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The Fluid Events Model is aimed at predicting changes in the actions people take on
a moment-by-moment basis. In contrast with other research on action selection, this
work does not investigate why some course of action was selected, but rather the
likelihood of discontinuing the current course of action and selecting another in the near
future. This is done using both task-based and experience-based factors. Prior work
evaluated this model in the context of trial-by-trial, independent, interactive events, such
as choosing how to copy a figure of a line drawing. In this paper, we extend this model
to more covert event experiences, such as reading narratives, as well as to continuous
interactive events, such as playing a video game. To this end, the model was applied to
existing data sets of reading time and event segmentation for written and picture stories.
It was also applied to existing data sets of performance in a strategy board game, an
aerial combat game, and a first person shooter game in which a participant’s current
state was dependent on prior events. The results revealed that the model predicted
behavior changes well, taking into account both the theoretically defined structure of
the described events, as well as a person’s prior experience. Thus, theories of event
cognition can benefit from efforts that take into account not only how events in the
world are structured, but also how people experience those events.

Keywords: event cognition, action change, behavior prediction, language comprehension, video games, mental
updating

FLUID EVENTS MODEL: EVENT COMPREHENSION

When people do a task, they do not always progress in the same way throughout the task. Instead,
they alter their actions as a function of the nature and demands of the task, and as a result of their
own experiences. For example, during a football game, a coach may call certain plays in part of
because of the position of the teams on the field, the amount of time on the clock, the score of
the game, the weather, and other factors related to the circumstances being faced. However, the
play call selection is also influenced by the coach’s recent experiences in terms of the success or
failure of various plays that have been called up to that point. We contend that both the structure
of the environment and a person’s own prior experiences both influence whether a decision is made
to continue with the current action or change to a new one. This is a broad-based issue that can
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pervade a wide range of human activity, and the ability to
model such shifts would be useful to researchers trying to predict
behavior along a task that persists over long periods of time.

We have recently developed the Fluid Events Model of event
cognition to explain changes in people’s actions within interactive
events (Radvansky et al., 2015). The driving force behind the
model is the idea that behavioral selection is guided by both
the structures of the events people encounter, as well as their
prior experiences. As outlined by Radvansky et al. (2015), there
are three general types of events in which performance can be
assessed. These are (a) the more covert processing of events,
as with narrative comprehension, (b) active interaction with a
series of discrete trials, and (c) active interaction with continuous
events. The Radvansky et al. (2015) study assessed the Fluid
Events Model in the context of event types of the second type.
The aim of the current paper is to present an assessment of this
model using events of the first and third type.

The application to the more covert processing of events is
important because the majority of studies in event cognition
involve people processing events that they are watching or
reading about, with little in the way of overt behavior. The
application to active interaction with continuous events is
important because the interactive tasks that have been assessed,
like much of the work in cognitive psychology, have involved
people performing actions across a series of trials in which
the starting state of each trial is largely independent of what
happened on the trial before. In the real world, independent
trials are the exception rather than the rule. Instead, our actions
often change the state of the world, altering the circumstances
for subsequent choices. The current project extended the Fluid
Events Model to these more dynamic interactive events. Thus,
the overall aim of the current study was to explore whether the
principles embodied in the model can be successfully applied to a
wide variety of event processing tasks.

Covert Event Processing
As already mentioned, the previously reported work with the
Fluid Events Model addressed the ability to predict discrete
actions on independent trials. For example, people in one task
drew copies of figures presented to them, and performance was
assessed in terms of how people drew those figures (i.e., the
starting points, and the ordering of the components) on a trial-
by-trial basis. However, in other common situations, such as
narrative events (e.g., reading a text), people receive information
with the only observable action that is available might be reading
time, eye tracking1, or any other measure that reveals the intake
of information. We consider these more covert event processing
situations first.

Because comprehension is more covert, individuals make
relatively few overt actions that reveal how they are processing the
events as they unfold. One overt assessment of comprehension
that can be capitalized on is reading time. While reading, the time
taken to process a sentence before moving on may reflect various
aspects of cognitive processing. Of particular concern here is any

1Eye tracking is generally more informative than simple reading times because it
can provide information about individual word processing, regressions, and so on.

increase in reading time as a result of factors that are not strongly
tied to the text itself (e.g., syllable count) but that occur as a result
of a change in the underlying event structure, such as a character
moving from one location to another, or the introduction of
a new character. Numerous studies (e.g., Zwaan et al., 1995;
Zwaan and Radvansky, 1998; Zwaan et al., 1998; Radvansky et al.,
2001; Rinck and Weber, 2003; Radvansky and Copeland, 2010;
McNerney et al., 2011) demonstrate that such changes reflect the
processing of underlying event structure. Thus, the action here is
the updating of one’s mental model understanding, and the event
being assessed is the processing of the text. In other words, in the
context of the Fluid Events Model, we interpret the switch in the
underlying event structure described by a text as a change in the
environment the person is processing, and a change in reading
time as reflecting a switch from one event model to another. This
is a change in the action on the part of the comprehender because
they are transitioning from processing one narrative event to
another.

Event segmentation judgments are another method to assess
event comprehension (Newtson, 1973; Newtson and Engquist,
1976; Newtson et al., 1977, Speer et al., 2007; Zacks and Swallow,
2007; Zacks et al., 2007; Magliano and Zacks, 2011), albeit
in a more covert manner. This task presents people with a
narrative in which they are to indicate those points at which
they perceive that a new event has begun. The instructions
provided are intentionally vague for how people should segment
the events, yet different individuals make remarkably consistent
judgments. The majority of studies examine segmentation of
narratives in film, but printed narratives have also been studied
(e.g., Magliano et al., 2012). This segmentation task is like the
reading time task in that the action being assessed is the shift
from one mental representation to another. Within our Fluid
Events Model, indicating a new segment constitutes a cognitive
action on the part of the comprehender. The difference between
reading time measures and event segmentation tasks is that the
first reflects more unconscious and implicit mental processes,
whereas the second reflects more conscious and explicit mental
processes.

Continuous Interactive Events
This paper also describes the application of the Fluid Events
Model to continuous interactive events, which are characterized
by interdependent sequences of actions. Our prior studies
focused exclusively on independent trials. Here we also consider
on-going continuous events where each action may constrain
or enable subsequent actions. For example, when one is playing
a game, the positon one finds oneself in is a function of those
moves that have been made previously, and the success of those
prior moves. Again, these are the types of events that people are
more likely to have to deal with in their everyday experiences, so
understanding how people process these experiences is important
to understand.

We defined continuous interactive tasks within the context of
computer games and derived Fluid Events Model predictions of
in-game action changes. The actions defining performance were
different for each scenario. While there are wide array of possible
actions that can be taken, we selected those actions, in each case,
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that can at least potentially result in a change in the state of the
unfolding events, such as inflicting damage on one’s opponent. In
general, the Fluid Events Model predicts when a participant will
select a new strategy during the course of game play as a function
of the both the current state of the game and the participant’s
prior experience. That is, whether a person elects to engage in
a different action is a consequence of both the current state of the
game, at that moment, as well as the experiences the person has
had during game play, particularly involving their more recent
experiences, and the consequences of their actions.

THE FLUID EVENTS MODEL

The Fluid Events Model estimates the probability that an
individual will change from one mode of action to another within
the context of a single on-going task. In the case of covert
event processing, this corresponds to event segmentation. For
continuous interactive events, the model predicts a shift from
one action to another. Again, it is important to keep in mind
that the model does not predict which action will be taken,
but instead predicts a shift from some action to another within
the same task. The Fluid Events Model operates on a total of

seven factors, which can be divided into two categories: event-
structure, and experience-based (these two clearly would interact
to some degree, depending on the circumstances). The nature of
the task determines the amount of influence from each factor. An
overview of the model is provided in Figure 1 and the equations
and fixed values of factors used by the model are provided in
Table 1.

Event-Structure Factors
There are two factors in the Fluid Events Model that involve
event-structure: (1) Environmental Change reflects recent event
structure changes; and (2) Time on Task.

Environmental Change must be defined for each task to
quantify recent alterations to the task or operating environment.
For example, changing road conditions may prompt a driver to
alter speed, following distance, and aggressiveness of braking.
Alternatively, a football coach may be less likely to call pass
plays in a game if the rain fall becomes increasingly intense.
Environmental Change influences the probability of an action
shift externally, with that probability increasing in proportion to
the size of the change. Environmental Change is zero when there
is no change from the prior event.

FIGURE 1 | Overview of the Fluid Events Model.
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TABLE 1 | Fluid Event Model Factors.

Fluid Event Models the probability of an action shift as the sum of factors:
Bad Shift

Bad Shift doubles Performance Dip if the previous trial was a strategy shift.
Flexibility= F−1.1(H−1 − P(H)−1)

Flexibility is the base rate (i.e., prior probability) of an action shift for the person. It
is initialized to 0 and updated according to the learning rate (0.1) and error term
for the previous prediction, H−1−P(H)−1 where H−1 is 1 if strategy shifted on the
previous trial and 0 otherwise, and P(H)−1 is the output of the Fluid Events Model,
i.e., the probability of shift on the previous moment.

Number of Action Shifts= 1.001−s − 1
S is the total number of action shifts by this person (across all conditions).

Performance Dip= 1 − 1.1−c−1

Where the decrease C = Smin − St−1/Smax − Smin, where St−1 is the
performance measure on the previous trial and Smin , Smax are the minimum and
maximum scores from the 10 preceding St−1 .

Just Shifted = −.01R−R−1

Where R is the number of trials since the previous action shift.
Task Shift

This factor is task-dependent and reflects recent changes in the situation that
might prompt a change in action. Task Shift was between 0 and 0.1 in 38% of
trials, between 0.4 and 0.5 in 10% of trials, and greater than 0.6 in 1% of trials.

Time on Task= 1 − 1.001−A−1

A is the total number of trials (across all conditions) done by the person.

Time on Task is an event-structure factor that assumes that the
longer a person has been doing a particular action, the greater the
probability that a change to a new one will occur. As a person
grows familiar with a task, they may experiment with other
actions. This is similar to the idea in event cognition research
that as people progress through an event, the serial position of
new information can influence processing (Stine-Morrow et al.,
1996). Time on Task is an event-structure factor because it plays
a role in the model that is separate from the individual’s actions
and their consequences. Time on Task is defined either as the
number of events that have occurred before the current time, for
those tasks that have discrete trails, or as a certain amount of
time that has passed, for those events that ae more continuous.
This component is always involved in the calculation of the
probability of an action switch. Time on Task is operationalized
in the Fluid Events Model as a slow-moving power function that
uses the event number as its input (see Table 1). Power functions
accurately model many psychological functions (e.g., Stevens and
Galanter, 1957; Wixted and Ebbesen, 1991), motivating their use
here.

Experience-Based Factors
Along with Event-Structure factors, the Fluid Events Model
incorporates Experience-Based factors that are grounded in each
person’s unique on-going experience. These experience-based
factors are: (1) Just Shifted: whether a person recently changed
actions; (2) Number of Action Shifts: how often had the person
already changed actions; (3) Performance Dip: whether a decline
in performance has recently been experienced; (4) Bad Shift:
whether a performance dip was a consequence of an action
shift; and (5) Flexibility: the person’s current bias to try different
actions.

Just Shifted reflects whether the person has selected a new
action recently. If so, they are less likely to switch again in the

near future, as the new action is given a chance to be effective in
improving performance. For example, after a coach has put a new
player into a football game there will be a bias against taking that
player out immediately thereafter to see if he has an impact on the
progress of the game. Just Shifted only applies in the absence of
an environmental change that drives a change in action. Because
this part of the model only involves recent performance, it is only
active when a change has been made recently; otherwise it has no
bearing on the predictions. This principle is implemented in the
Fluid Events Model as a fast-moving power function that quickly
diminishes over time (see Table 1). Because this is a decrease in
the likelihood of an action shift, this is why the formula in Table 1
is negative. Also, note that this element would not be involve in
the prediction of an action shift at the beginning of a task because
there is no prior action with which to compare the current action
to determine that there has been an action shift.

Number of Action Shifts is the number of action changes
that have occurred so far during the task. As this value grows,
the probability of further changes diminishes. For example, as
the number of different types of plays that have been tried by
a football coach increases, all things being equal, there will be
a decreased willingness to try untested strategies. Number of
Action Shifts is a power function; with small values having a
greater influence than large ones (see Table 1). That is, the fewer
actions that have been tried, the greater the probability that a new
action shift will occur.

Performance Dip increases the probability of an action change
after a decline in performance, which may prompt a change
in tactics (Reder and Schunn, 1999). For example, if a car is
losing speed climbing a hill, the driver might try to accelerate.
Alternatively, if a player is doing poorly in a football game, a
coach would be more likely to pull him, or if attempts to blitz
the quarterback have failed and have resulted in the other team
making big advances (or even scoring), then the coach would be
more likely to call different plays. For the Fluid Events Model,
the greater the decline relative to recent performance, the greater
the probability of an action change occurring. Performance dip
is a power function, based on the extent to which performance
falls below the minimum level attained in the recent past (i.e., the
probability of an action change will not be affected if a small dip
in performance is within the range of recent performance). The
influence of Performance Dip grows with larger deviations from
the recent minimum (see Table 1). Because recent performance
drives this part of the model, it only is involved when a dip
is outside of the recent range. As an additional component,
if a performance dip occurred just after an action shift, then
the model will trigger the inclusion of a Bad Shift component.
The effect of this is to double the effect of any consequence
of a Performance Dip. The reasoning behind this is that a
performance dip after an action shift might indicate that the new
action is inappropriate for the task, and the person would be even
less likely to continue it.

Finally, there are individual degrees of Flexibility in the
probability that an action switch will occur. A person’s
momentary trend toward changing increases or decreases the
action shift probability. For example, if a coach has been shifting
strategies often throughout a game, they would be predicted to be
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more likely to continue to do so as the game progresses. In the
Fluid Events Model, this is done in a simple way using a running
average of the difference between the predicted probability that
an action change will occur, and whether it actually happened.
This factor has a continuous influence.

The Fluid Events Model makes predictions by summing the
influences that are operating at that time. Which components
enter into this summation is a function of the task and recent
experience. Importantly, it is typical that several components do
not enter into the calculation at a given moment. There is a large
existing literature on action selection, but that is not our focus. In
an ongoing task, the default is to continue the previous action, so
action selection occurs only after the decision to make a change.
The Fluid Events Model is specifically aimed at estimating the
probability of an action change, and is agnostic as to the decision
processes involved in selecting which action to take.

Example Fluid Event Model Process
To illustrate how the Fluid Event Model operates we have an
example from our Red Ace aerial combat task (detailed below).
In this task, people play a videogame in which they fly a WW
I fighter plane, with the task of destroying enemy planes and
ground targets. The environmental change for this task involved
the terrain the player was over, and other entities within a zone
of interaction (e.g., other planes, ground target, and anti-aircraft
guns). The three actions that can be recorded are (1) flying only,
(2) firing guns, or (3) dropping bombs.

The values and influence of various components on each
of 20 time bins is shown in Table 2. For the purposes of
exposition, we trimmed the values to be no longer than four
decimal places. The score value is an index of performance based

on how well the player is doing with 0.5 as a starting point,
reduced values indicating problems (e.g., the player being hit
by enemy fire), and increased values indicating successes (e.g.,
destroying targets). Also included in this table is an indication
of the number of components contributing to the prediction,
the model’s prediction (from 0 to 1), whether a person changed
actions or not (1 or 0, respectively), and the action evident on
that trial (1 = flying, 2 = shooting, and 3 = dropping bombs).

As can be seen, Time on Task and Flexibility have values from
the beginning. For time bin 1, the prediction is forced to be zero
because at that point there is no information on which to base a
prediction. For that first time bin, there were three components
involved. These were Environmental Change, because the task is
starting, Time on Task, and Flexibility. Flexibility is not 0 here
because prior to this particular data segment the person had
already done a number of flights, so there was some basis for
estimating the degree of flexibility of action change. For time
bin 2, there again were three factors involved (Time on Task
and Flexibility, which are always involved), and Environmental
Change again. Flexibility is not changed because at the beginning
of any task there is no basis on which to estimate any change
in flexibility. The sum of these three probabilities is the basis
for the prediction (0.1 + 0.0030 +0.1600 = 0.2630). Although
this value is low, the person did switch actions from flying to
dropping bombs. For time bin 3, there were four factors involved.
These were Time on Task and Flexibility again, along with Just
Shifted and Number of Actions Shifts. The third factor was
involved because the person changed actions from the prior
time bin. The fourth is involved because a person changed
actions. The prediction is the sum of the values for these four
components (0.0040 − 0.01 − 0.001 + 0.2337 = 0.2267). This

TABLE 2 | Example of the derivation of prediction value for the Fluid Events Model using data from a given attempt of a person on the Red Ace WW I
aerial combat video game.

Time
bin

Score Prediction Switch Action Environmental
change

Time
on task

Just
shifted

No. of
actions shifts

Performance
dip

Bad shift Flexibility No.
Components

1 0.5 0 0 1 0.05 0.0020 0 0 0 0 0.1600 3

2 0.6 0.2630 1 3 0.1 0.0030 0 0 0 0 0.1600 3

3 0.5 0.2267 1 1 0 0.0040 −0.01 −0.001 0 0 0.2337 4

4 0.5 0.6131 1 2 0.1 0.0050 0 −0.002 0.0995 0.0995 0.3110 6

5 0.5 0.3427 0 2 0 0.0060 −0.01 −0.003 0 0 0.3497 4

6 0.6 0.4694 1 1 0.15 0.0070 0 −0.003 0 0 0.3155 4

7 0.5 0.4225 0 1 0.05 0.0080 0 −0.004 0 0 0.3685 4

8 0.5 0.4295 1 2 0 0.0090 −0.0013 −0.004 0.0995 0 0.3263 5

9 0.5 0.3782 1 1 0 0.0099 −0.01 −0.005 0 0 0.3833 4

10 0.4 0.5004 0 1 0.05 0.0109 0 −0.006 0 0 0.4455 4

11 0.5 0.4995 0 1 0 0.0119 −0.0013 −0.006 0.0995 0 0.3954 5

12 0.5 0.3523 0 1 0 0.0129 −0.0001 −0.006 0 0 0.3455 4

13 0.4 0.3682 0 1 0.05 0.0139 0 −0.006 0 0 0.3103 4

14 0.4 0.4818 1 2 0.1 0.0149 0 −0.006 0.0995 0 0.2734 5

15 0.5 0.3241 0 2 0 0.0159 −0.01 −0.007 0 0 0.3252 4

16 0.5 0.3013 1 1 0 0.0168 −0.0013 −0.007 0 0 0.2928 4

17 0.5 0.3625 0 1 0 0.0178 −0.01 −0.008 0 0 0.3627 4

18 0.5 0.3359 0 1 0 0.0188 −0.0013 −0.008 0 0 0.3264 4

19 0.3 0.4546 1 2 0.15 0.0198 0 −0.008 0 0 0.2928 4

20 0.2 0.7253 1 1 0.15 0.0208 0 −0.009 0.1081 0.1081 0.3474 6
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time bin had an action changed because the person was now
only flying. For time bin 4, there are five model components
involved. In addition to Time on Task and Flexibility, the person
encountered Environmental Change (e.g., two enemy planes),
and an increased number of Number of Actions Shifts. Moreover,
during the previous time bin, the performance score went
down (likely from getting hit), so there was now a contribution
of Performance Dip. Moreover, because this performance dip
occurred just after an action shift, there is also an influence of Bad
Shift. Together the probability of a shift in action is the sum of
these factors (0.1 + 0.005 − 0.002 + 0.0995 + 0.0995 = 0.6131),
which also happened to result in another shift in action to firing
machine guns. Note that, although people had switched actions
on the pervious trial, there was an Environmental Change, so
Just Shifted is not included in the calculation. From here, one can
work out how the model performs for the other time bins in this
example.

THE DATA SETS

To assess how well the Fluid Events Model predicts action
shifts, it was fit to several data sets. Some of these involved the
segmentation of traditional narrative events involving written
narratives and picture stories. The other data sets involved the
interaction of a person with one of several video games. Some
basic information about each data set is provided in Table 3.

Narrative Events
Reading Time Data
The first narrative comprehension data set is from a study by
Radvansky et al. (2001) in which people read narratives. In

TABLE 3 | Point-biserial correlations comparing the Fluid Events Model
prediction with actual action shifts, as well as a randomized reordering of
those shifts.

Model No. of
subjects

No. of
trials

Actual
shifts

Randomized
shifts

Reading time 1
(young)

48 13728 0.227 0.018

Reading time 1 (old) 48 13728 0.227 −0.098

Reading time 2
(young)

72 13728 0.190 −0.002

Reading time 2 (old) 72 13728 0.187 −0.003

Text story
segmentation
(young)

28 4480 0.251 0.011

Text story
segmentation (old)

28 4480 0.312 −0.002

Picture story
segmentation
(young)

29 4640 0.244 −0.022

Picture story
segmentation (old)

28 4480 0.314 0.009

Risk 17 441 0.345 −0.047

Red ace 15 18664 0.195 0.001

Quake 15 20400 0.317 −0.001

this study, people read texts that were presented one clause at
a time, and the reading times were collected for each one. In
Experiment 1, there were four texts that described historical
events, such as the tulip craze in the 17th century Netherlands,
whereas in Experiment 2 these texts were modified to describe
more modern circumstances, such as the beanie baby craze of
20th century America, and presented as fictional narratives. We
used reading time as a dependentmeasure of the cognitive actions
taken by people as they comprehended these texts. Theoretically,
we view a change in reading time as reflecting a change in the
situation model in the mind of the reader (e.g., Zwaan et al.,
1995). That is, the reader has interpreted the text as referring
to a new event that is different from the prior one, requiring
that a new event model needs to be created to mentally capture
these events. This creation of a new event model takes time,
so an increase in reading time at these points in interpreted as
when a person stops using one event model and begins using
a new one. Although the behavioral action of the reader is
quite minimal, this is taking “action” in the broad sense in the
sense that using one event model is different from using another
one.

More specifically, for the data itself, we used reading time in
milliseconds per syllable, as this largely corrects for the overall
length of a text (Lorch and Myers, 1990). We then classified
reading times as (a) normal reading time, (b) slow reading time,
or (c) fast reading time. Normal reading time was within one
standard deviation of a person’s mean reading time, whereas
slow and fast reading times exceeded one standard deviation
above or below the mean, respectively. Note that reading time
speed ups are occasionally observed. For example, in a study by
McNerney et al. (2011), participants read an entire novel, and
reading times were recorded for each sentence, and then analyzed
using the Event Indexing Model. In some cases, readers were
reading faster at event boundaries. These seemed to be cases
where the event shift was strongly predicted by the information
that preceded it (e.g., the earlier text would have foreshadowed
that a character would go to a particular location, and then the
character went there). Note also that both these experiments
involved a comparison of younger and older adults. As such,
the data from these two age groups are treated separately
here.

For the environment-based factors of the Fluid Events Model
we used aspects of the text as coded for the Radvansky et al. (2001)
study. Specifically, for the Environmental Change factor, the text
had been coded for both the number of new arguments (nouns)
as well as shifts in the narrative events as defined and coded in the
original study using the Event Indexing Model (e.g., Zwaan and
Radvansky, 1998). For simplicity, we coded each change along
any of these dimensions as a 0.1 increase in the probability of an
action change in the model. So, for example, two new arguments
in the text accompanied by a change along the time dimension
is coded as 0.3, whereas a change along four event dimensions
but without new arguments is coded as 0.4. For the Time on Task
component, we use the series position of each text clause. That
is, we assumed that the overall task began with the reading of
each text, and that the reading of each subsequent clause on a
computer screen corresponded to the next time period.
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The experience-based factors reflect the person’s own
experience with the task. The Just Shifted factor was triggered
by each change in the person’s rate of reading (low, medium, or
high). The Number of Action Shifts was the number of times
that there was a reading time change. Flexibility reflected the
frequency of reading rate shifts. The Performance Dip factor was
not used because performance (e.g., reading comprehension) was
not measured.

Boy, Dog, Frog Stories Segmentation
In addition to using reading time to indicate when a person
has moved from using one event model to another, explicit
event segmentation is another index of a switch from one event
model to another as a reader explicitly designates each event
boundary. This is an adaptation of the Newtson (1973) procedure
in which a person watches an unfolding event and indicates when
an event boundary has occurred. While both the reading time
and explicit segmentation measures can be viewed as reflecting
the segmentation of the flow of action into separate events, the
reading time data is more likely to reflect unconscious, implicit
processes, whereas explicit segmentation is more likely to reflect
conscious, explicit processes. Despite this, the concern here is the
idea that the probability that such segmentation would occur as
a function of both the more objective structure of the event, as
often suggested by most theories of event segmentation, as well
as the more subjective experience of the flow of events.

We used the event segmentation data from a study reported
by Magliano et al. (2012). In this study, people read a series of
six stories by Mayer (1967, 1969, 1971, 1973, 1974, 1975) about a
Boy, a Dog, and a Frog. In one experiment, the original picture-
versions of the stories were used, with no captions. The task
was to indicate when a change in the depicted events occurred.
In a second experiment, we used text-based versions of stories
that were derived from the pictures. The segmentation judgments
constituted actions within the Fluid EventsModel. Thus, for these
studies, there are two possible actions – either indicating an event
segment change, or not. As in Radvansky et al. (2001), this study
involved a comparison of younger and older adults, so these data
will be treated separately.

Further following Radvansky et al. (2001), narrative event
shifts in the Boy/Dog/Frog text were coded. This included
changes in spatial location, temporal framework, the introduction
of a new character, whether there was a strong affective reaction
by one of the characters, changes in the goals of a character,
and the start or end of an action sequence. The presence of
such changes was used as an index of Environmental Change
for the Fluid Events Model. As with the reading time data, each
of these changes was simply designated as resulting in a 0.1
increase in the probability of a change, with multiple changes
being summed together. For the Time on Task component, we
used each picture/text sentence as a measure of unfolding time.

The experience-based factors were defined as follows: Just
Shifted was triggered by each event segmentation judgment.
Number of Action Shifts was defined as the number of times
a participant made an event segmentation judgment. Flexibility
was defined as the frequency with which the person made event
segmentation judgments within the preceding time window.

Finally, because we did not attempt to quantify the performance
of the reader, the Performance Dip component was not active in
the model.

Interactive Events
This section covers the application of the Fluid Events Model
to continuous interactive tasks, in which the set of actions and
available information at each moment depends on the actions
leading up to them. This is unlike the reading tasks in the
previous section (processing of scripted events) and previous
studies of discrete, independent trials typical of laboratory work
(e.g., binary prediction). Here, we present three interactive tasks:
a computerized version of the strategy board game Risk, a World
War I flight simulator/combat game, Master of the Skies: The
Red Ace, and a first person shooter game, Quake II. Note that
while there was likely some variation in whether participants
had played these games before, and this expertise could have
influenced performance here, this information was not collected
at the time the data were gathered. The aim of the present work
was to assess whether the Fluid Events Model could be extended
to such work. After this is established, future work could look at
individual differences, such as different levels of expertise.

Risk
In this task, we used a computerized version of the classic
board game Risk, called Risk II (MicroProse, 2000). In this
game, players use their armies to capture territory on a
simplified world map. In addition to the participant, there
were five computer players for each game that the participant
was playing against. Each participant played 1 h per day for
3 days. In our analysis, each game was treated as a new
condition.

We used a variant, Capital Risk, in which each player has
one country designated as a capital. Instead of capturing every
country, the aim of Capital Risk is to capture the other players’
capitals while defending one’s own. In this version of the game,
a player can use any country they occupy to attack multiple
enemy countries in a single turn, specifying for each attack the
number of armies to use. Thus, this task occupies a middle
ground between work on discrete tasks that we have reported
previously, and the other games described in the following
section. Specifically, actions in Capital Risk are discrete, but the
state of each turn is dependent on the actions taken in the prior
turns.

Performance on this task was indexed as a function of the
number of countries and armies a player possessed at the
end of each turn. Actions were divided into three general
“strategies.” These were defined as a function of the number of
attacks designated by the participant on a game turn relative
to the number of un-countered attacks on the participant by
other computer players. Play was categorized as Aggressive,
Balanced, or Timid if the number of attacks launched by the
player was greater than, equal to, or less than the number
of un-countered attacks on the player during that turn,
respectively.

The environment-based factors were defined as follows: for
Environmental Change, we used the change in the number of
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enemy players adjacent on the board from the previous turn. For
Time on Task, we advanced time by one for each turn.

The experience-based factors were defined as follows: Just
Shifted was triggered by a change in the action taken by the
player, on the scale of Aggressive/Balanced/Timid. The Number
of Action Shifts was the number of such changes since the
start of the game. Performance Dip became a factor when
player’s performance was lower than on the previous trial. Finally,
flexibility was based on the presence or absence of an action
change relative to the prediction for that turn.

Red Ace
Some aspects of performance in the Red Ace video game (Small
Rockets, 2000) have been reported previously by Copeland et al.
(2006). In this task, using a joystick, players flew World War I
allied warplanes over a variety of terrains against both ground
and air targets, some of which shot back. Players were able
to control their altitude, speed, and whether they fired their
machine guns, dropped bombs, or fired rockets. Performance
was assessed in terms of successfully hitting targets, which
could be enemy planes, enemy anti-aircraft guns, bridges, or
buildings. Moreover, performance also included avoiding getting
hit by enemy gunfire, either from enemy planes or from anti-
aircraft guns. Players were able to determine which direction
they should fly based on sketch map in the upper left hand
corner. Actions within this context were assessed in terms
of whether a pilot was firing guns, dropping bombs, firing
rockets, or simply flying. Each player flew several missions,
starting the next mission after the completion of each mission
goal.

For the environment-based factors we considered changes in
the game events conveyed along the dimensions outlined by
the Event Indexing Model (e.g., Zwaan and Radvansky, 1998).
These included changes in spatial location (the landscape one was
flying over, such as whether it was farmland, a town, a lake, and
so on), Entities (friendly and enemy planes, anti-aircraft guns,
and ground targets), and Goals (when a designated target was
destroyed and a new one had to be selected). For the Time on
Task component, we divided the game play into 5 s time windows,
starting with when the player began a new mission, and defined a
unit of time as one window each. Time advanced with each new
time window.

For the experience-based factors, for Just Shifted we used any
case where there was a change in the player actions (shooting,
bombing/firing rockets, or neither). The Number of Action
Shifts was the number of times different actions were taken in
subsequent time windows. Performance Dip was involved when
there was a lowering of the players’ health level as a result of
being hit by enemy gunfire from either enemy planes or ground-
based anti-aircraft guns. Flexibility was based on the presence or
absence of an action change relative to what was predicted.

Quake
Some aspects of performance in the Quake video game (Id
Software, 1997) were previously reported by Magliano et al.
(2014). In this task, players move through a virtual environment
trying to shoot other players while avoiding being shot by them.

Movement was controlled using a joystick, and the firing of
weapons was done by pressing a trigger on that joystick. This
game play involved navigating a virtual environment made of
several buildings and rooms within those buildings. Enemy
characters would appear at locations predetermined by the game.
Performance was assessed in terms of hitting targets (enemy
combatants) while avoiding being hit by attacks from those
enemies. Actions in his task were assessed in terms of whether
the player fired a weapon at an enemy within a time window,
or took some other action, such as running away. People played
multiple levels of the game, moving from one level to the next
when the player reached a target location. At that point the
game would automatically move the players on to the next
scenario.

As with the Red Ace video game, for the environment-based
factors, we considered changes in the game events conveyed
along the dimensions outlined by the Event Indexing Model
(e.g., Zwaan and Radvansky, 1998), including changes in spatial
location [such as when a player moved from one room to another,
entities (primarily enemy targets), and goals (when a target was
destroyed and a new one needed to be selected]. Again, event
shifts were defined and coded for in the original study, and these
was used as Environmental Changes for the Fluid Events Model
used here. For the Time on Task component, at the start of each
level of game play, we divided the game play into 5 s bins, and
treated a new bin as an increase in time.

In terms of the experience-based factors, for Just Shifted we
based this on where there was a change in the action taken by
the player. For the Number of Action Shifts, this was the number
of times a person altered their behavior. Performance Dip was
involved when there was a lowering of the players’ health level as
a result of being hit by enemy gunfire. Flexibility was based on
the presence or absence of an action change relative to what was
predicted.

QUICK HITS

First, we take a quick look at how well the model does at
predicting the probability of an actual shift. For each of the
seven tasks we computed point-biserial correlations, as shown
in Table 3, comparing the predicted probability of an action
shift with whether such a change actually occurred. As can
be seen, these were positive and moderately large. Moreover,
as also shown in the table, we randomized the action change
data and compared this with the predicted values and found
no relationship, showing that the model is making meaningful
predictions and not simply imposing structure on any data set.

Furthermore, we also placed the trials into 11 bins based
on the predictions generated by the model (i.e., 0, 0.1, 0.2, . . .,
1.0), and took the average actual shift rate. For example, for the
average shift rate, if the predicted values from the model were
from 0.35 to 0.44999. . ., these were put in the 0.4 bin. Then
we considered the rate at which people actually changed actions
on those trials. Ideally, complete correspondence between these
two scores would be found. For example, for the 0.4 model
prediction probability bin, there would be action shifts on 40

Frontiers in Psychology | www.frontiersin.org 8 January 2016 | Volume 7 | Article 23

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Radvansky et al. Fluid Events Model

FIGURE 2 | Comparison of predicted and actual performance when data is distributed in bins for the (A) Reading Time 1, (B) Reading Time 2,
(C) Written Story Segmentation, (D) Picture Story Segmentation, (E) Risk, (F) Red Ace, and (G) Quake tasks. Predicted refers to the predicted probability of
an action shift, whereas actual refers to the actual rate of actions shifts.

percent of the trials. The probability graphs for the Reading
Time 1, Reading Time 2, Written Story Segmentation, Picture
Story Segmentation, Risk, Red Ace, and Quake tasks are shown
in Figures 2A–G, respectively, along with best fitting linear
functions. As can be seen in these graphs, the model made
consistent predictions when the data are assessed in this way.
Thus, the model does well, at least in its consistency across a wide
range of data from different tasks, and without adjustments to any
of its parameters.

MODEL FITS

The objective of the Fluid Events Model is to capture factors
that predict shifts in action for a given task. The internal
parameters of the model, which are the constants in Table 1,
did not change across the data sets, and are the same as used
by Radvansky et al. (2015). The model yielded predictions,
which were the sum of individual factors, of the likelihood
that a person will switch actions from moment to moment.
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To convert this from a percentage likelihood of a change
occurring into a binary yes (1) or no (0) decision we could
have selected an a priori threshold, which is equivalent to
using a step function for decision making. In place of this
simplistic approach, a logistic function was used to predict the
probability of action switching (1 = switch, 0 = no switch) at
the trial level from the factors used by the model. The logistic
function converts the model’s values into a predicted switching
probability.

Five models were constructed to assess the behavior of the
Fluid Events Model. The first was a Null model that included the
current trial number as a predictor. The question is whether the
Fluid Events Model predicts the action switches net of the Null
model. The second was the Fluid Events Sum model, in which
case the predictor was the sum of the individual factors; this is
the primary model of interest. The third model was the Fluid
Events Individual model that used all of the factors as individual
predictors rather than using their sum as in the Fluid Events Sum
model. This was done to assess if there were added benefits to
using the logistic regression framework to assign weights to the
factors. The last two models individually considered the event-
structure and experience-based factors separately to compare
their predictive power. Specifically, the Fluid Events Event-
structure model used the Environmental Change, and Time on
Task factors, while Model 5 or the Fluid Events Experience model,
used the Just Shifted, Number of Action Shifts, Performance Dip,
and Flexibility factors. This set of models allows us to make
comparisons of the Fluid Events models to the null model, the
Event-structure and Experience models, the combined Event-
structure and Experience models to the individual models, and
summative factor model to individual factor model.

A leave-one-participant-out cross-validation strategy was
done to determine whether the models would generalize to new
participants. Assuming a data set with N participants, a model
built from the combined data of N-1 participants (training data)
was used to generate predictions on the data from the “held-
out” participant (testing data). This was repeated N times so
that each person was “held-out” once. The predictions generated
on all of the “held-out” test participants were then analyzed to
compute performance metrics. Thus, the training and testing data
were always independent at the participant-level, which ensures
generalizability to new people.

MODEL ACCURACY

Receiver operating characteristic (ROC) curves were constructed
for the various models. These curves were constructed from two
trial-level data streams – the probability of a switch from a logistic
regression model (ranges from 0 to 1) and whether there was an
actual switch or not (1 or 0). The AUC (area under the ROC
curve) metric was used to evaluate model fit and is presented in
Table 4, with one example worked out in Figure 3. An AUC of 1
indicates perfect accuracy, while an AUC of 0.5 indicates chance
performance.

Three major conclusions can be drawn. First, the Fluid Events
Summodel outperformed the null model (Trial No.) across all of

TABLE 4 | AUC (area under receiver operating characteristics curve) for
the various models.

Model Null Sum Individual Event structure Experience

Reading time 1
(young)

0.36 0.62 0.69 0.47 0.69

Reading time 1
(old)

0.51 0.61 0.67 0.51 0.67

Reading time 2
(young)

0.51 0.61 0.66 0.50 0.66

Reading time 2
(old)

0.52 0.58 0.62 0.52 0.62

Picture story
segmentation
(young)

0.57 0.63 0.65 0.57 0.63

Picture story
segmentation
(old)

0.46 0.68 0.69 0.51 0.68

Written story
segmentation
(young)

0.52 0.63 0.64 0.59 0.59

Written story
segmentation
(old)

0.52 0.68 0.69 0.56 0.66

Risk 0.56 0.68 0.70 0.55 0.71

Red Ace 0.51 0.59 0.61 0.54 0.59

Quake 0.50 0.68 0.73 0.66 0.62

Mean 0.50 0.64 0.67 0.54 0.65

Chance performance would obtain an AUC of 0.5.

the data sets. On average, this model yielded a 27% performance
improvement compared to the null model. Second, optimizing
the weights of the individual factors (i.e., the Fluid Events
Individual model) resulted in only a small 5% improvement over
the basic model that sums all factors. Third, the Fluid Events
Experience factors were the major driver of model performance
compared to the Event-structure factors. In fact, models built
solely from the three Event-structure factors rarely outperformed
the null models, with the Quake data being a clear exception.
Thus, much of what drives a person’s action switches is their
prior experience, not aspects of the task itself. Finally, combining
the Event-Structure and Experience factors resulted in very small
improvements (3%) over the Experience factors alone because the
Experience factors were the major drivers of performance.

We took a closer look at the Fluid Events Individual
models, as they involve all of the factors and resulted in the
best overall performance. Classification tables were derived by
comparing the model predictions to the observed action shifts.
The logistic regression model provided a probability of an action
switch and these were converted into binary yes/no switch
decisions. A threshold of 0.5 was used to discriminate switches
(probability ≥ 0.5) from non-switches (probability < 0.5). From
these tables, we computed precision (proportion of correctly
classified switches) and recall (proportion of total switches
correctly identified as switches). Table 5 shows these scores along
with the actual switch rate (prior probability of a switch). We note
relatively consistent and moderate precision and recall scores
(mean of 0.63 and 0.64, respectively) despite the overall low
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FIGURE 3 | Receiver operating characteristic (ROC) curves for Reading Time 2 (Younger Adults) data set (FE, fluid events).

TABLE 5 | Performance metrics for the Fluid Events Individual Model.

Model Switch rate Precision Recall Pearson r

Reading time 1 (young) 0.29 0.62 0.63 0.94

Reading time 1 (old) 0.41 0.62 0.63 0.94

Reading time 2 (young) 0.25 0.70 0.76 0.82

Reading time 2 (old) 0.48 0.59 0.59 0.98

Picture story
segmentation (young)

0.47 0.60 0.60 0.96

Picture story
segmentation (old)

0.40 0.62 0.63 0.91

Written story
segmentation (young)

0.44 0.59 0.60 0.98

Written story
segmentation (old)

0.37 0.63 0.65 0.90

Risk 0.30 0.64 0.68 0.58

Red ace 0.49 0.57 0.57 0.93

Quake 0.42 0.66 0.66 0.97

Mean 0.39 0.63 0.64 0.89

switch rate (mean of 0.39). Note also, that the r2 values for
the Risk task is lower than the others. This may reflect a more
coarse-granularity of this task relative to the others because there
were a larger number of individual actions that went into the
determination of the overall strategy a person took on a game
turn, and fewer trials overall. Still, the model does well even with
this smaller data set.

In addition to trial-by-trial action switch prediction, it is also
informative to obtain an overall rate of switching for a given
person. This is an easier task because we are interested in how
many switches occurred rather than when switches occurred.
Correlations between the Fluid Events Individual model’s switch
rates and overall switch rates (see Table 3), computed at the

participant-level, were remarkably high (>0.90) for all but two
of the data sets.

GENERAL DISCUSSION

This paper presents the further application of the Fluid Events
Model (Radvansky et al., 2015), which predicts when a person
is likely to abandon one course of action when dealing with
unfolding events and pursue another. Again, the focus of this
model is not on predicting which behavior will be selected, but
on the probability of an action shift within the same task. This
would be useful to researchers seeking to predict when the course
of action taken by a person, across a wide range of activities,
alters from one strategy to another. The Fluid Events Model
accomplishes this by integrating numerous factors about the task
itself, as well as recent experiences of the individual, that are
known or thought to affect the probability of a person changing
the actions they take within an on-going course-of-events.

Our previous exposition of the model (Radvansky et al., 2015)
found high accuracy in predicting action changes in laboratory
tasks in which each trial was largely independent of the others,
and in which the tasks were presented in a trial-by-trial manner.
Across those tasks, it was found that the probability of a person
switching from one action to another, while being influenced in
some ways by the demands of the task itself, was more strongly
influenced by the experiences of the individual in the task. The
aim of the current study was to go beyond the more laboratory-
based tasks of this previous work and apply the model to a
wide variety of more real-world comprehension- and action-
based tasks that go beyond the characteristics of interaction, trial
independence, and discrete trials.
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The Fluid Events Model was applied to a number of data sets.
After fitting the model to the data, it was found to be reasonably
accurate in predicting action shifts, with performance being
largely driven by the experience-based factors. Instead, the model
was able to robustly predict a range of tasks that can influence
whether a person will switch strategies. This involvement of a
complex set of factors is what would be expected in real-world
situations.

Task Interactivity
In terms of task interactivity, many comprehension tasks require
only minimal overt interaction on the part of the comprehender.
During reading, people need only pass their eyes over the words,
and perhaps hold a paper or book in their hands and turn pages.
Despite this lack of overt action, there is still considerable mental
activity occurring. It is changes in these mental actions that we
aimed to predict in the current study, with a focus on the event
model level of cognition (Radvansky and Zacks, 2011, 2014;
Radvansky, 2012).

In our reading time and event segmentation tasks, which
both looked at the shift from one narrative event to the next,
comprehension required minimal interaction with the primary
task. We defined action as processing one event model or
switching to a new one, as evidence by an increase in reading
time (e.g., Zwaan et al., 1995) or the explicit indication of an
event boundary (e.g., Zacks et al., 2009; Magliano et al., 2012).
What we found was that, while such changes were influenced
by structural aspects of the materials, there was also a strong
influence of a person’s own prior event model processing. This
was true across written and picture-based narratives. Thus, the
model was successfully applied to more covert actions. This
reflects the idea that there is a great deal of fluidity and
ambiguity into how narratives may be comprehended even in
terms of how a person breaks them up into the events that are
identified.

Trial Interdependence
In terms of trial independence, many laboratory tasks require
performance on a series of largely independent trials in which the
participant can start anew on each trial, and performance on the
prior trials does not necessarily need to extend to performance
on the current trial (leaving carry-over effects, such as proactive
interference, aside for the moment, but only focusing on task
demands). Participants, at some level, know that how they did
on the prior trials often has no bearing on what they are to
do on the current trial, other than the basic task remains the
same.

In our video game tasks, although aspects may reset at
the beginning of a new game, participants knew that what
they were doing at any moment of a game was dependent
on the actions they took previously. This was true across
a range of different games, including both turn-by-turn and
continuous action games. This can also been seen to be true,
to some extent, for the narrative comprehension tasks in terms
of the idea that one’s understanding of what was currently
happening in the story was dependent on knowing, to some

degree, what had happened previously in the story. Even with
tasks that did not have more traditional trial independence,
the model accurately predicted action switches, again with a
stronger influence of a person’s prior experience. This reflects
the idea that people are drawing on their own prior experiences
with a task, and how it is unfolding over time, to determine
whether they will continue to approach it in the same manner
as they had in the past, or to change their behavior in some
way to deal with the demands presented to them at the
moment.

Continuous Tasks
In terms of the use of discrete trials, many comprehension tasks
require continuous processing of a stream of information, written
or visual. Much of the information is not neatly divided into
well-defined trials. How well can we define and track a person’s
actions, and decisions to change the actions taken, within such
tasks?

Except for the game of Risk, this study examined continuous
tasks. Even for the written and picture-based narratives, although
there were individual sentences and pictures, the story was
relatively continuous. What we found across all of these
continuous tasks is that we can reasonably define points along
which people are more or less likely to change the actions
they are taking to do the task. This suggests that, even in
a continuous processing environment, people are constantly
evaluating how they are approaching and doing a task, and
altering their actions accordingly based on both the demands
of the task itself, as well as their on-going experience with the
task.

CONCLUSION

The current study was a further assessment of the Fluid Events
Model of event cognition which predicts the likelihood of an
action change within the context of the same task. Like prior work
(Radvansky et al., 2015), we found that the model predicts when
people are likely to alter their actions within a task at a rate well
above of chance. Thus, we now have a means of predicting, on a
moment tomoment basis, the likelihood that a person will change
what they are doing. Of particular interest is that, in most of our
tasks, the probability of changing actions is determined primarily
by the person’s prior experience with the task, rather than the
structure of the task. This fits into a larger aim of understanding
how people comprehend the world around them, and how they
interact with it.
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