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INTRODUCTION
Living organisms are unicellular, com-
posed of a single cell, or multicellular,
where a group of up to ∼1012 cells func-
tions co-operatively (Kaiser, 2001). All
multicellular organisms evolved from
single-celled ancestors; every individual
organism arises from a unicell and repro-
duces by forming unicells. Multicellularity
enables competitive advantages, and
may have shaped our oxygen-rich atmo-
sphere (Grosberg and Strathmann, 1998;
Kaiser, 2001; Schirrmeister et al., 2013).
Multicellularity has evolved multiple
times: animals, plants, algae, amoebae,
fungi, and bacteria are or can all be
multicellular (King, 2004; Grosberg and
Strathmann, 2007; Rokas, 2008; Claessen
et al., 2014). Multicellularity can be clonal
(arising from division of a single cell)
or aggregative (aggregation of genetically
diverse cells), with clonal multicellu-
larity considered evolutionarily more
stable (Grosberg and Strathmann, 1998).
The molecular mechanisms by which
organisms become multicellular are not
well understood. In this article, we out-
line eukaryotic multicellular evolution,
and discuss how to increase our future
understanding.

EVOLUTION OF
UNICELLULAR–MULTICELLULAR
TRANSITIONS: A GENETIC TOOLKIT
FOR MULTICELLULARITY?
The most well-studied group of multicel-
lular organisms are animals, where mul-
ticellularity likely arose once, giving rise
to today’s diversity of complex forms.

Organisms in animal sister lineages, the
aquatic “protist” choanoflagellates and
filastereans (forming holozoans collec-
tively with animals), can be unicellular
or multicellular. Comparison of unicellu-
lar holozoan and animal genomes suggests
that part of the “toolkit” of genes required
to orchestrate multicellular development
(genes for cell adhesion, cell–cell signal-
ing and certain transcription factors) was
already present in unicellular ancestors of
both holozoans and animals (Abedin and
King, 2008; King et al., 2008; Sebe-Pedros
et al., 2011; Fairclough et al., 2013; Suga
et al., 2013), although “metazoan-specific
innovations” also exist (Suga et al., 2013).

Data from algae extends this “com-
mon toolkit” hypothesis to other king-
doms. The Chlamydomonas (unicellular)
and Volvox (simple multicellular) genomes
are remarkably similar (Merchant et al.,
2007; Prochnik et al., 2010), with very
few species-specific genes, and expansion
of Volvox extracellular matrix (ECM) gene
families (Prochnik et al., 2010). Much
is now understood about the evolution-
ary steps to multicellularity in Volvocine
algae (Herron et al., 2009), but the under-
lying molecular–genetic mechanisms are
unknown.

The genome sequence of Ectocarpus, a
multicellular brown alga, reveals no obvi-
ous trends of specific gene loss/gain in
independent multicellular lineages (Cock
et al., 2010). Ectocarpus contains possible
integrin domains, which are important for
animal development and also present in
unicellular Holozoa (Cock et al., 2010).
Ectocarpus also highlights the independent

evolution of large receptor-kinase protein
families as a step to drive complex multi-
cellular evolution from a eukaryotic ances-
tor (Cock et al., 2010), as also suggested in
plants (Shiu and Bleecker, 2001) and holo-
zoans (Hunter and Plowman, 1997; Suga
et al., 2014). Multicellular fungi possess
unique non-receptor kinases (Stajich et al.,
2010). Thus, transitions to multicellular-
ity most likely largely require co-option of
pre-existing genes, via changes in expres-
sion or regulation.

UNDERSTANDING
UNICELLULAR–MULTICELLULAR
LIFE-CYCLE TRANSITION
MECHANISMS
All multicellular organisms possess a
unicellular life-cycle stage, undergoing
a unicellular–multicellular transition in
every generation. In the most com-
plex organisms (animals and terrestrial
plants), these transitions are challeng-
ing to characterize experimentally, as the
unicells (gametes, zygotes) are hidden
deep within host tissues (e.g., Figure 1B).
However, there are eukaryotes of vary-
ing complexity that offer tractable systems
to define molecular changes underpin-
ning unicellular–multicellular transitions,
enabling new opportunities for characteri-
zation and comparison.

MODES OF MULTICELLULARITY ON THE
UNIKONT BRANCH
Animals, Holozoa, fungi, and amoebae
(collectively, Unikonts) are a key branch of
the tree of life (Figure 1A). Multicellularity
has arisen many times in Unikonts, but
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FIGURE 1 | Transitions between unicellular and multicellular states

in plants, algae, and their relatives. (A) Simplified tree of life
showing the Unikont and plant/algal lineages and their evolutionary
relationships, including divergence times in millions or billions of
years ago (mya or bya, respectively). Animals, choanoflagellates,
filastereans, and ichthyosporeans are collectively known as holozoans
(purple boxes). Plants and green algae (green boxes) together with
red algae (red box) form the Archaeplastida, while brown algae
are part of a separate lineage evolving from a common
eukaryotic ancestor 1.6 billion years ago. (B) Highly simplified
flowering plant life cycle showing unicellular–multicellular transitions
(orange arrow) and multicellular–unicellular transitions (blue arrows).
The multicellular seed (orange) houses the unicellular diploid zygote
(brown) surrounded by multicellular endosperm tissue (yellow). The
zygote develops into a multicellular embryo within the seed, which
then germinates to form the multicellular diploid adult sporophyte
plant. Within the sporophyte flower, meiosis occurs to produce
single-celled haploid gametes (female ovules and male pollen) in
the multicellular diploid ovaries and anthers, respectively. The
unicellular megaspores develop into a multicellular (seven-celled)
haploid megagametophyte, completely surrounded by maternal
multicellular tissue, prior to fertilization of one megagametophyte
nucleus to form a zygote buried within the maternal- and
developing seed-tissue. The microspores within the anther form a
pollen grain with two cells that degenerate when the pollen
germinates, allowing transfer of nuclei to the megagametophyte.
Although the mature pollen grain (haploid gametophyte) is an

accessible unicell it does not germinate to form a multicellular
structure by itself, but only after fertilization has occurred. (C)

Simplified life cycle of an early-evolving spore-bearing land plant,
such as a moss (Bryophyte), showing unicellular–multicellular
transitions (orange arrow), and multicellular–unicellular transitions
(blue arrows). A haploid spore (brown) germinates to form a
haploid multicellular filament, which eventually produces haploid
multicellular leafy structures (gametophytes). Gametophytes produce
haploid sperm or eggs, which fuse to form a unicellular diploid
zygote, which divides by mitosis to form a multicellular diploid
sporophyte. The sporophyte matures and then divides by meiosis
to form haploid spores, which are released from the capsule. (D)

Simplified life cycle of a macroalga such as Ulva (green seaweed)
showing unicellular–multicellular transitions (orange arrows) and
multicellular–unicellular transitions (blue arrows). Multicellular blade
(thallus) tissue, a haploid gametophyte or a diploid sporophyte,
arises from haploid spores and a diploid zygote, respectively.
Gametes from two different mating types (+ and −) are required
for fusion and zygote formation to occur. Sporophyte and
gametophyte blades are essentially morphologically identical, as are
gametes of different mating types. Isolated gametes in culture are
capable of undergoing a parthenogenetic life cycle. Representative
images of Ulva linza sporophyte thalli and spores in culture are
shown (courtesy of Eleanor Vesty). Life cycles for red and brown
algae are similar, but often more complex, with non-isomorphic
multicellular stages and/or gametophyte or sporophyte reduced in
size.
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there is no correlation between an organ-
ism’s relatedness to animals and its mode
of multicellularity. Several Holozoa have
recently-identified multicellular life-cycle
stages (Fairclough et al., 2010; Dayel
et al., 2011; Sebe-Pedros et al., 2013;
Suga and Ruiz-Trillo, 2013), with the
ichthyosporean Creolimax fragrantissima
forming a colony via a multinucleate
syncitium (Suga and Ruiz-Trillo, 2013).
The choanoflagellate Salpingoeca rosetta
has clonal multicellularity, like animals
(Fairclough et al., 2010), with two distinct
multicellular morphologies, chains and
rosettes (Dayel et al., 2011). Cytokinesis
genes, cell–cell adhesion genes and recep-
tor tyrosine kinases were all upregu-
lated in rosettes (Fairclough et al., 2013),
while a C-type lectin gene is required
for rosette formation (Levin et al., 2014).
The Filasterian Capsaspora owczarzaki
assumes aggregative multicellularity, with
deposition of ECM (Sebe-Pedros et al.,
2013). C. owczarzaki upregulates integrin-
mediated adhesion and signaling genes in
aggregates compared to unicellular stages
(Sebe-Pedros et al., 2013), strengthen-
ing the idea that multicellularity requires
changes in gene regulation.

Reverse transitions from multicellular-
ity likely occurred in Unikonts: fungi may
have evolved as filamentous organisms
>1 billion years ago (Butterfield, 2005),
although many extant yeast species are
entirely unicellular. Multicellularity can
be selected for in the lab in the normally
unicellular baker’s yeast Saccharomyces
cerevisiae (Ratcliff et al., 2012): this is
clonal multicellularity, like in choanoflag-
ellates and animals. Multicellular social
amoebae diverged from Metazoa ∼1.2
billion years ago (Figure 1A). The best-
known example, Dictyostelium, forms
aggregates from motile cells (Coates
and Harwood, 2001; Schaap, 2011).
Notably, the protist Fonticula alba, in
the sister group to fungi, also shows
aggregative multicellularity (Brown et al.,
2009). Unicellular–multicellular transcrip-
tional changes are conserved over large
evolutionary distances: Dictyostelium dis-
coideum and Dictyostelium purpureum
diverged ∼400 MYA but share simi-
lar morphologies and incredibly similar
global gene expression profiles during
their unicellular–multicellular transitions
(Parikh et al., 2010).

MULTICELLULARITY AND ENVIRONMENTAL
SENSING
Unicellular–multicellular changes play key
roles in the adaptation of some microor-
ganisms to the environment. Selection
pressures driving transitions to multicel-
lularity include nutrient stress, predation
and competition. Social amoebae aggre-
gate in response to starvation, forming
a fruiting body containing stress-resistant
spores (Schaap, 2011). Some strains of
S. cerevisiae form filaments in response to
nitrogen starvation (Liu et al., 1996). Some
green microalgae (including Desmodesmus
and Scenedesmus) transition between uni-
cellular and multicellular states, similarly
to choanoflagellates (Lürling, 2003). These
algae form multicellular structures due to
nutrient-limitation (Trainor and Shubert,
1974; Siver and Trainor, 1981) competi-
tor algae (Leflaive et al., 2008), animal
predators (Hessen and Van Donk, 1993;
Lampert et al., 1994; Lürling and Van
Donk, 1996; Kampe et al., 2007) or toxins
(Lürling, 2003).

Becoming multicellular to escape
predators can have a physiological cost
via a reduction in growth rate. The benefit
of multicellularity as a defense mecha-
nism depends on the population dynamics
of co-occurring species and the envi-
ronmental conditions determining the
prey’s growth rate: in the absence of a
predator and under nutrient-replete com-
petitive conditions multicellularity can
have an adverse effect on the organ-
ism’s fitness (Yokota and Sterner, 2011).
Multicellularity can also affect green
organisms’ productivity: in Desmodesmus
armatus, light-acclimation occurred in
two-celled colonies, whereas maximum
photosynthetic rates occurred in four-
celled colonies (Matusiak-Mikulin et al.,
2006). As microalgal multicellular morphs
and unicells occupy different spaces in the
water, unicellular–multicellular transitions
can have far-reaching effects on the whole
ecosystem (Lürling, 2003).

One emerging paradigm is that sig-
nals from eukaryotic-associated bacte-
ria may drive multicellular complex-
ity. C. owczarzaki can form aggregates
under axenic conditions (Sebe-Pedros
et al., 2013) and filamentous colonies in
S. rosetta occur without bacteria (Dayel
et al., 2011), but S. rosetta rosette colony
formation is induced only in the presence

of it’s bacterial prey species (Dayel et al.,
2011), which releases a specific sphin-
golipid signal that induces rosette for-
mation (Alegado et al., 2012), perhaps
enabling S. rosetta to feed more efficiently.
Signals from microorganisms also pro-
foundly affect the development of green
seaweeds and land plants (Parniske, 2000;
Matsuo et al., 2005; Marshall et al., 2006;
Spoerner et al., 2012), although both can
form multicellular structures in axenic
conditions.

“GREEN” MULTICELLULARITY: INDEPENDENT
ACQUISITIONS
Acquisition of multicellularity under-
pinned the key transition of plants to
land, but the mechanism(s) by which
this occurred are unknown. Land plants
evolved from algae (Figure 1A); algae
have evolved multicellularity many times
independently of land plants. In particu-
lar, the Chlorophyte algae include many
“simple” multicellular species alongside
morphologically complex green seaweeds
(Niklas, 2014). Genomic information to
define mechanisms underpinning “green”
unicellular–multicellular transitions is
lacking compared to the holozoan–animal
comparative studies.

As with animals, it seems that the
genetic toolkit for green multicellular-
ity was present in unicellular ancestors
(Chlamydomonas/Volvox genomes were
discussed in Section Evolution of
Unicellular–Multicellular Transitions: A
Genetic Toolkit for Multicellularity?).
Colonial “morphs” can be induced, or
selected for, in usually unicellular microal-
gae e.g., Chlamydomonas (Lurling and
Beekman, 2006; Ratcliff et al., 2013) and
Chlorella (Boraas et al., 1998). Formation
of the Chlamydomonas diploid zygote
requires homologs of transcription factors
involved in land plant meristem specifi-
cation, implying that plant multicellular
body plans may have evolved from algal
sexual developmental mechanisms (Lee
et al., 2008). In Scenedesmus, multicel-
lularity correlated with reactive oxygen
species production and activation of a
kinase (Leflaive et al., 2008); redox state
may also have been a driver of animal
multicellularity (Blackstone, 2000).

It is technically difficult to study
the unicellular–multicellular transition in
most land plants at the molecular or
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genetic level. Embryos/gametes exist only
transiently in the flowering plant life cycle,
and are surrounded by multicellular tis-
sues (Figure 1B). Early-evolving spore-
bearing plants such as mosses and ferns
are more experimentally tractable mod-
els for studying unicellular–multicellular
transitions, as a unicell, the spore, can be
isolated (and stored) prior to germination
into multicellular structures (Figure 1C).

We believe that seaweeds are the
best group of organisms in which to
define the molecular changes involved
in unicellular–multicellular transitions, as
every seaweed has a unique life cycle that
alternates between unicellular and mul-
ticellular stages, involving at least two
separate unicellular–multicellular transi-
tions: germination of spores into gameto-
phytes, and germination of gametes and/or
zygotes into sporophytes (Figure 1D).
Thus, seaweeds represent exciting new sys-
tems in which unicellular–multicellular
transitions can be studied with relative
ease.

SEAWEEDS AS KEY SYSTEMS TO
UNDERSTAND
UNICELLULAR–MULTICELLULAR
TRANSITIONS: UNDERSTANDING
SEAWEED MULTICELLULARITY WILL
HAVE ECONOMIC IMPORTANCE
The emerging model systems Ulva
(a green seaweed) and Ectocarpus (a
brown seaweed) offer new ways to
define the molecular basis of unicellular–
multicellular transitions in complex
systems. Relatively large numbers of
Ulva unicells (spores or gametes) can
be induced and isolated, far more eas-
ily than the spores of land plants, from
more than one Ulva species (Wichard
and Oertel, 2010; Vesty et al., 2015). It
is this propensity for multicellular tis-
sues to form unicells (which give rise to
new multicellular structures) that leads
to Ulva forming nuisance blooms: thus
it is key to understand the basic biol-
ogy of these processes. Ulva can now be
grown in axenic laboratory-based culture,
including via parthenogenesis (Wichard
and Oertel, 2010; Spoerner et al., 2012),
enabling a step-change in the methods we
can use to understand seaweed biology
and development. Ectocarpus has well-
developed forward genetics, including a
series of mutants (Le Bail et al., 2011; Cock

et al., 2014), some of which are specifically
altered in the spatial organization of the
multicellular body [forming callus instead
of polarized filaments: gri mutants (Le Bail
et al., 2010)], or impaired maintenance of
cell–cell adhesion: bib mutants (Charrier
et al., in review)].

Many green, red and brown seaweeds
are of profound economic importance,
both positively as sources of food, fuel and
useful chemicals, and negatively as bio-
foulers (Callow and Callow, 2011) or inva-
sive species that are damaging to marine
ecosystems (Smetacek and Zingone, 2013).
Until now, seaweeds have been a neglected
group of organisms for large-scale gene
discovery, thus understanding seaweed
growth and development lags behind
our equivalent knowledge in land plants.
Genome sequences are available for the
red seaweeds (and food crops) Pyropia and
Chondrus (Collen et al., 2013; Nakamura
et al., 2013), and for Ectocarpus (Cock
et al., 2010) with an Ulva genome-
sequencing project underway. Chondrus is
also an emerging macroalgal model sys-
tem, taking ∼2 years to complete its life
cycle in the lab. Thus, the time is right
to instigate a step-change in the under-
standing of seaweed biology, including the
regulation of its unicellular–multicellular
transitions. This will enable new knowl-
edge to apply to seaweed culture (for food
and fuel) and control (of blooms and bio-
fouling).

WIDER PERSPECTIVES ON
UNDERSTANDING SEAWEED
MULTICELLULARITY
Current data suggests that the genetic
toolkit underpinning unicellular–
multicellular transitions was present in
unicellular ancestors, in both Unikonts
and “green” organisms. Whether the
toolkit is conserved between animals and
plants is unknown. Using new “green” sys-
tems such as spore-plants, microalgae and
seaweeds to define the molecular changes
underpinning unicellular–multicellular
transitions will shed new light on this
question, and will also enable new under-
standing of how multicellular land plants
evolved. Combined with the application
of new basic biological knowledge to eco-
nomically and environmentally important
seaweed species, we are entering a new era
of plant- and algal biology.
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