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In recent years, brain connectivity is gaining ever-increasing interest from the

interdisciplinary research community. The study of brain connectivity is characterized

by a multifaceted approach providing both structural and functional evidence of the

relationship between cerebral regions at different scales. Although magnetic resonance

(MR) is the most established imaging modality for investigating connectivity in vivo,

the recent advent of hybrid positron emission tomography (PET)/MR scanners paved

the way for more comprehensive investigation of brain organization and physiology.

Due to the high sensitivity and biochemical specificity of radiotracers, combining MR

with PET imaging may enrich our ability to investigate connectivity by introducing the

concept of metabolic connectivity and cometomics and promoting new insights on the

physiological and molecular bases underlying high-level neural organization. This review

aims to describe and summarize the main methods of analysis of brain connectivity

employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects

and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the

relationship of physiological processes and brain connectivity.
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INTRODUCTION

Currently, one of the main challenges in neuroscience is to gain an understanding of how
brain activity generates behavior and, in more detail, how neural information is segregated and
integrated. Anatomical and physiological studies support the idea that cognitive processes depend
on interactions among distributed neuronal populations and brain regions (Sporns, 2013); brain
connectivity (BC) refers to the structural and functional characterization of those interactions.
Four different but related types of connectivity are currently being investigated by neuroscientists:
anatomical or structural, functional, metabolic and effective connectivity (Horwitz, 2003; Lee et al.,
2003).

Neuroimaging plays a crucial role in BC investigation and magnetic resonance (MR) imaging
(MRI) is commonly used to assay structural and functional connectivity, comprising the majority
of in vivo BC studies (Buckner et al., 2013). The recent development of hybrid positron emission
tomography (PET)/MR scanners allows for more thorough investigation of BC and its underlying
physiological processes (Wehrl et al., 2013; Riedl et al., 2014; Aiello et al., 2015; Tahmasian et al.,
2015).

PET integrated with MRI yields both high sensitivity and specificity due to the use of
radiotracers. [18F] fluorodeoxyglucose (FDG) is the most widely used radiotracer, primarily for
estimating glucose consumption in both neurological and oncological studies. Previous studies
have demonstrated a close linkage between functional activity, blood flow, and glucose utilization
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(Jueptner and Weiller, 1995). Glucose metabolism, as estimated
by FDG-PET, and oxygen consumption, as estimated by
functional MRI (fMRI), are in turn related to cerebral blood flow
(CBF), which delivers O2 and glucose to the brain (Attwell and
Iadecola, 2002).

The across-subjects covariance of FDG-PET images yields
a measure of metabolic connectivity that relates to functional
connectivity due to the physiological coupling of glucose and
oxygen metabolism. This has led to an increase in the importance
of PET/MRI as a multi-modality probe of BC, resulting in the
development of the concept of cometomics, which combines
connectivity with metabolic information (Wehrl et al., 2014).

This review will provide the reader with a comprehensive
taxonomy of different BCmethods involved in PET/MRI and the
techniques used to employ those methods.

BRAIN CONNECTIVITY

Brain Connectivity involves anatomical pathways and
interactions, as well as communication between distinct
units of the central nervous system. These units are categorized
into micro-(individual neurons), meso-(columns), or macro-
(regions) scales (Pawela and Biswal, 2011). Notably, the
imaging methods presented here provide suitable non-invasive
estimations of different aspects of BC, but “actual” BC is
generally determined only through the use of invasive techniques
or histological assessment of ex vivo or post-mortem samples
(Thomas et al., 2014).

Before the recent explosion of BC studies, a great deal of brain
mapping consisted of functional segregation and localization
of those functions; the current trend reflects a paradigm shift
from segregation to integration wherein functional segregation
must be viewed in the context of functional integration and
vice versa (Friston, 2011). The theory of functional integration
rests on the analysis of how different regions in a neuronal
system interact, and results in the identification of networks of
interactions among specialized brain areas. Once identified, such
networks can be also characterized by analysis of their topological
properties (Fornito et al., 2013; Sporns, 2014).

BC is a multifaceted concept: it can be subdivided into
structural and functional domains, each further divided into
static and dynamic components (Pawela and Biswal, 2011; Lang
et al., 2012). Static connectivity can be measured by anatomical
properties using a number of imaging methods, including
high-resolution MRI (Mechelli et al., 2005; Alexander-Bloch
et al., 2013), PET imaging, diffusion tensor imaging (DTI), and
histology (myelination). Dynamic connectivity can be measured
by a wide variety of techniques, particularly those with a fast
time scale capable of measuring causality, such as EEG andMEG,
or that can provide information about the spatial distribution
and strength of connections, such as resting-state functional
connectivity MRI (rs-fcMRI).

The technological development of imaging modalities,
especially with the advent of hybrid scanners, along with the
advancement of computation methods aimed to infer different
aspects of BC, are boosting BC research. The proliferation

of multiple methods for the estimation of BC requires the
user to be aware of the specific details of the method and
its appropriate neurophysiological interpretation. For example,
in the case of functional connectivity (FC), deriving the same
conclusions from multiple techniques it is not trivial. It is
often unclear which aspects of co-varying neural activity are
being assessed by any particular computation of FC (Horwitz,
2003). The following sections will provide a taxonomy of BC
methods involved in PET/MR studies: structural connectivity
via diffusion tractography (DT), FC via resting state functional
MRI (rs-fMRI), and metabolic connectivity via FDG-PET, with
a particular emphasis on metabolic connectivity, as it is strictly
related to PET imaging and therefore less commonly reviewed
than structural and FC.

Structural Connectivity
Structural Connectivity (SC) is defined as the map of structural
cortical/subcortical connections (connectome) and is derived
mainly from diffusion-weighted imaging (DWI). Although this
concept is broadly accepted, many issues regarding acquisition,
processing, visualization and integration of SC with other BC
maps remain debated.

Many acquisition parameters can affect data quality, including
the number of directions investigated and the maximum b-
value used (Mori and Zhang, 2006). Moreover, issues linked
to specific patients populations (e.g., brain anatomy distortion,
cerebral edema, or white matter lesions) have to be taken into
account in the determination of SC as for other measures
of BC (Cavaliere et al., 2014). Image processing to create SC
maps can involve employing different tractography algorithms
and diffusion models, including a deterministic or probabilistic
approach, locally greedy or globally optimal processing, and
single- or multi-diffusion model. The choice of diffusion model
affects network properties of SC maps (Bastiani et al., 2012).
After fiber reconstruction, the number of trajectories or other
voxel-wise indices of fiber integrity, such as fractional anisotropy
or mean diffusivity, can be used to weight the connectivity
strength between brain regions. Other, more complex, measures
to quantify connection weights include estimation of axon
diameter and density using tailored DWI acquisitions (Alexander
et al., 2010) or analysis of myelination by magnetization transfer
imaging (van den Heuvel et al., 2009). The covariance across
subjects of morphological properties (such as atrophy and
cortical thickness) between brain regions is also relevant to
SC; this is usually referred as structural covariance (Mechelli
et al., 2005; Lerch et al., 2006; Alexander-Bloch et al., 2013)
and has been demonstrated to be suitable for understanding
various pathological conditions (Bernhardt et al., 2014; Valk
et al., 2015). Methodologically speaking, structural covariance is
estimated using high-resolution MRI and, given the common
static feature, can be achieved with the same approaches
employed in investigating metabolic connectivity as described in
Section Metabolic Connectivity.

Functional Connectivity
FC is defined as “temporal correlations between spatially
remote neurophysiological events” (Friston et al., 1993a) and
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was first described using multiunit systems of neural activity
recording and subsequently by tomographic imaging with
15O-PET activation studies (Friston et al., 1993b). The wide,
interdisciplinary increase in FC studies in neuroimaging began
after the identification of two phenomena: the blood oxygenation
level dependent (BOLD) signal (Ogawa et al., 1990), as measured
by fMRI, which has better spatial and temporal resolution than
PET imaging, and resting-state fMRI, a significant temporal
correlation in fMRI signal in subjects who were not cognitively
engaged (Biswal, 2012).

Raichle et al. (2001) demonstrated experimentally that the
majority of the brain’s energy consumption occurs at resting-
state and activity increases by <5% during focused mental tasks.
This study also coined the term default mode network (DMN)
to describe the most prominent resting state network (RSN)
connecting the medial temporal lobe, the medial prefrontal
cortex, the posterior cingulate cortex, the ventral precuneus, and
parts of the parietal cortex.

FCmethods possess a common statistical nature, nevertheless,
each different measure may be assessing a different aspect of
interregional interactions. As a result, the concept of functional
and effective connectivity are extensively debated and, at times,
believed “elusive” (Horwitz, 2003; Lee et al., 2003; Fingelkurts
et al., 2005).

Different computational methods have been employed to
investigate and define the functional relationship between
distinct cortical regions. The classical and most intuitive method
is seed based analysis (SBA), which consists of selecting of a
region of interest (ROI) as a seed and generating a connectivity
map by computing which regions or voxels are functionally
connected to the seed according to a predefined metric, most
commonly the Pearson correlation coefficient between BOLD
time courses. SBA plays an essential role as a technique for
FC estimation, as well as for independent component analysis
(ICA; Himberg et al., 2004; Esposito et al., 2005). ICA evaluates
the fMRI signal as a linear mixture of various signals, which
predominantly originate from fluctuations of neuronal, cardiac
and respiratory sources. Both SBA and ICA are successfully
employed in clinical and behavioral research (Lee et al., 2013).

Other rs-fMRI-derived FC metrics that capture different FC
properties in voxel-wise maps have recently been introduced.
These metrics are of particular interest in PET/MRI probes
(Aiello et al., 2015). The Degree of Centrality (DC; Buckner et al.,
2009; Martuzzi et al., 2011; Tomasi and Volkow, 2012), employs
Pearson’s correlation coefficient as a metric for estimation of
functional connectivity between each pair of voxels, assigning to
each voxel a global number of functional connections between
it and all other voxels across the brain. Regional Homogeneity
(ReHo) is a voxel-based measure of brain activity that estimates
the degree of synchronization between the time series of a given
voxel and its nearest neighbors (Zang et al., 2004). Fractional
Amplitude of Low Frequency Fluctuations (fALFF, Zou et al.,
2008; Zuo et al., 2010) is equal to the power within the low-
frequency range (0.01–0.1 Hz) divided by the total power
in the entire detectable frequency range for the time course
of each voxel and quantifies the amplitude of low frequency
oscillations (LFOs), thus representing the relative contribution

of LFOs to the whole frequency range. A recent PET/MR study
(Tomasi et al., 2013) demonstrated that the amplitude of the
fluctuations of RSNs is relevant in modeling energy consumption
in FC.

The spatial extent of the physiological phenomena probed
by these measures also differs. fALFF contrast is measured by
single voxel signal, and is thus independent of the spatial range of
the underlying connectivity processes. On the other hand, ReHo
serves as a measurement of short-range functional connectivity
(amongst neighboring cells) while DC is essentially weighted by
long-range functional connectivity due to the fact that distant
voxels far outnumber neighboring ones.

Metabolic Connectivity
Metabolic images, such as FDG-PET scans, are traditionally
studied following intensity-based analysis. Metabolic
connectivity (MC) aims, in general, to analyze FDG-PET
data in terms of covariance across subjects.

Due to the limited temporal resolution of PET images and
the steady-state nature of typical FDG-PET scans, the source of
signal variability mainly lies in within-group variance, as opposed
to rs-fMRI functional connectivity, where dynamical signal
variations enable the study of the covariance of subjective signal
fluctuations. Therefore, two regions of the brain are considered
metabolically connected based on whether the estimation of their
glucose consumption significantly correlates across subjects in a
specific group.

As with FC, MC can be estimated using different approaches.
First, Horwitz et al. (1984) proposed that anatomical regions
with correlated glucose uptake values are functionally associated,
and the strength of the association is proportional to the
magnitude of correlation. This method, thereafter referred to as
Interregional Correlation Analysis (IRCA), is principally similar
to SBA and estimates the correlation between mean values of
glucose metabolic rate (GMR) of pre-defined brain regions. This
approach demonstrated MC networks for the first time and
documented their potential as biomarkers in Alzheimer’s disease
and many subsequent studies confirmed its suitability for MC
research (Table 1).

As for SBA, pairwise correlation captures a limited aspect
of information and does not provide a complete account of
multi-regional interactions, resulting in the development of other
computational approaches for MC.

Sparse inverse covariance estimation (SICE; Huang et al.,
2010; Zou et al., 2015) yields the correlation between a pair
of ROIs, given all other regions, and further demonstrated the
relevance of MC in AD studies.

Another global approach is the scaled subprofile model
principal component analysis (SSM-PCA; Moeller et al., 1987)
that was first successfully employed in AIDS dementia complex
and then widely employed for MC characterization of various
diseases (Table 1).

Pre-processing of FDG-PET data in terms of spatial and
intensity normalization is a common denominator of the MC
methods listed in Table 1. Intensity normalization (i.e., scaling
of tracer uptake to a reference region) is in most cases
essential for analyses of non-quantitative data, as is the case
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TABLE 1 | Summary of different approaches for the estimation of metabolic connectivity.

References Method Subjects’ characteristics Toolbox

Horwitz et al., 1984, 1995; Laureys et al.,

1999; Vogt et al., 2006; Lee et al., 2008;

Morbelli et al., 2010, 2013a,b;

Sanabria-Diaz et al., 2013; Carbonell

et al., 2014; Arthuis et al., 2015

Interregional Correlation Analysis (IRCA) Healthy subjects, Alzheimer Disease, MCI

epilepsy

n/a

Huang et al., 2010; Zou et al., 2015 Sparse Inverse Covariance Estimation

(SICE)

Alzheimer Disease, MCI, Human Controls GraphVar

Di et al., 2012; Toussaint et al., 2012;

Wehrl et al., 2013; Yakushev et al., 2013;

Pagani et al., 2016

Spatial Independent Component Analysis

(sICA)

Alzheimer Disease, MCI, Amyotrophic

Lateral Sclerosis, Human Controls, Rats

Gift toolbox, NetBrainWork,

Melodic

Moeller et al., 1987; Rottenberg et al.,

1987; Alexander and Moeller, 1994;

Eidelberg et al., 1995, 1997; Feigin et al.,

2001; Kaasinen et al., 2006*; Nobili et al.,

2008*; Meles et al., 2015; Spetsieris et al.,

2015; Tripathi et al., 2016

Scaled Subprofile Model Principal

Component Analysis (SSM-PCA)

Neuropsychiatric Disorders, Huntington’s

disease, Human Controls, Parkinson

Disease, Dementia

ScAnVp, gCVA

Passow et al., 2015 Seed based analysis on dynamic PET data Healthy subjects SPM8

*These works are based on classical principal component analysis.

for static FDG-PET. A reference region can be chosen either
pathologically, as a region not affected by brain pathology, or with
data-driven approaches (Dukart et al., 2013). Alternately, z-value
transformation can be employed for intensity normalization in
studies of the relationship between FDG-PET and other variables
(Chételat et al., 2008).

Since MC analyzes the covariance across subjects while FC
analyzes covariance across timepoints, computational tools
and FC methods can be used on PET data by simulating a
temporal sequence of PET data from a group of subjects by
concatenating spatially normalized PET scans from different
subjects (Di et al., 2012). The most current approaches
include temporal information from FDG-PET dynamical
acquisition as well (Wehrl et al., 2013; Passow et al.,
2015); in these methods covariance between glucose uptake
timecourses of different regions also contributes to MC
estimation.

Since the FDG-PET signal is mainly derived from gray
matter, partial volume effect may confound the estimation
of actual glucose uptake and, subsequently, MC. PET/MRI
can exploit the anatomical detail of MRI for partial volume
correction of FDG-PET data (Quarantelli et al., 2004) or gray
matter density can be removed as a confounding variable
by regression in a correlation analysis (Aiello et al., 2015).
Although MC methods have been extensively employed with
FDG-PET imaging, they are also applicable to other PET tracers
(Kaasinen et al., 2006), static images such as anatomical maps
from high resolution MRI (as described above for structural
covariance networks) and, in principle, to metabolic maps from
MR spectroscopic imaging. Though MC methods are inherently
designed for group studies, some statistical approaches that
compute a subject score for the corresponding disease-related
pattern ofMC (Niethammer and Eidelberg, 2012; Toussaint et al.,
2012) revealed the potential to also employ MC in differential
diagnosis.

NEUROPHYSIOLOGICAL
CONSIDERATIONS

The physiological mechanisms underlying neural activity, and
thus BC, have been a matter of debate in the last century. The
early principle that changes in blood flow are a function of
tight coupling between energy requirements and the supplies
of glucose and oxygen (Roy and Sherrington, 1890) has been
contradicted by evidence from PET and fMRI experiments (Lin
et al., 2010). PET imaging showed that levels of aerobic glycolysis
are not strictly related to levels of brain energy metabolism, and
are different across brain regions (Vaishnavi et al., 2010).

Buckner et al. (2008) also consider PET/MR imaging to
provide valuable information for understanding the physiology
underlying BC; since the DMN emerges from hemodynamic
measures of blood flow that are indirectly linked to neural
activity, they address whether or not vascular characteristics can
account for the default network’s anatomy. FDG-PET studies
provide evidence that regions within the default network show
disproportionately high resting glucose metabolism relative to
other brain regions and that DMN anatomy does not rely on
vascular coupling (Gusnard and Raichle, 2001; Vogt et al., 2006).
These studies suggest the great potential of integrated PET/MRI
studies for the investigation of the relationship between FC and
glucose metabolism.

Recent studies have investigated the relationship between
energy consumption and FC using in vivo imaging techniques,
with PET and MR acquired separately (Nishida et al., 2008;
Li et al., 2012; Liang et al., 2013; Tomasi et al., 2013; Passow
et al., 2015; Soddu et al., 2015). Preclinical studies using a hybrid
scanner (Wehrl et al., 2013) showed that FDG-PET and BOLD
fMRI resting-state networks agree to some extent, but show a
significantly different pattern of cortical activation. In humans,
Riedl et al. (2014) demonstrated a relationship between GMR and
FC changes in regions activated by visual stimuli.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2016 | Volume 10 | Article 64

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Aiello et al. PET/MRI and Brain Connectivity

In a simultaneous PET/MR study by Aiello et al. (2015), the
authors found a heterogeneous correlation between the spatial
distributions of PET and rs-fMRI-derived metrics across both
anatomic regions and functional networks, with the strongest
correlation for the DMN (Figure 1).

SC plays a fundamental role in higher levels of brain
organization, although its underlying physiological phenomenon
(e.g., water diffusion along axonal path) is certainly different
than glucose and oxygen metabolism. Effectively, SC constitutes
the routes of communication for FC and MC and contributes
to the energetic cost of connectivity through wiring efficiency
(Bullmore and Sporns, 2012; Tomasi et al., 2013; Aiello et al.,
2015).

RELATIONSHIP BETWEEN BC MEASURES

The study of the relationship between different BCmeasures is of
great interest in the neuroscience community. Rather than study
each single modality in isolation, the investigation of mutual
connections between BC modalities can provide valued insights
into the brain’s mechanisms of organization. Neuroimaging
findings currently provide strong supporting for the existence of a
relationship between the anatomical architecture of the brain and
RSNs (Honey et al., 2009; Das et al., 2014; Goñi et al., 2014; Wang
et al., 2014). Neuroimaging studies have shown a close linkage
between SC and FC in other brain systems besides the DMN, such
as the executive control network, salience network and primary
motor and visual network (van den Heuvel et al., 2009). In other
cases, differences between SC and FC emerged (Wang et al.,
2014); areas can show FC without a direct anatomical connection

FIGURE 1 | Relationship between FC imaged by rs-fMRI and glucose

metabolism imaged by FDG-PET. In this figure a visual comparison between

different voxel-wise maps of FC (namely ReHo, DC, fALFF) and PET images is

presented. Each map was obtained by averaging spatially normalized maps

over 23 neurologically healthy subjects and afterwards normalized with respect

the maximum value. See Aiello et al. (2015) for further details.

(Deco et al., 2013). Moreover, there is also scientific evidence
that dynamic variations of FC occur in the human brain in fixed
anatomical pathways (Hutchison et al., 2013). These findings
suggest that the FC-SC relationship needs to be modeled as a
complex, dynamic system (Deco et al., 2013; Das et al., 2014;
Minati et al., 2015).

According to the economic principle of the brain, minimizing
wiring and metabolic energy costs results in a more efficient
tradeoff between wiring costs and extent of structural and/or
functional connectivity among spatially distinct brain regions
(Das et al., 2014). However, there is strong evidence that
metabolic costs are controlled dynamically within an upper
limit imposed by the anatomical architecture of the network.
Brain networks are often functionally activated or configured less
expensively than they could be within anatomical constraints,
to ensure the frugal use of metabolic resources (Bullmore and
Sporns, 2012). Diaschisis further supports the idea of MC-SC
coupling (Feeney and Baron, 1986; Sestini et al., 2010).

PRACTICAL CONSIDERATIONS

Simultaneous PET/MR imaging allows acquisition of different
biological properties (e.g., glucose/oxygen metabolism or
perfusion/glucose metabolism) at the same time, and therefore
likely under the same physiological conditions. This alleviates
problems associated with capturing multiple parameters
on different time scales. While FDG-PET measures glucose
uptake integrated over minutes, starting from radiotracer
administration, FC is estimated by rs-fMRI acquired each
few seconds. There are different approaches to managing
this discrepancy, both with simultaneous and sequential
scanning: off-scanner injection of radiotracer (Tomasi et al.,
2013; Aiello et al., 2015; Passow et al., 2015), following clinical
recommendations for neurological FDG-PET imaging, or in-MR
injection, where FDG is administered during MRI acquisition
(Newberg et al., 2005; Musiek et al., 2012; Chonde et al., 2013).

Regarding the spatial correspondence between PET and
MR, the inherent co-registration carried out by simultaneous
PET/MR imaging is particularly useful when the pattern of a
specific PET tracer (such as [18F]choline, [11C]raclopride, or
[18F]DOPA) does not completely reflect the brain anatomy,
causing potential failure of retrospective fusion algorithms.

Another advantage of simultaneous PET/MRI in BC studies
lies in the ability to mitigate the problem of blurred PET images
due to the subjects’ motion, which is often a dramatic problem
in cases of dementia, movement disorders and disorders of
consciousness (Soddu et al., 2011). With simultaneous PET/MRI,
PET data can be motion corrected by exploiting the high
temporal resolution of simultaneously acquired rs-fMRI (Catana
et al., 2011).

Current MR-based attenuation correction (AC) produces
slightly spatially biased metabolic patterns relative to CT-based
AC (Andersen et al., 2014; Hitz et al., 2014), with significantly
lower PET values in fronto-parietal portions of the neocortex,
and significantly higher values in subcortical and basal regions
of the brain. These differences must be taken into account
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during the interpretation of glucose metabolism distribution
from PET/MRI studies.

CONCLUSIONS

The concept of the brain connectivity has been reviewed in light
of opportunities presented by PET/MRI. The aim was to provide
to the reader with an overview of methodological issues arising
from different fields of MRI and nuclear medicine. From critical
analysis of the scientific literature, one can see the importance of
a leading role in neuroimaging studies for PET/MRI.
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