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Background: Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) is highly

effective in alleviating motor symptoms of Parkinson’s disease (PD) which are not

optimally controlled by dopamine replacement therapy. Clinical studies and reports

suggest that STN-DBS may result in increased impulsivity and de novo impulse control

disorders (ICD).

Objective/Hypothesis: We aimed to compare performance on a decision making task,

the Iowa Gambling Task (IGT), in healthy conditions (HC), untreated andmedically-treated

PD conditions with and without STN stimulation. We hypothesized that the position of

electrode and stimulation current modulate impulsivity after STN-DBS.

Methods: We built a computational spiking network model of basal ganglia (BG) and

compared the model’s STN output with STN activity in PD. Reinforcement learning

methodology was applied to simulate IGT performance under various conditions of

dopaminergic and STN stimulation where IGT total and bin scores were compared

among various conditions.

Results: The computational model reproduced neural activity observed in normal and

PD conditions. Untreated andmedically-treated PD conditions had lower total IGT scores

(higher impulsivity) compared to HC (P < 0.0001). The electrode position that happens

to selectively stimulate the part of the STN corresponding to an advantageous panel on

IGT resulted in de-selection of that panel and worsening of performance (P < 0.0001).

Supratherapeutic stimulation amplitudes also worsened IGT performance (P < 0.001).

Conclusion(s): In our computational model, STN stimulation led to impulsive decision

making in IGT in PD condition. Electrode position and stimulation current influenced

impulsivity which may explain the variable effects of STN-DBS reported in patients.
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INTRODUCTION

Deep brain stimulation (DBS) of the subthalamic nucleus (STN),
is a surgical technique now widely applied for the treatment of
Parkinson’s disease (PD) when dopamine replacement therapy
fails to provide sustained relief of motor symptoms or induces
drug-induced dyskinesias (Benabid, 2003). Though the exact
mechanism of action of DBS is not well-established, it is
known that stimulation disrupts (Rosa et al., 2012) the increased
synchrony and bursting activity in the β band (8–30 Hz; Kühn
et al., 2006) of the STN neurons.

Several reports have highlighted the development of new
onset, often transient, impulse control disorders (ICDs) following
STN stimulation (Hershey et al., 2004; Smeding et al., 2007;
Combs et al., 2015). This was thought to be, due to stimulation
of the cognitive sub territory of STN or the spread of stimulation
to adjacent parts of the cortico-limbic circuits. In support of
this theory, stimulation parameters such as current spread and
electrode position were shown to affect the outcome in cognitive
tasks in PD patients (Sudhyadhom et al., 2007; York et al., 2009;
Witt et al., 2013). Stimulation of the ventral STN decreased the
number of correct hits and increased the number of errors on
commission in Go-No Go task, when compared to stimulation
to dorsal STN (Hershey et al., 2010). STN stimulation can also
increase risk taking behavior in Iowa Gambling Task (IGT; Evens
et al., 2015). Patients with STN-DBS tended to overestimate their
performance with a preference toward competitive environments
(Florin et al., 2013). On the other hand, pre-existing ICDs were
reported to resolve following STN-DBS, as a result of reduction
in dopaminergic medication (Castrioto et al., 2015). Thus STN-
DBSmay lead to varying net effects on impulsivity in PD through
different mechanisms. Clinical studies aimed at dissecting out the
effect of STN stimulation on impulsivity have been limited by
the confounding effects of therapeutic reduction of dopaminergic
medication following STN-DBS.

Computational models provide an opportunity to overcome
this limitation by simulating the effect of variations in stimulation
and medication protocols individually which cannot be easily
applied in human subjects. We hypothesized that electrode
position and stimulation parameters affect the decision making
ability of PD patients who received STN-DBS. We used a
spiking network model of basal ganglia (BG; Mandali et al.,
2015) to test the performance under various conditions on the
standard gambling task, IGT (Evens et al., 2015). It is known that
IGT captures certain impulsive features such as the risk taking
ability (Fukui et al., 2005) and lack of premeditation (Zermatten
et al., 2005) during decision making. PD patients are known
to have poor IGT performance, especially during dopaminergic
medication (Poletti et al., 2011; Gescheidt et al., 2012).

Simulating IGT requires learning, which was incorporated
in the proposed model using Reinforcement learning (RL;
Chakravarthy et al., 2010). RL describes the manner in which
an agent learns stimulus-response (S-R) relations based on
action outcomes: S-R pairs associated with rewarding outcomes
are reinforced while those associated with punishment are
attenuated (Dayan and Abbott, 2001). Experimental evidence
shows that dopamine (DA) codes for reward prediction error or
the temporal difference error term (“δ”) in RL (Niv, 2009).

Using the spiking network model of BG (described in Section
Materials and Methods), we studied the performance of the
model in IGT in normal, PD with and without medication
[L-DOPA and Dopamine Agonists (DAA)] and STN-DBS
conditions. Our results show that model in normal condition
was able to learn from bad choices during the initial trials and
improved its performance as the trials progressed. This was
observed to be absent in PD with medication (both L-DOPA and
DAA) condition.

We then studied the effect of STN stimulation alone on
learning and performance by comparing it PD with and without
medication. The simulation results show that during the initial
trials, the stimulation current interferes with the learning which
is reflected as poor performance. We then proceeded to study the
factors of stimulation such as electrode position, amplitude of the
current and spread that are specific to a patient. The simulation
results indicate that electrode position played a significant role
in altering performance in the model. We also observed that
the model’s performance improved for a narrow band of current
amplitude.

MATERIALS AND METHODS

Spiking Neuron Model of the Basal Ganglia
The network model of BG (Mandali et al., 2015; Figure 1A) was
built using 2-variable Izhikevich spiking neurons (Izhikevich,
2003) where each nucleus was modeled as a 2D array (=50 ×
50). Parameters for each of the nuclei [STN, Globus Pallidus
internus (GPi) and externus (GPe) were chosen such that the
model neurons display firing patterns (in terms of firing rate
and firing patterns such as rebound firing) of their biological
counterparts (Mandali et al., 2015). STN and GPe neurons
were bi-directionally connected (Plenz and Kital, 1999) where
projections from GPe (STN) are inhibitory (excitatory). Each
GPi neuron received both glutamatergic projections from STN
and GABAergic projections from D1R-expressing medium spiny
neurons (MSNs) of the striatum (Gerfen and Surmeier, 2011).
The final action selection was done at thalamus which was
simulated as a race model (Vickers, 1970). The activities of both
D1- and D2-receptor expressing, striatal MSNs that receive input
from cortex (Tritsch and Sabatini, 2012) weremodeled as Poisson
spike trains. The full set of equations and module sizes related to
the model are described in Appendix A and Table A.I (Datasheet
in Supplementary Material). The input from cortex to STN, also
known as hyper-direct pathway and the GABAergic projection
from GPe to GPi, were not included in the model as their
functional significance has not been fully explored. The list of
acronyms and parameters used in the model are listed in Table 1

and Tables A.II, IV (Supplementary).

dvxij

dt
= 0.04(vxij)

2
+ 5vxij − uxij + 140+ Ixij + I

syn
ij (1)

duxij

dt
= a(bvxij − uxij) (2)

if vxij ≥ vpeak

{

vxij ← c

uxij ← uxij + d

}

(3)
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FIGURE 1 | (A) Shows the computational spiking basal ganglia model with key nuclei such as striatum (D1, D2), STN, GPe, GPi, and thalamus.

Excitatory/inhibitory/modulatory glutamatergic/GABAergic/dopaminergic projections are shown by green/red/violet arrows. (B) Shows the BG model and the regions

within each nuclei corresponding to the 4 decks are indicated.

where, vxij = membrane potential, uxij = membrane recovery

variable, I
Syn
ij = total synaptic current received, Ixij = external

current applied to neuron “x” at location (i, j), vpeak =maximum
voltage (+30 mv) with x being STN/GPe/GPi neuron.

Behavioral Task-IGT
The task involved presentation of four decks of cards wherein
each of the decks A/B/C/D is associated with a combination
of reward and penalty. IGT was conducted for a total of 100

trials (5 bins of 20 trials each).The net outcome of a certain
card selection (reward + penalty) in each trial was calculated.
The probability and amount of penalty varied from deck to
deck as explained in Table A.III (Datasheet in Supplementary
Material). Over a few trials, one can observe that cards
from the decks A and B (C and D) were disadvantageous
(advantageous) as the corresponding expected value is negative
(positive) The performance was measured as IGT total score
(number of selections from “C,” “D”—number of selections from
“A,” “B”)
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FIGURE 2 | The activity of STN neuron healthy, with and without DBS in PD. (A) Shows the activity of STN neurons in healthy condition, (B) shows the bursting

activity of STN neurons in PD condition. (C) STN neurons resume to tonic firing after DBS, (D) the reduction in the frequency content at tremor frequency (4 Hz) in STN

neurons in mentioned conditions, (E) shows the DBS current in biphasic mode (frequency = 130 Hz with amplitude of 200 pA), (F) shows the synchronization levels in

STN neurons with increase in DBS current.

Simulating IGT Using Spiking Neuron
Network Model
Since IGT consists of 4 decks, each nucleus [STN/GPe/GPi/
Striatum (both D1 and D2)] in the network was divided equally
into 4 quadrants, where each quadrant received input from one
of the decks (Figure 1B).The expected value of each card was
represented by the cortico-striatal weight which was modulated
by DA term “δ.” The input to GPe and GPi (i.e., the output of D2
andD1 striatum) wasmodeled as Poisson spike train (Reti, 2015),
whose frequency was proportional to the cortico-striatal weight
(wD1

i,k
,wD2

i,k
) of the corresponding card (i) and trial (k). The striatal

neuronal firing rate was restricted to 2–40 Hz as per experimental

literature (Kravitz et al., 2010).Since DA is known to modulate
plasticity in cortico-striatal conditions, the error term “δ” (in the
model) was used to update the cortico-striatal synapses (Surmeier
et al., 2007). DA also modulated the synaptic strengths within
various BG nuclei such as STN (Cragg et al., 2004), GPe (Smith
and Kieval, 2000).

Cortico Striatal Weight Update and Temporal

Difference Error
Each deck was associated with 2 cortico-striatal weights (wD1

i,0 ,

wD2
i,0 ) which were initialized with random values from a uniform

distribution over (0, 1). The two cortico-striatal weights were
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FIGURE 3 | Mean IGT score obtained from spiking model with standard

error (SE) for four conditions, HC, PD OFF, PD ON (L-DOPA), and

PD-ON (DAA) (A) Total IGT score (B) bin score.

trained as,

1wD1
i,k+1 = ηδkx

inp

i,k
(4)

1wD2
i,k+1 = −ηδkx

inp

i,k
(5)

The expected value (Vk) for kth trial was calculated as,

Vk =

4
∑

i=1

wD1
i,k ∗ x

sel
i,k (6)

The reward (Rek) for kth trial was calculated as,

Rek =

4
∑

i=1

ri,k ∗ x
sel
i,k (7)

The loss (Lk) for the kth trial was calculated as,

Lk =

4
∑

i=1

li,k ∗ x
sel
i,k (8)

The error (δ) for kth trial was defined as,

δk = Rek + Lk − Vk (9)

where, wD1
i,k+1

(wD2
i,k+1

),wD1
i,k
(wD2

i,k
) were the cortico-striatal weights

ofD1 (D2) striatum for ith card in k+1th and kth trial, ri,k and li,k
were the reward and loss obtained for the selected ith card in kth
trial, xinp was the input binary vector representing the 4 decks,
xsel was the binary vector representing the selected card e.g., if
the card “A” is selected xsel = [1 0 0 0].

Simulating Untreated PD and Medically Treated PD

Conditions
Bearing in mind that “δ” is similar to DA activity (Schultz,
1998; Niv, 2009) and there is loss of DA neurons in PD, we
simulated PD condition by clamping the “δ” value (Equation 9)
to a low limit (δlim) which resembles the untreated PD condition
(Equation 10).

δlim = min(δ,DAceil) (10)

Where min (y,a) is defined as
z = y if y < a

a if y > a
and DAceil is

the upper limit of “δ.” Medically treated PD condition clinically
involves external intake of dopamine precursors such as L-DOPA
which was simulated by adding a positive “δmed” term to the δlim
(Mandali and Chakravarthy, 2016) (Equation 10).

δnew = δlim + δmed (11)

Another class of medication prescribed to PD patients is DAA,
which has differential affinity for dopamine receptors. We
simulated DAA with preferential affinity for D2 receptors, also
known to be linked to impulsivity (MacMahon and Macphee,
2008). The δnew in the Equation (11) was used to update only D2
cortico-striatal weight (wD2) unlike for L-DOPA where both wD1

and wD2 were updated.

DBS Current
An external current which mimics the clinically delivered DBS
current was applied to the STN neurons in the model. The
parameters (frequency, pulse duration, and amplitude) of the
stimulation current were chosen to be similar to the typical
values used in a clinical setting (Garcia et al., 2005) [Appendix
A (Datasheet in Supplementary Material)]. The spread of current
over network of neurons spatially is known to follow a Gaussian
distribution (Lukasiewicz and Werblin, 1990). Apart from that,
Foutz and McIntyre (2010) have simulated various stimulation
waveforms and observed that non-rectangular waveforms are
more efficient (Foutz and McIntyre, 2010). The stimulation
current was applied to the entire/part of STN module in the
form of Gaussian distribution (Foutz and McIntyre, 2010). The
mean of the Gaussian coincides with the lattice position (ic, jc)
which was assumed to be the center of the electrode and extent of
current spread was controlled by the variance parameter (σ).

IDBSij = ADBS ∗ e
−((i − ic)

2 + (j − jc)
2)

σ2 (12)
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FIGURE 4 | IGT performance results were redrawn from Gescheidt et al. (2012). (A) HC from experiment and simulation. (B) Medically treated PD patients

from experiment and simulation (L-DOPA).

FIGURE 5 | The mean IGT score with SE obtained from spiking model

calculated for four conditions; PD OFF, PD OFF+DBS, PD ON, PD

ON+DBS (A) Total IGT score and (B) bin score.

where IDBSij is the current received by the neuron at position (i,

j) added to equation 1 of STN neurons, ADBS is the amplitude
of the current (pA), σ controls the current spread and (ic, jc) is
the mean/center point of the electrode. The effect of electrode
position (ic, jc) and stimulation parameters ADBS and σ on STN
activity and on behavior was explored.

Values of the model parameters used for simulating various
conditions (PD, medication and stimulation) are given in
Appendix A (Datasheet in Supplementary Material).

Statistical Analysis
The IGT score obtained from each of the conditions [Healthy
Controls (HC), untreated PD, medically treated PD, with
and without STN stimulation] were compared using repeated
measures of ANOVA. ANOVA (which stands for analysis
of variance) is a popular statistical technique used to check
if the means of two or more populations are equal and
come from same distribution. It calculates the variance of
means between the groups rather than intra group variance
to determine whether the groups come from the same
distribution.

Once the statistical test such as ANOVAhas been performed, it
is important to determine the underlying patterns in the data i.e.,
groups which could be representatives of different populations
and the detects used are generally called as the a-posteriori tests.
One such simple yet powerful test is the Bonferroni test which
uses the “p-value” to determine the significance of the result.
We have used the post-hoc Bonferroni test to study the effect of
stimulation, medication on performance. All statistical tests were
performed using IBM SPSS Statistics for Windows, Version 21.0,
and Armonk, NY: IBM Corp., USA.

RESULTS

De-Synchronization by DBS Current
Themembrane potential of STNneurons PD untreated condition
(Figures 2B,D) showed bursting activity and frequency content
showed a peak at around 4 Hz with high synchrony level
(=0.67; Mandali et al., 2015) which was absent in healthy
condition (Figures 2A,D). On stimulating the STN neurons in
PD condition, the peak around tremor frequency (=4 Hz) was
significantly reduced (Figure 2D; P < 0.00001). Similarly the
bursting activity in Figure 2B was overridden and suppressed
by the stimulating current (Figure 2C). The synchrony level,
Rsync (Equation A.13) in the presence of DBS current (Figure 2E)
decreased from 0.67 (in PD condition and stimulation-OFF) to
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FIGURE 6 | Plots of IGT scores calculated for PD “ON” and PD ON+DBS condition. The experimental results are redrawn from Oyama et al. (2011). (A) PD

“ON” controls from experiment and simulation for 3 sessions (B) DBS subjects for baseline and DBS ON.

0.42 (stimulation-ON; Figure 2F) but increased at higher current
amplitudes.

IGT-Healthy vs. PD Condition
Total IGT scores for HC, untreated PD, medically treated PD (L-
DOPA and DAA) were significantly different [F(3, 36) =9.813, P
< 0.0001] [Figure 3A, Table A.V (Datasheet in Supplementary
Material)]. Post-hoc analysis indicated a significant difference
between HC and the other three conditions: untreated PD (P
= 0.003), medically treated PD L-DOPA (P = 0.001) and DAA
(P < 0.0001). No statistically significant difference was observed
between the two medically treated PD (L-DOPA and DAA)
conditions.

In HC condition, the score was negative in the 1st bin, but
changed to positive at the 2nd bin and continued to increase, a
trend that was absent in both untreated and medically treated
PD (both L-DOPA and DAA) conditions (Figure 3B). The mean
scores [Table A.V Datasheet in Supplementary Material)] for 1st
bin of HC, untreated PD, medically treated PD L-DOPA and
DAA were similar (F = 0.684, P = 0.568). For both 2nd and
3rd bins medically treated PD condition performed worse than
healthy controls [bin 2 showed significant difference between
HC, medically treated PD L-DOPA and medically treated PD
DAA (P < 0.005); bin 3: The scores were significantly different
between HC, medically treated PD L-DOPA (P = 0.01) and
medically treated PD DAA, P = 0.025)]. Though untreated PD
had lower scores compared to HC and higher scores compared
to treated PD in both the bins, these differences did not reach
statistical significance. The mean scores for 4th bin among the
four conditions were not significantly different. For the 5th bin,
except HC, all other conditions showed poor performance (F =
8.744, P < 0.0001). The individual bin scores obtained in each of
the above described condition are given in Table 2.

The mean IGT score values (Figure 4A) for HC, obtained
from experiment (Gescheidt et al., 2012) and simulation
(Figure 4B) were not significantly different (P = 0.19). Similarly
the mean IGT score values obtained from medically treated
PD subjects (Gescheidt et al., 2012) and simulation were not
significantly different (P = 0.74).

IGT-PD Condition with and without
Stimulation
Total IGT score was negative for untreated PD, untreated PD
with stimulation, medically treated PD and medically treated PD
with stimulation (Figure 5A) with a significant difference among
them [F(3, 36) = 7.24, P = 0.001]. Post-hoc analysis revealed that
medically treated PD (P = 0.001) and medically treated PD with
stimulation (P = 0.004) had worse performance compared to
untreated PD. No significant difference was observed between
medically treated PD with and without stimulation.

A significant difference was observed among the 4 conditions
(Figure 5B) for bin 1[F(3, 36) = 3.24, P = 0.033] [Tables A.VI,
A.VII (Datasheet in Supplementary Material)]. Post-hoc analysis
indicated a significant difference only between untreated PD and
untreated PD with stimulation (P = 0.039). For the 2nd bin
[F(3, 36) = 5.58, P = 0.003], medically treated PD performed
worse compared to untreated PD (P< 0.008), no significant effect
of stimulation was noted. No significant difference was observed
for IGT score for the last three bins. The individual bin scores
obtained in each of the above described condition are given in
Table 3.

The mean IGT score values obtained from medically treated
PD (PD “ON”) subjects from experiment (Oyama et al., 2011)
and simulation (Figures 6A,B) were statistically similar (P =
0.42). Similarly the mean IGT score values for PD with STN-DBS
(DBS “ON”) experiment and simulation were similar (P = 0.55).

Effect of DBS Electrode Parameters on IGT
Score
When the electrode position (positions explained in Figure 7

legend) was changed such that stimulation (for untreated PD) is
given selectively to a part of the STN module corresponding to
each deck in IGT, we observed a significant variation in the IGT
score (Figure 7B) (P < 0.0001).On changing the spread of DBS
current (Figure 7C), there was a trend toward better performance
with lower radius of spread (σ = 10), which, however, did
not reach statistical significance (P = 0.67). We also observed
a lower IGT score at higher (=300 pA) and lower (=70 pA)
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FIGURE 7 | The IGT score. (A) Shows the STN network (=50 × 50) with quadrants that receive input from each of the corresponding decks (A–D) (B) The IGT

score for three electrode positions [Position 1—in first quadrant with electrode center at lattice point (13,13), Position 2—center of the electrode at the lattice point

(25,25), and Position 3- center of the electrode at the lattice point (38,38) in the fourth quadrant]. (C) For the electrode at position-2, the spread of the current (σ ) was

varied (D) the effect of DBS current amplitude (70, 100, and 300 pA) on IGT scores when the electrode is placed in position 3.

currents compared to that obtained from optimal current (=100
pA) (P < 0.001) (Figure 8A). Interestingly, the current range
where the highest IGT score was obtained was nearly the same
range where the synchrony in STN neurons was observed to
be lowest (Figure 8B). The underlying cause for such an effect
(Figures 7D, 8A,B), was investigated by observing the spiking
activity of STN for both optimal (=100 pA) and high (=300 pA)
current scenarios. At optimal current levels, DBS desynchronized
the activity of the STN neurons (Figure 2F) that received the
stimulation, leading to the selection of the stimulated panel
(Figure 2D; Figure A1; purple line) and a positive IGT score.
On the contrary, at non-optimal (=300 pA) current amplitudes,
the corresponding STN neuron activity is increased leading to
de-selection of the panel “D” (Figure A1).

DISCUSSION

We built a computational spiking basal ganglia network model
to understand the effects of STN stimulation on impulsivity.

We first tested the spiking network model, by comparing its
simulated activity with the known pathophysiological alterations
in PD. It has been observed that desynchronized, irregular STN
activity observed in HC changes into synchronized bursting
behavior in PD (Wilson and Bevan, 2011), which is also observed
in STN neurons ofMPTP treated primates (Bergman et al., 1994).
This bursting oscillatory activity (Plenz and Kital, 1999) was also
observed in our spiking model which correlated with tremor
frequency, suggesting that the spiking model has the ability to
reflect pathological STN activity.

Effect of PD and Dopaminergic Therapy on
IGT Performance
Overall IGT performance was poor in untreated and medically
treated PD conditions compared to HC. Medically treated PD
condition did worse than HC and untreated PD, regardless of
the type of medication used. Analysis of bin scores revealed that
learning of the task was poor in all PD conditions compared to
HC. Medically treated PD condition resulted in lower bin scores
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FIGURE 8 | Shows (A) The IGT score obtained when the DBS current was

increased from 0 (only medication) to up to 150 pA with frequency 130 Hz,

biphasic mode. (B) The corresponding synchrony levels observed in STN

neurons for that stimulation current.

from the 2nd bin onwards, suggesting significantly impaired
learning of the task, while in untreated PD; a significantly low
bin score compared to HC was seen only in the last bin. The
model in treated PD condition does not learn from its action
outcomes (rewards/punishments) and wanders among the decks,
which is reflected in the negative IGT score (Figure 3). This
behavior is similar to that previously reported in a probabilistic
action selection paradigm where PD “ON” subjects fail to avoid
punitive choices (Frank et al., 2007). Physiologically this behavior
is attributed to excess DA levels in striatum (Frank et al.,
2007). In the model, striatal weights were positively updated
even in punishment situation due to dopaminergic medication
(δmed), leading to the selection of wrong choice. Clinical
studies have identified dopamine agonists to be associated
with higher risk of impulsivity, mediated through their D3
receptor affinity. We did not specifically model the D3 receptor
activity and did not observe a higher risk with DAA (which

TABLE 1 | Lists the Acronyms and parameters used in this article.

Variable/Acronym Full form

STN Sub Thalamic Nucleus

PD Parkinson’s Disease

DBS Deep Brain Stimulation

IGT Iowa Gambling Task

BG Basal Ganglia

RL Reinforcement Learning

DA Dopamine

L-DOPA Leva Dopa

DAA Dopamine Agonist

GPe Globus Pallidus externus

GPi Globus Pallidus internus

Untreated PD/PD OFF PD condition without medication

Medically treated PD/PD ON PD condition with medication

HC Healthy controls

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

ICD Impulse Control disorder

GABA Γ -Aminobutyric acid

δ Error term similar to dopamine

σ Parameter that controls the spread of the

current

wD1
i,k Cortico-striatal weight to D1 striatum

wD2
i,k Cortico-striatal weight to D2 striatum

ADBS Parameter that controls the amplitude of the

DBS current

δlim Clamped DA-value resembling PD condition

δmed DA medication

η (=0.1) Learning rate of the model

Rsync Synchronization measure

selectively increased the D2 weight) compared to L-DOPA in our
model.

Effect of STN Stimulation
Stimulation applied to the entire STN module did not result in a
significant deterioration of overall IGT performance (Figure 5A).
However, stimulation significantly impaired performance in the
1st bin when applied to untreated PD condition (Figure 5B). It
is during these early trials that most of the learning regarding
deck’s reward pattern happens and this learnt information is
used for future card selection. Stimulation seems to affect this
learning ability, making the model performance worse as trials
progress. Similar behavior is also reported in clinical experiments,
where it was observed that PD patients with stimulation tend
to overestimate their choices (Florin et al., 2013). No significant
change was observed between medically treated PD with and
without stimulation. This could be due to an overriding effect of
dopaminergic medication over stimulation.

A few aspects of DBS that are specific to a PD patient
who receives stimulation are the active contact point in the
electrode, the amplitude of the current and the spread due to
the current. Keeping this mind, we first changed the position of
electrode within the STN nucleus (Figures 7A,B) and observed
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TABLE 2 | The mean IGT scores with standard deviation for HC, untreated PD, medically treated PD (L-DOPA and DAA) at total and individual bin levels

and total IGT score.

Condition Score bin 1 Score bin 2 Score bin 3 Score bin 4 Score bin 5 Total score

HC −1.40±3.65 2.8± 3.8 3.0±5.2 1.6±2.1 2.6± 4.99 8.60± 11.07

PD OFF −4.4±4.78 −2± 4.85 −4.6±6.2 −0.8±3.01 −3.8± 3.45 −13.8± 13.21

PD ON-LDOPA −1.8±5.96 −2.8± 5.26 −4.8±3.3 −3.2±5.1 −4.4± 2.95 −17± 11.78

PD ON-DAA −2.8±5.67 −5.4± 5.9 −2.6±5.9 −1.2±4.733 −7± 5.5 −20.4± 16.27

TABLE 3 | The mean IGT scores with standard deviation for untreated PD, medically treated PD (L-DOPA) with and without stimulation at total and

individual bin levels.

Condition Score bin 1 Score bin 2 Score bin 3 Score bin 4 Score bin 5 Total score

PD OFF 1.2±4.02 1.4±4.7 −0.4± 3.86 −4.8± 4.4 −1.4±5.73 −4±8.17

PD OFF + stim −4.2±4.05 1.2±5.3 −3.6± 4.19 −0.2± 2.3 −4.4±3.23 −11.4±6.67

PD ON −2±1.33 −7.4±5.33 −5.4± 3.89 −3.6± 3.7 −2.4±5.4 −20.4±8.98

PD ON + stim −3.4±5.96 −3.4±2.1 −4.2± 4.8 −4.2± 6.07 −2.9±6 −19±11.20

a significant change in IGT score. Physiologically, it might be
possible that stimulation of different active points (which are 0.5–
1 mm apart in the electrode) could lead to differential activation
of neurons. This activation not only leads to overall difference
in the current spread (McIntyre et al., 2004) but also in the
activity of neurons that receive input from a different sources.
This controlled activation might eventually changes the behavior
(Witt et al., 2013).

Apart from position, another DBS parameter thought to
significantly influence cognition is current amplitude. Various
computational and experimental studies showed that the volume
of tissue activated is dependent on the stimulating current
amplitude (McIntyre et al., 2004; Arle et al., 2007; Yousif
et al., 2010). We observed that a high stimulation current
can increase the firing rate of STN neurons that received the
stimulation whereas sufficiently low amplitude current would
just desynchronize the activity. This change in STN, in terms of
spiking activity during optimal and non-optimal (Figure A1; for
a fixed position) stimulation currents might be the reason behind
conflicting results observed at behavioral level (Figure 7D).
For instance, de-selection of panel “D” increases probability of
selection of other panels. In Figure A1, the selected panel was “A”
(blue line) is a highly rewarding panel when viewed at a shorter
time scale but punitive in long term. The model selects this panel
due to its inability to learn the punishments associated with it.
This selection of other panels (A and B are disadvantageous, and
only C is rewarding) gave rise to a negative IGT score with high
current.

With the above results one can consider the possibility
that stimulation current when applied to the corresponding
topographical areas of the panels within STN might lead
to inhibition/facilitation of the corresponding panel selection
depending on the current amplitude. To relate the above results
physiologically, we suggest a role for the parallel functional
loops within BG nuclei (Alexander and Crutcher, 1990) (motor,
cognitive, and the limbic loops) and topographical mapping
in impulsive behavior. A coarse functional organization is also
observed within STN nucleus with motor and cognitive areas

being adjacent to each other (Temel et al., 2005). We suspect that
the highly variable cognitive outcomes in experimental studies
could be correlated to electrode position and current spread
(Figures 7B–D, 8A). These results are similar to those observed
in the clinical study where a decrease in performance (hit rate)
was observed when the position of the electrode was changed
(Hershey et al., 2010).

Limitations of our model include the connectivity pattern
within BG nuclei (GPe-GPi connection and hyper direct pathway
is not included) and neuronal number. More elaborate modeling
studies are required to further explore the effect of electrode
position and stimulus waveform on motor and cognitive aspects
of the PD patients. Although the human STN is known
to be organized into motor and cognitive sub territories, a
further topographical division into separate areas for various
choices is yet unconfirmed. Nevertheless, our model reflects the
pathophysiology of STN in PD and predicts behavioral changes
similar to clinical data. Our results yield valuable information
on the effect of electrode position and current amplitude on
behavioral and cognitive outcomes of STN stimulation in PD that
may help in the development of optimal stimulation protocols in
a clinical setting.
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