduction, occasionally leading to drastic changes
of the properties of the “pristine” original NPs. Natural
organic matter (NOM)—natural macromolecules that are the by-
products of decay—often covers the surface of NPs once they are
introduced into aquatic or soil environments (Lowry et al., 2012).
In the same fashion, once they enter the body, NPs are covered by
proteins, lipids and other biomolecules that are readily available
in the bloodstream or extra-cellular matrix to form a corona on
the NP surface (Pearson et al., 2014). The environmental and
biological transformations of NPs can completely change the NP
identity, and hence, its interaction with cell membranes. QCM-D
is a powerful tool to probe such interactions and in this section,
recent studies on this topic are reviewed.

Bailey et al. (2015) investigated the effect of NOM on
the interaction of gold NPs with zwitterionic α-PC SLBs.
Polymethylmethacrylate (PMMA) was used as a model NOM.
They showed that while bare NPs barely interacted with the
bilayers, those coated with PMMA readily deposited on the
SLBs, hence they likely may be more cytotoxic in presence
of NOM. They also concluded that small PMMA-coated NPs
could translocate in the space between the lipid leaflets; however,
the QCM-D frequency and dissipation shift data are often not
sufficient to express the spatial distribution of NPs and other
complementary techniques such as fluorescence microscopy or
AFM is required for a confident determination of the location of
NPs (Chen and Bothun, 2013).

Recent studies have focused more on the biological
transformation of NPs and their effect on their interaction
with SLBs. Liu and Chen (2016) investigated the effect of
phosphate ions, a prevalent species in biological fluids, on
the interaction of silica, ceria and alumina NPs with DOPC
SLBs using QCM-D. Although phosphate ions resulted in the
favorable attachment of nano-sized silica to SLBs, favorable
attachment could not be observed for the other NPs due to
phosphate binding to the NP surface.

The effect of protein corona has also been investigated
using carboxylated polystyrene latex and unmodified silica NPs
(Lesniak et al., 2013). While polystyrene NPs were shown

to deposit on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) SLBs, coating them with a fetal bovine serum corona
resulted in the absence of any interaction with the same SLB.
Protein corona is believed to have significantly reduced the
surface energy of the polystyrene NPs. Human serum albumin
coated silver NPs were also shown to havemuch lower interaction
with DOPC SLBs in contrast to their bare counterparts (Wang
et al., 2016). The protein corona was shown to further stabilize
the NPs by imparting more negative surface charge and also
providing more steric hindrance due to the existence of large
protein molecules.

Advanced Lipid Nano-Engineering:
Complex Multi-Component Lipid Mixtures,
NP-Lipid Assemblies and Lipid Poration
Sensors
The versatility of the QCM-D sensor surface provides a
considerable advantage as it makes it possible to successfully form
complex lipid structures. Incorporation of lipopolysaccharides
(LPS) and phase segregated lipid rafts are among these complex
structures. Jacobson et al. (2015) investigated the effect of LPS
content on the interaction of anionic and cationic gold NPs with
POPC SLBs. The outer membrane of Gram negative bacteria
contains LPS; hence, incorporating it with POPCwill increase the
resemblance of the model membrane to that of Gram-negative
bacteria. They found that cationic gold NP deposition increased
by increasing the LPS content of the bilayer, while this was not
the case for anionic gold NPs.

In an effort to better replicate the complex structure of
mammalian cells, Melby et al. (2016) formed a lipid raft
system incorporating highly ordered domains of sphingomyelin
(SM) and cholesterol (Chol.) in a DOPC SLB using QCM-D
(Figure 1C). Since themolecular packing and order of these small
domains are different from that of the SLB matrix, they often
have different responses toward biomolecules and NPs, hence,
their role as gateways in cellular membranes. Although, these
domains possess the same electrostatic charge as the matrix SLBs,
cationic gold NPs were shown by means of QCM-D and AFM
to preferentially deposit on the phase segregated domains due to
their structural differences from the SLB matrix. The preferential
attachment of NPs to the phase segregated domains could be used
as a method for rational assembly of NPs into ordered structures,
e.g., for targeted delivery applications. The assembly of NPs into a
layered structure using QCM-D was also demonstrated for a GO
and cationic SLB system for potential sensor applications (Frost
et al., 2012).

Controlling and characterizing the interfacial interaction of
SLBs with their underlying substrates is a new QCM-D based
technique developed in our laboratory (Yousefi et al., 2016).
This method is based on the electrostatic interaction between a
charged SLB and substrate, whereby the surface charge of the
substrate can be tuned by changing medium pH, resulting in
controlled electrostatic interaction between the substrate and
SLB. The degree of interfacial interaction can be monitored
by changes in the QCM-D dissipation signal; a bilayer that
is more weakly coupled to the substrate tends to dissipate
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more oscillatory energy, which is manifested by larger QCM-D
dissipation shifts. We also developed a method for probing the
integrity of bilayers upon their exposure to cationic and anionic
polystyrene latex NPs; while anionic NPs did not impart any
damage to the negatively charged SLB, cationic NPs disrupted
the bilayers in a kinetic manner (Figure 1E). We showed that
the gradual loss of response to pH modulation (that results
in reversible changes in the degree of interfacial interactions)
could be used as a powerful tool to probe the integrity of SLBs
upon their exposure to NPs. This technique paves the way for
development of sensors that can monitor bilayer integrity in
situ. Using this technique, it was also shown that the degree
of interfacial interaction between the SLB and its underlying
substrate influences the bilayer response toward NPs, where
weaker interfacial interactions results in faster disruption of the
bilayers (Figure 1F).

CONCLUSIONS AND FUTURE OUTLOOK

QCM-D is a versatile surface sensitive technique for probing
the interactions of NPs with model lipid bilayers such as SLBs
and SVLs. The sensitivity of QCM-D, along with the possibility

to monitor the interaction phenomena in situ has made it a
technique of choice in studies on NP cytotoxicity, drug delivery
and lipid self-assembly. Based on the analysis of the literature,
QCM-D has been successfully used to investigate a wide range of
lipid systems and NPs, from simple to more complex. However,
the role of QCM-D as a sensor for integrity of SLBs has been
overlooked and we expect to see more studies on the role of
this versatile technique for real-time monitoring of lipid bilayer
structural robustness in the near future.
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NOMENCLATURE

α-PC L-α-phosphatidylcholine
AFM Atomic force microscope
Chol. Cholesterol
Cryo-TEM Cryogenic transmission electron microscope
DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine
DOPG 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane
GO Graphene oxide
LPS Lipopolysaccharides
MWCNT Multiwalled carbon nanotube
NOM Natural organic matter
NP Nanoparticle
PMMA Polymethylmethacrylate
POEPC 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine
POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
POPE 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)
POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine
QCM-D Quartz crystal microbalance with dissipation monitoring
QD Quantum dot
SAM Self assembled monolayer
SLB Supported lipid bilayer
SM Sphingomyelin
SVL Supported vesicular layer
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