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Environmental and lifestyle factors, including diet and nutritional habits have been
strongly linked to colorectal cancer (CRC). Of note, unhealthy dietary habits leading
to adiposity represent a main risk factor for CRC and are associated with a chronic low-
grade inflammatory status. Inflammation is a hallmark of almost every type of cancer and
can be modulated by several food compounds exhibiting either protective or promoting
effects. However, in spite of an extensive research, the underlying mechanisms by
which dietary patterns or bioactive food components may influence tumor onset
and outcome have not been fully clarified yet. Growing evidence indicates that diet,
combining beneficial substances and potentially harmful ingredients, has an impact
on the expression of key regulators of gene expression such as the non-coding RNA
(ncRNA). Since the expression of these molecules is deranged in chronic inflammation
and cancer, modulating their expression may strongly influence the cancer phenotype
and outcomes. In addition, the recently acquired knowledge on the existence of
intricate inter-kingdom communication networks, is opening new avenues for a deeper
understanding of the intimate relationships linking diet to CRC. In this novel scenario,
diet-modulated ncRNA may represent key actors in the interaction between plant and
animal kingdoms, capable of influencing disease onset and outcome. In this review, we
will summarize the studies demonstrating a link between bioactive food components,
including food-derived, microbiota-processed, secondary metabolites, and host ncRNA.
We will focus on microRNA, highlighting how this plant/animal inter-kingdom cross-talk
may have an impact on CRC establishment and progression.

Keywords: microRNA, colorectal cancer, inter kingdom communication, diet, bioactive food components,
epigenetic mechanisms

INTRODUCTION

Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the third in
men worldwide (Ferlay et al., 2015) that presents one of the highest rates of morbidity and mortality
worldwide (Siegel et al., 2016). The number of new cases of cancer including CRC, has been
increasing in the last decades (Torre et al., 2016), and such increased incidence has been attributed
to environmental factors, i.e., adoption of Western diets and lifestyles (Haggar and Boushey,
2009). Chronic intestinal inflammation (Ekbom et al., 1990; Feagins et al., 2009) and obesity
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(Pietrzyk et al., 2015) represent additional risk factors associated
with increased CRC incidence. Obesity has become a major
threat to public health because of its high global prevalence and
association with an increased risk of developing chronic diseases
(Abdoullaye et al., 2010). Obesity affects over half a billion adults
worldwide, with approximately 3.5 million attributable deaths
each year (WHO, 2015). Similarly to gender, race, dietary habits
or smoking history, obesity not only represents a risk factor for
several tumors including CRC (Park et al., 2014; Parkin et al.,
2014), but contributes to 3–20% of cancer deaths in Western
populations (Renehan et al., 2008; Beddy et al., 2010). Abdominal
rather than total adiposity is associated with a 1.5- to 3.5-fold
increased risk of developing CRC as compared to lean individuals
(Bardou et al., 2013).

Notably, dietary components influence inflammatory
processes, and many types of cancer, including CRC, can be
prevented/delayed through healthy life styles (Turati et al.,
2012). The most extensive review of the existing evidence
connecting diet and cancer is the 2007 World Cancer Research
Fund/American Institute for Cancer Research (WCRF/AICR;
Lozcano-Ponce, 2009) report and its subsequent update
(Wiseman, 2008; Martinez-Gonzalez et al., 2015; Norat et al.,
2015).

CRC initiation/progression results from the accumulation
over-time of genetic changes in oncogenic/oncosuppressor genes
in colonic epithelium, with epigenetic alterations recognized
as significant contributors to cancer development. CRC
“epigenome” assessment revealed that virtually all CRC have
aberrantly methylated genes and altered microRNA (miR)
expression (Okugawa et al., 2015). Dysregulation of miR and
their mRNA targets contributes to the initiation/progression
of colon carcinogenesis as well as to invasion, angiogenesis,
and metastasis (Ramalingam et al., 2015; Ress et al., 2015).
Interestingly, bioactive food ingredients exert not only direct
effects on carcinogenesis but likely influence cancer development
indirectly by affecting gut microbiota composition/metabolism,
and by epigenetically regulating gene expression. Complex
interactions among food components and histone modifications,
chromatin remodeling, DNA methylation and non-coding
RNA (ncRNA) expression lead to a dynamic regulation of gene
expression controlling cellular phenotype (Milagro et al., 2013).
Dietary changes also affect gut microbiota in terms of relative
abundance of microbial species. In turn, microbiota influences
the conversion of food components and fibers into metabolites
acting as epigenetic regulators in cancer, as well as nutrient
uptake and epithelial resilience (Ha et al., 2014; O’Keefe et al.,
2015; Bultman, 2016). Additionally, the presence of cancer-
associated circulating miR (Schou et al., 2016) and the growing
attention to xeno-miR, absorbed with food ingestion (Fabris and
Calin, 2016), further highlight the complexity of inter-kingdom
communication and its potential role in the balance between
homeostasis and disease.

In this review, we focus on diet-induced modulation of host
miR and discuss their potential contribution to CRC. In the
following paragraphs we will examine different outcomes of this
plant/animal inter-kingdom cross-talk including both preventing
and pro-tumorigenic effects.

THE DUAL EFFECT OF DIETARY
PATTERNS AND/OR BIOACTIVE FOOD
COMPONENTS IN CRC: THE ROLE OF
miR

It has long been known that modifications of diet can prevent,
slow, and even reverse some disease-associated events, and
growing evidence suggests that one of the mechanisms by which
nutrients and bioactive compounds affect metabolic traits is
epigenetics. Various diets and dietary interventions, including
high-fat diets (HFD) and caloric restriction (CR), as well as
bioactive nutrients and plant derivatives, have been associated
with epigenetic changes that alter cellular signaling (Hardy and
Tollefsbol, 2011; Garcia-Segura et al., 2013) and may have an
impact on CRC development (Bultman, 2016; Lee et al., 2016).
There is currently overwhelming evidence that consumption of
red and processed meat as well as animal fat, typical of Western
style diets, increases CRC risk (Bernstein et al., 2015). Conversely,
bioactive dietary molecules, such as ω3 polyunsaturated fatty
acids (PUFA), curcumin, fermentable fibers (basic components of
the Mediterranean diet), folate, calcium, vitamin D, and physical
activity exert chemoprotective effects (Hou et al., 2016). Although
the mechanisms underlying the role of food in preventing or
favoring CRC are not fully elucidated, growing evidence indicates
that at least some of them involve miR (Gavrilas et al., 2016; Hou
et al., 2016).

A summary of the main results achieved in both in vitro and
in vivo models is shown in Table 1.

PROTECTIVE EFFECTS

Dietary patterns and some bioactive food components including
polyphenols, ω3 PUFA, and short chain fatty acids (SCFA) exhibit
a chemopreventive role against CRC. Among phytochemicals,
polyphenols are ubiquitous secondary metabolites found in
fruits and vegetables, whole grain cereals, and beverages (e.g.,
tea, coffee, and wines). Initial studies showed that resveratrol
(RES), a stilbenoid found in dried fruits, berries, peanuts and
especially in grapes, modulates the levels of miR targeting
both oncogenes and tumor suppressor genes. In particular,
RES increases the levels of miR-663, a tumor suppressor
miR targeting TGFβ1 transcripts (Tili et al., 2010). Likewise,
α-mangostin (α-M), a xanthone from mangosteen pericarps,
exhibits anti-proliferative/pro-apoptotic effects by targeting
ERK5/c-Myc via miR-143 (Nakagawa et al., 2007). Subsequent
studies investigated the effects of phytochemical combinations,
including epigallocatechin-3-gallate (EGCG), RES, quercetin,
and α-M, or phytochemical association with anti-cancer drug
5-fluorouracil (5-FU). In this regard, it was demonstrated that
the combination of substances naturally occurring in the colonic
lumen after ingestion of polyphenol-containing food, such as
RES and quercetin, has a pro-apoptotic effect on CRC cells (Del
Follo-Martinez et al., 2013). The interplay of RES and quercetin
with the miR-27a-ZBTB10 axis, repressing Sp-1 activity, was
identified as one possible underlying mechanism. Combinations
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of RES with EGCG or α-M acted as chemo-sensitizer through
up-regulation of miR-34a and down-modulation of its target
genes E2F3 and Sirt1, leading to apoptosis induction (Kumazaki
et al., 2013). Lastly, α-M and 5-FU exerted a synergistic
effect on growth inhibition (Nakagawa et al., 2007). Additional
in vitro evidence showed that the flavonol-rich fractions from
botanical extracts, as well as red wine polyphenolics, inhibited
the generation of reactive oxygen species (ROS) and NF-κB
activation in colon cells by inducing miR-126 and miR-146a
(Noratto et al., 2011; Angel-Morales et al., 2012; Ojwang et al.,
2015).

The therapeutic potential of pomegranate (PO), of its main
polyphenolic compounds (ellagic acid, and ellagitannins)
as well as of their gut microbiota-derived metabolites
(urolithins), has been reported in vitro and in vivo CRC
models. Gonzalez-Sarrias et al. (2016) found relevant changes
in cancer markers and identified the induction of p21waf1/Cip1
(CDKN1A) as a common step underlying urolithin anticancer
properties. Interestingly, miR-224 down-regulation or miR-
215 up-regulation was associated with CDKN1A induction
(Gonzalez-Sarrias et al., 2016).

Among in vivo tested compounds, RES and
proanthocyanidin-rich extracts prevented tumorigenesis in
sporadic CRC models by suppressing Kras activity (Saud et al.,
2014) and inflammatory pathways (Derry et al., 2013), through
miR modulation. Likewise, PO polyphenols exerted cytotoxic
and anti-inflammatory effects in experimentally induced colon
carcinogenesis in rat and in CRC cells. Interaction of PO with
miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR axes were
identified as mechanisms that at least in part mediate the anti-
inflammatory/anti-proliferative activities of these compounds
(Banerjee et al., 2013). Interestingly, in a controlled human trial,
Nunez-Sanchez et al. (2015) demonstrated that PO consumption
affected specific colon miR other than miR-126. Lastly, canolol,
an anti-oxidant from canola oil, inhibited gastric tumor by
blocking COX-2/PGE2/EP2 signaling pathway in mouse models.
Interestingly, COX-2 is a functional target of miR-7, a tumor
suppressor miR reactivated after canolol administration (Cao
et al., 2015).

Another compound relevant to CRC prevention is curcumin,
a bioactive ingredient of turmeric, with anti-inflammatory,
antioxidant, and anti-carcinogenic properties (Patel et al.,
2010). Similarly to other polyphenols, modulation of miR
expression by curcumin in cell lines has been reported as a
mechanism underlying the effects of this compound (Reuter
et al., 2011). Several studies highlighted miR-21, an onco-
miR overexpressed in many tumors, as an important target of
curcumin activity. Curcumin inhibited miR-21 expression, tumor
growth, invasion and in vivo metastasis, and stabilized its tumor
suppressor target Pdcd4 in CRC cells (Mudduluru et al., 2011).
Likewise, curcumin-difluorinated (CDF), a curcumin analog
with a greater bioavailability, down-regulated miR-21 expression
in chemo-resistant CRC cell lines by restoring PTEN levels
and reducing Akt phosphorylation (Roy et al., 2013). Lastly,
miR-21 suppression in CRC cells induced differentiation and
increased their susceptibility to conventional (5-FU/oxaliplatin)
or non-conventional (CDF) therapeutic regimens as well as

their combination (Yu et al., 2013). In addition to miR-21,
curcumin and CDF rescued the expression of miR-34 family
members, lost in CRC, partly through demethylation of the
respective promoters (Roy et al., 2012). Curcumin-mediated
chemosensitization to 5-FU also occurred by up-regulation
of epithelial–mesenchymal transition (EMT)-suppressive miR,
including miR-34, further highlighting its potential therapeutic
usefulness as an adjunct in patients with chemoresistant advanced
CRC (Toden et al., 2015b). Likewise, key molecular mechanisms
were identified when curcumin or boswellic acid (AKBA) were
administered individually or in combination. These compounds
synergized to affect specific miR and target genes involved in
cell cycle regulation in CRC cell lines, including up-modulation
of miR-34 and down-regulation of miR-27 ultimately leading
to apoptosis induction, cell-cycle arrest and suppression of
proliferation (Toden et al., 2015a). In line with these findings,
curcumin or its most active synthetic analog RL197, inhibited
CRC cell growth by ROS induction and reduction of Sp
transcription factors and their regulators (i.e., ZBTB10 and
ZBTB4) through miR-27a, miR-20a, and miR-17 (Gandhy et al.,
2012), similarly to RES (Del Follo-Martinez et al., 2013). This
regulation has important implications because Sp transcription
factors regulate genes involved in cell death and angiogenesis and
are often overexpressed in tumors. Moreover, curcumin is known
to modulate DNA methylation in CRC cells, potentially exerting
its anti-cancer effect by affecting other epigenetic mechanisms
(Link et al., 2013).

ω3 PUFA found in walnuts, fish-oil, soybeans, green leafy
vegetables, and seed oils are among dietary factors known to have
an impact on miR involved in various stages of carcinogenesis,
with a documented protective role in cancer, including CRC
(Garcia-Segura et al., 2013). Conversely, ω6 PUFA (linoleic acid
and arachidonic acid) found in vegetable oils and red meat,
favor CRC onset (Abel et al., 2014). The protective effect of
ω3 PUFA [docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA)] rich diets against CRC relies on their ability to
modify gene expression and signaling pathways (Hou et al.,
2016). In gastric cancer models, DHA and EPA have been
reported to modulate apoptotic pathways. In fact ω3 PUFA
treatment increased miR-15b and miR-16 and decreased miR-
21, resulting in Bcl-2 down-regulation (Sun et al., 2013) and
TNF-α up-regulation (Fluckiger et al., 2016), respectively. DHA
also modulated the expression of specific miR (e.g., miR-30c
and miR-192) in enterocytes, targeting genes related to lipid
metabolism and cancer biology (Gil-Zamorano et al., 2014). In
preclinical models, administration of fish oil- or walnut-enriched
diets at early stages of carcinogenesis, modulated carcinogen-
directed miR expression, as well as that of miR associated
with inflammation, proliferation and apoptosis (Davidson et al.,
2009; Tsoukas et al., 2015). Furthermore, combination of dietary
fish oil and fermentable fiber pectin led to up-regulation
of several miR, including miR-19b, miR-26b, and miR-203,
whose validated targets (PDE4B, PTK2B, TCF4, IGF1R, and
BACE1) promote tumorigenesis, as compared to control corn
oil diet. Surprisingly, miR-21 was increased by the combination
diet as compared to the control diet (Shah et al., 2011,
2016).
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SCFA, such as acetate, butyrate, and propionate, represent
additional protective metabolites produced by gut microbiota
following fermentation of dietary fibers. Butyrate, a putative
chemoprotective agent, acts as a histone deacetylase inhibitor
(HDI) capable of decreasing proliferation and increasing
apoptosis in CRC cells (Bultman, 2016). Studies have
demonstrated that these effects are mediated in part through
induction of CDKN1A expression (Crim et al., 2008) and by
modulation of miR implicated in intestinal homeostasis and
malignant transformation. Humphreys et al. (2013) explored
the effects of butyrate and several other HDI on miR expression
in human CRC cell lines. They reported that these HDI
decrease miR-17∼92 cluster, while their target genes (e.g.,
PTEN, BCL2L11, CDKN1A) increase. Furthermore, butyrate
induced expression of CDKN1A by suppressing members of the
miR-106b family (Hu et al., 2011). Likewise, butyrate reduced
the levels of pri-miR17-92a, precursor and mature miR-92a,
as well as c-Myc, a main inducer of miR-17-92a promoter
activity. This led to enhanced expression of CDKN1C (p57KIP2;
Hu et al., 2015), one of the cyclin-dependent kinase inhibitors
found dysregulated in cancer (Kavanagh and Joseph, 2011).

As mentioned above, SCFA and fish oil ω3 PUFA worked
coordinately in vivo to protect against colon tumorigenesis
by modulating miR (Davidson et al., 2009; Shah et al., 2011,
2016). Collectively, these findings uncovered a novel mechanism
whereby butyrate suppresses onco-miR biogenesis, promotes
apoptosis and diminishes CRC cell proliferation.

PROMOTING EFFECTS

Although most bioactive nutrients exert a chemoprotective
role in CRC, tumor-promoting effects have also been
reported. Countries with high rates of overweight/obesity
and consumption of red and processed meat and high fat
intake show the highest CRC incidence (Bernstein et al., 2015).
Conversely, CR is inversely associated with CRC risk and
progression. The molecular mechanisms underlying these
effects are being elucidated and include miR regulation of gene
expression.

The effects of HFD and CR on miR expression were compared
in a mouse CRC model (Olivo-Marston et al., 2014). Together

FIGURE 1 | Effects of plant-animal inter-kingdom communication on CRC development via miR deregulation.
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with increased body weight and tumor numbers, HFD modulated
miR expression in colonic mucosa, up-regulating onco-miR
(e.g., miR-196 and miR-155) and concomitantly decreasing those
involved in apoptosis regulation (e.g., miR-150). Interestingly, an
opposite effect on tumor growth and miR expression was induced
by CR diet (Olivo-Marston et al., 2014). Furthermore, in sporadic
and inflammation-associated CRC models, HFD promoted
weight gain and cancer development through EGFR-mediated
induction of c-Myc and Kras (Dougherty et al., 2009). miR-143
and miR-145, negatively targeting these proto-oncogenes, were
down-regulated by HFD in both tumor models only in EGFR-
expressing mice, indicating that epigenetic changes associated
with diet-induced colon tumorigenesis require EGFR signaling
(Zhu et al., 2011). In a recent randomized dietary intervention
study, the impact of high red meat (HRM) diet on rectal mucosa
miR expression was examined (Humphreys et al., 2014). Short
duration HRM consumption increased the levels of miR-17-92
cluster as well as miR-21, highly expressed in CRC and associated
with poor survival. The enhanced miR-17-92 expression was
associated with decreased levels of the target gene CDKN1A,
and increased colonic cell proliferation. Supplementation with
resistant starch, yielding high butyrate/propionate production
when fermented, was able to reverse HRM effects on both miR-
17-92 expression and cell proliferation. This study reported
the first evidence in humans that HRM diet and resistant
starch have opposite effects on rectal mucosa miR expression,
supporting increased dietary fiber consumption as a mean for
maintaining intestinal health and reducing HRM diet-associated
CRC risk (Thompson, 2014). Likewise, dietary spinach had
a protective effect when administered to rats together with
heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-
b]pyridine (PhIP), a widely consumed carcinogen from cooked
meat (Parasramka et al., 2012). This study demonstrated that
a dietary carcinogen induces colon tumors with a signature
loss of miR-215 and miR-let7 family members, whose targets
(i.e., cyclin D1, HMGA2, β-catenin, c-Myc, p53) are known
to promote EMT or regulate cell cycle. Once again, PhIP-
induced down-modulation of miR expression, and concomitant
increase in tumor incidence, were reversed after dietary spinach
treatment, pointing to an important role of these latter in CRC
chemoprevention.

Dietary components involved in one-carbon metabolism
(folate, vitamin B12, cysteine, homocysteine) modulate miR
expression and influence cancer risk by regulating DNA
methylation pathways. Although a miR-mediated tumor
protective role for folic acid has been reported in several cancers
(Davis and Ross, 2008), in a recent study a pro-oncogenic
effect was instead observed in human CRC (Beckett et al.,
2015). Circulating folate levels directly correlated with serum
miR-21 expression and with adenomatous polyps occurrence
in females. Moreover, following stimulation of different CRC
cell lines with excess folic acid, a significant increase in miR-
21 release was found, suggesting a direct role for folate in

driving tumor growth (Beckett et al., 2015). As serum miR-21
has been proposed as a CRC biomarker, these data suggest that
dietary components/nutritional status may not only affect cancer
development/progression via ncRNA modulation but also need
to be considered when assessing the value of these molecules as
possible biomarkers.

CONCLUSION

ncRNA are recognized epigenetic regulators with a well-
established role in cancer (Di Leva et al., 2014). The potential
cross-interaction among plant or microbial and human miR
and their mRNA targets has been hypothesized by several
authors and has been suggested to play a role in disease onset.
The diet-mediated inter-kingdom signaling between plants and
animals, object of this review, can be considered as part of
a general vision of inter-kingdom communications mediated
by ncRNA. As schematically depicted in Figure 1, plants
and food, in addition to represent a source of xeno-miR,
epigenetically influence host gene expression and potentially
CRC development via miR deregulation. This supports the
evidence that consumption of certain types of food is relevant
for disease pathogenesis. Furthermore, diet indirectly affects
the composition and metabolism of gut microbiota. In turn,
microbiota influences nutrient uptake and epithelial resilience
and drives the conversion of food components and fibers into
metabolites that epigenetically regulate host gene expression.
Of note, a cross-talk between human and gut microbiota
through fecal miR has been recently highlighted (Celluzzi and
Masotti, 2016). Overall we can envisage that each individual
is placed in a complex inter-kingdom communication network
that contributes to maintain homeostasis. Disruption of this
equilibrium could set the basis for pathological states, for instance
intestinal dysbiosis, inflammation and CRC development.
Understanding the effects of dietary- and microbial-derived
factors on ncRNA regulation will likely represent an important
undertaken in human disease management. If successful, it may
provide insights for the developing novel prevention strategies to
reduce CRC burden.

AUTHOR CONTRIBUTIONS

MD, GD, LC, and SG contributed to the conception, writing, and
editing of this manuscript. All authors read and approved the
final manuscript.

FUNDING

This study was supported by a grant of the Italian Association for
Cancer Research (AIRC) project (IG2013 N.14185) to SG.

Frontiers in Microbiology | www.frontiersin.org 7 April 2017 | Volume 8 | Article 597

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00597 April 3, 2017 Time: 14:46 # 8

Del Cornò et al. Non-coding RNA, Diet, and Cancer

REFERENCES
Abdoullaye, D., Acevedo, I., Adebayo, A. A., Behrmann-Godel, J., Benjamin, R. C.,

Bock, D. G., et al. (2010). Permanent genetic resources added to molecular
ecology resources database 1 august 2009-30 september 2009. Mol. Ecol. Resour.
10, 232–236. doi: 10.1111/j.1755-0998.2009.02796.x

Abel, S., Riedel, S., and Gelderblom, W. C. (2014). Dietary PUFA and cancer. Proc.
Nutr. Soc. 73, 361–367. doi: 10.1017/S0029665114000585

Angel-Morales, G., Noratto, G., and Mertens-Talcott, S. (2012). Red wine
polyphenolics reduce the expression of inflammation markers in human colon-
derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food
Funct. 3, 745–752. doi: 10.1039/c2fo10271d

Banerjee, N., Kim, H., Talcott, S., and Mertens-Talcott, S. (2013). Pomegranate
polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt
foci and inflammation: possible role of miR-126/VCAM-1 and miR-
126/PI3K/AKT/mTOR. Carcinogenesis 34, 2814–2822. doi: 10.1093/carcin/
bgt295

Bardou, M., Barkun, A. N., and Martel, M. (2013). Obesity and colorectal cancer.
Gut 62, 933–947. doi: 10.1136/gutjnl-2013-304701

Beckett, E. L., Martin, C., Choi, J. H., King, K., Niblett, S., Boyd, L., et al. (2015).
Folate status, folate-related genes and serum miR-21 expression: Implications
for miR-21 as a biomarker. BBAClin. 4, 45–51. doi: 10.1016/j.bbacli.2015.06.006

Beddy, P., Howard, J., McMahon, C., Knox, M., de Blacam, C., Ravi, N., et al.
(2010). Association of visceral adiposity with oesophageal and junctional
adenocarcinomas. Br. J. Surg. 97, 1028–1034. doi: 10.1002/bjs.7100

Bernstein, A. M., Song, M., Zhang, X., Pan, A., Wang, M., Fuchs, C. S., et al.
(2015). Processed and unprocessed red meat and risk of colorectal cancer:
analysis by tumor location and modification by time. PLoS ONE 10:e0135959.
doi: 10.1371/journal.pone.0135959

Bultman, S. J. (2016). Interplay between diet, gut microbiota, epigenetic events, and
colorectal cancer. Mol. Nutr. Food Res. 61, 1–2. doi: 10.1002/mnfr.201500902

Cao, D., Jiang, J., Tsukamoto, T., Liu, R., Ma, L., Jia, Z., et al. (2015). Canolol inhibits
gastric tumors initiation and progression through COX-2/PGE2 pathway in
K19-C2mE transgenic mice. PLoSONE 10:e0120938. doi: 10.1371/journal.pone.
0120938

Celluzzi, A., and Masotti, A. (2016). How our other genome controls our epi-
genome. Trends Microbiol. 24, 777–787. doi: 10.1016/j.tim.2016.05.005

Crim, K. C., Sanders, L. M., Hong, M. Y., Taddeo, S. S., Turner, N. D., Chapkin,
R. S., et al. (2008). Upregulation of p21Waf1/Cip1 expression in vivo by butyrate
administration can be chemoprotective or chemopromotive depending on the
lipid component of the diet. Carcinogenesis 29, 1415–1420. doi: 10.1093/carcin/
bgn144

Davidson, L. A., Wang, N., Shah, M. S., Lupton, J. R., Ivanov, I., and Chapkin,
R. S. (2009). n-3 Polyunsaturated fatty acids modulate carcinogen-directed
non-coding microRNA signatures in rat colon. Carcinogenesis 30, 2077–2084.
doi: 10.1093/carcin/bgp245

Davis, C. D., and Ross, S. A. (2008). Evidence for dietary regulation of microRNA
expression in cancer cells. Nutr. Rev. 66, 477–482. doi: 10.1111/j.1753-4887.
2008.00080.x

Del Follo-Martinez, A., Banerjee, N., Li, X., Safe, S., and Mertens-Talcott, S. (2013).
Resveratrol and quercetin in combination have anticancer activity in colon
cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer 65, 494–504.
doi: 10.1080/01635581.2012.725194

Derry, M. M., Raina, K., Balaiya, V., Jain, A. K., Shrotriya, S., Huber, K. M.,
et al. (2013). Grape seed extract efficacy against azoxymethane-induced colon
tumorigenesis in A/J mice: interlinking miRNA with cytokine signaling and
inflammation. Cancer Prev. Res. 6, 625–633. doi: 10.1158/1940-6207.CAPR-13-
0053

Di Leva, G., Garofalo, M., and Croce, C. M. (2014). MicroRNAs in cancer. Annu.
Rev. Pathol. 9, 287–314. doi: 10.1146/annurev-pathol-012513-104715

Dougherty, U., Cerasi, D., Taylor, I., Kocherginsky, M., Tekin, U., Badal, S.,
et al. (2009). Epidermal growth factor receptor is required for colonic tumor
promotion by dietary fat in the azoxymethane/dextran sulfate sodium model:
roles of transforming growth factor-{alpha} and PTGS2. Clin. Cancer Res. 15,
6780–6789. doi: 10.1158/1078-0432.CCR-09-1678

Ekbom, A., Helmick, C., Zack, M., and Adami, H. O. (1990). Ulcerative colitis and
colorectal cancer. A population-based study. N. Engl. J. Med. 323, 1228–1233.
doi: 10.1056/NEJM199011013231802

Fabris, L., and Calin, G. A. (2016). Circulating free xeno-microRNAs - The new
kids on the block. Mol. Oncol. 10, 503–508. doi: 10.1016/j.molonc.2016.01.005

Feagins, L. A., Souza, R. F., and Spechler, S. J. (2009). Carcinogenesis in IBD:
potential targets for the prevention of colorectal cancer. Nat. Rev. Gastroenterol.
Hepatol. 6, 297–305. doi: 10.1038/nrgastro.2009.44

Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al.
(2015). Cancer incidence and mortality worldwide: sources, methods and major
patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386. doi: 10.1002/ijc.
29210

Fluckiger, A., Dumont, A., Derangere, V., Rebe, C., de Rosny, C., Causse, S., et al.
(2016). Inhibition of colon cancer growth by docosahexaenoic acid involves
autocrine production of TNFalpha. Oncogene 35, 4611–4622. doi: 10.1038/onc.
2015.523

Gandhy, S. U., Kim, K., Larsen, L., Rosengren, R. J., and Safe, S. (2012). Curcumin
and synthetic analogs induce reactive oxygen species and decreases specificity
protein (Sp) transcription factors by targeting microRNAs. BMCCancer 12:564.
doi: 10.1186/1471-2407-12-564

Garcia-Segura, L., Perez-Andrade, M., and Miranda-Rios, J. (2013). The emerging
role of MicroRNAs in the regulation of gene expression by nutrients.
J. Nutrigenet. Nutrigenomics 6, 16–31. doi: 10.1159/000345826

Gavrilas, L. I., Ionescu, C., Tudoran, O., Lisencu, C., Balacescu, O., and Miere, D.
(2016). The role of bioactive dietary components in modulating miRNA
expression in colorectal cancer. Nutrients 8:E590. doi: 10.3390/nu8100590

Gil-Zamorano, J., Martin, R., Daimiel, L., Richardson, K., Giordano, E., Nicod, N.,
et al. (2014). Docosahexaenoic acid modulates the enterocyte Caco-2 cell
expression of microRNAs involved in lipid metabolism. J. Nutr. 144, 575–585.
doi: 10.3945/jn.113.189050

Gonzalez-Sarrias, A., Nunez-Sanchez, M. A., Tome-Carneiro, J., Tomas-Barberan,
F. A., Garcia-Conesa, M. T., and Espin, J. C. (2016). Comprehensive
characterization of the effects of ellagic acid and urolithins on colorectal cancer
and key-associated molecular hallmarks: microRNA cell specific induction of
CDKN1A (p21) as a common mechanism involved. Mol. Nutr. Food Res. 60,
701–716. doi: 10.1002/mnfr.201500780

Ha, C. W., Lam, Y. Y., and Holmes, A. J. (2014). Mechanistic links between gut
microbial community dynamics, microbial functions and metabolic health.
World J. Gastroenterol. 20, 16498–16517. doi: 10.3748/wjg.v20.i44.16498

Haggar, F. A., and Boushey, R. P. (2009). Colorectal cancer epidemiology:
incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 22,
191–197. doi: 10.1055/s-0029-1242458

Hardy, T. M., and Tollefsbol, T. O. (2011). Epigenetic diet: impact on the
epigenome and cancer. Epigenomics 3, 503–518. doi: 10.2217/epi.11.71

Hou, T. Y., Davidson, L. A., Kim, E., Fan, Y. Y., Fuentes, N. R., Triff, K., et al. (2016).
Nutrient-gene interaction in colon cancer, from the membrane to cellular
physiology. Annu. Rev. Nutr. 36, 543–570. doi: 10.1146/annurev-nutr-071715-
051039

Hu, S., Dong, T. S., Dalal, S. R., Wu, F., Bissonnette, M., Kwon, J. H., et al.
(2011). The microbe-derived short chain fatty acid butyrate targets miRNA-
dependent p21 gene expression in human colon cancer. PLoS ONE 6:e16221.
doi: 10.1371/journal.pone.0016221

Hu, S., Liu, L., Chang, E. B., Wang, J. Y., and Raufman, J. P. (2015). Butyrate
inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-
92a cluster transcription in human colon cancer cells. Mol. Cancer 14, 180.
doi: 10.1186/s12943-015-0450-x

Humphreys, K. J., Cobiac, L., Le Leu, R. K., Van der Hoek, M. B., and Michael,
M. Z. (2013). Histone deacetylase inhibition in colorectal cancer cells reveals
competing roles for members of the oncogenic miR-17-92 cluster. Mol.
Carcinog. 52, 459–474. doi: 10.1002/mc.21879

Humphreys, K. J., Conlon, M. A., Young, G. P., Topping, D. L., Hu, Y., Winter,
J. M., et al. (2014). Dietary manipulation of oncogenic microRNA expression
in human rectal mucosa: a randomized trial. Cancer Prev. Res. 7, 786–795.
doi: 10.1158/1940-6207.CAPR-14-0053

Kavanagh, E., and Joseph, B. (2011). The hallmarks of CDKN1C (p57, KIP2) in
cancer. Biochim. Biophys. Acta 1816, 50–56. doi: 10.1016/j.bbcan.2011.03.002

Kumazaki, M., Noguchi, S., Yasui, Y., Iwasaki, J., Shinohara, H., Yamada, N.,
et al. (2013). Anti-cancer effects of naturally occurring compounds through
modulation of signal transduction and miRNA expression in human colon
cancer cells. J. Nutr. Biochem. 24, 1849–1858. doi: 10.1016/j.jnutbio.2013.
04.006

Frontiers in Microbiology | www.frontiersin.org 8 April 2017 | Volume 8 | Article 597

https://doi.org/10.1111/j.1755-0998.2009.02796.x
https://doi.org/10.1017/S0029665114000585
https://doi.org/10.1039/c2fo10271d
https://doi.org/10.1093/carcin/bgt295
https://doi.org/10.1093/carcin/bgt295
https://doi.org/10.1136/gutjnl-2013-304701
https://doi.org/10.1016/j.bbacli.2015.06.006
https://doi.org/10.1002/bjs.7100
https://doi.org/10.1371/journal.pone.0135959
https://doi.org/10.1002/mnfr.201500902
https://doi.org/10.1371/journal.pone.0120938
https://doi.org/10.1371/journal.pone.0120938
https://doi.org/10.1016/j.tim.2016.05.005
https://doi.org/10.1093/carcin/bgn144
https://doi.org/10.1093/carcin/bgn144
https://doi.org/10.1093/carcin/bgp245
https://doi.org/10.1111/j.1753-4887.2008.00080.x
https://doi.org/10.1111/j.1753-4887.2008.00080.x
https://doi.org/10.1080/01635581.2012.725194
https://doi.org/10.1158/1940-6207.CAPR-13-0053
https://doi.org/10.1158/1940-6207.CAPR-13-0053
https://doi.org/10.1146/annurev-pathol-012513-104715
https://doi.org/10.1158/1078-0432.CCR-09-1678
https://doi.org/10.1056/NEJM199011013231802
https://doi.org/10.1016/j.molonc.2016.01.005
https://doi.org/10.1038/nrgastro.2009.44
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1038/onc.2015.523
https://doi.org/10.1038/onc.2015.523
https://doi.org/10.1186/1471-2407-12-564
https://doi.org/10.1159/000345826
https://doi.org/10.3390/nu8100590
https://doi.org/10.3945/jn.113.189050
https://doi.org/10.1002/mnfr.201500780
https://doi.org/10.3748/wjg.v20.i44.16498
https://doi.org/10.1055/s-0029-1242458
https://doi.org/10.2217/epi.11.71
https://doi.org/10.1146/annurev-nutr-071715-051039
https://doi.org/10.1146/annurev-nutr-071715-051039
https://doi.org/10.1371/journal.pone.0016221
https://doi.org/10.1186/s12943-015-0450-x
https://doi.org/10.1002/mc.21879
https://doi.org/10.1158/1940-6207.CAPR-14-0053
https://doi.org/10.1016/j.bbcan.2011.03.002
https://doi.org/10.1016/j.jnutbio.2013.04.006
https://doi.org/10.1016/j.jnutbio.2013.04.006
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00597 April 3, 2017 Time: 14:46 # 9

Del Cornò et al. Non-coding RNA, Diet, and Cancer

Lee, D. H., Keum, N., and Giovannucci, E. L. (2016). Colorectal cancer
epidemiology in the nurses’ health study. Am. J. Public Health 106, 1599–1607.
doi: 10.2105/AJPH.2016.303320

Link, A., Balaguer, F., Shen, Y., Lozano, J. J., Leung, H. C., Boland, C. R., et al.
(2013). Curcumin modulates DNA methylation in colorectal cancer cells.
PLoS ONE 8:e57709. doi: 10.1371/journal.pone.0057709

Lozcano-Ponce, E. (2009). Second expert report, food, nutrition, physical activity
and the prevention of cancer: a global perspective. Salud Publica Mexico 51,
S678–S680. doi: 10.1590/S0036-36342009001000024

Martinez-Gonzalez, M. A., Salas-Salvado, J., Estruch, R., Corella, D. D., Fito, M.,
and Ros, E. (2015). Benefits of the mediterranean diet: insights from the
PREDIMED study. Prog. Cardiovasc. Dis. 58, 50–60. doi: 10.1016/j.pcad.2015.
04.003

Milagro, F. I., Mansego, M. L., De Miguel, C., and Martinez, J. A. (2013).
Dietary factors, epigenetic modifications and obesity outcomes: progresses and
perspectives. Mol. Aspects Med. 34, 782–812. doi: 10.1016/j.mam.2012.06.010

Mudduluru, G., George-William, J. N., Muppala, S., Asangani, I. A.,
Kumarswamy, R., Nelson, L. D., et al. (2011). Curcumin regulates miR-21
expression and inhibits invasion and metastasis in colorectal cancer. Biosci.
Rep. 31, 185–197. doi: 10.1042/BSR20100065

Nakagawa, Y., Iinuma, M., Naoe, T., Nozawa, Y., and Akao, Y. (2007).
Characterized mechanism of alpha-mangostin-induced cell death: caspase-
independent apoptosis with release of endonuclease-G from mitochondria and
increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg.
Med. Chem. 15, 5620–5628. doi: 10.1016/j.bmc.2007.04.071

Norat, T., Scoccianti, C., Boutron-Ruault, M. C., Anderson, A., Berrino, F.,
Cecchini, M., et al. (2015). European code against cancer 4th edition: diet and
cancer. Cancer Epidemiol. 39(Suppl. 1), S56–S66. doi: 10.1016/j.canep.2014.12.
016

Noratto, G. D., Kim, Y., Talcott, S. T., and Mertens-Talcott, S. U. (2011). Flavonol-
rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce
microRNA-146a and have anti-inflammatory and chemopreventive effects in
intestinal myofibroblast CCD-18Co cells. Fitoterapia 82, 557–569. doi: 10.1016/
j.fitote.2011.01.013

Nunez-Sanchez, M. A., Davalos, A., Gonzalez-Sarrias, A., Casas-Agustench, P.,
Visioli, F., Monedero-Saiz, T., et al. (2015). MicroRNAs expression in normal
and malignant colon tissues as biomarkers of colorectal cancer and in response
to pomegranate extracts consumption: critical issues to discern between
modulatory effects and potential artefacts. Mol. Nutr. Food Res. 59, 1973–1986.
doi: 10.1002/mnfr.201500357

Ojwang, L. O., Banerjee, N., Noratto, G. D., Angel-Morales, G., Hachibamba, T.,
Awika, J. M., et al. (2015). Polyphenolic extracts from cowpea (Vigna
unguiculata) protect colonic myofibroblasts (CCD18Co cells) from
lipopolysaccharide (LPS)-induced inflammation–modulation of microRNA
126. Food Funct. 6, 146–154. doi: 10.1039/c4fo00459k

O’Keefe, S. J., Li, J. V., Lahti, L., Ou, J., Carbonero, F., Mohammed, K., et al.
(2015). Fat, fibre and cancer risk in African Americans and rural Africans. Nat.
Commun. 6:6342. doi: 10.1038/ncomms7342

Okugawa, Y., Grady, W. M., and Goel, A. (2015). Epigenetic alterations in
colorectal cancer: emerging biomarkers. Gastroenterology 149, 1204–1225.e12.
doi: 10.1053/j.gastro.2015.07.011

Olivo-Marston, S. E., Hursting, S. D., Perkins, S. N., Schetter, A., Khan, M.,
Croce, C., et al. (2014). Effects of calorie restriction and diet-induced obesity on
murine colon carcinogenesis, growth and inflammatory factors, and microRNA
expression. PLoS ONE 9:e94765. doi: 10.1371/journal.pone.0094765

Parasramka, M. A., Dashwood, W. M., Wang, R., Abdelli, A., Bailey, G. S., Williams,
D. E., et al. (2012). MicroRNA profiling of carcinogen-induced rat colon tumors
and the influence of dietary spinach. Mol. Nutr. Food Res. 56, 1259–1269.
doi: 10.1002/mnfr.201200117

Park, J., Morley, T. S., Kim, M., Clegg, D. J., and Scherer, P. E. (2014). Obesity and
cancer–mechanisms underlying tumour progression and recurrence. Nat. Rev.
Endocrinol. 10, 455–465. doi: 10.1038/nrendo.2014.94

Parkin, E., O’Reilly, D. A., Sherlock, D. J., Manoharan, P., and Renehan, A. G.
(2014). Excess adiposity and survival in patients with colorectal cancer: a
systematic review. Obes. Rev. 15, 434–451. doi: 10.1111/obr.12140

Patel, V. B., Misra, S., Patel, B. B., and Majumdar, A. P. (2010). Colorectal cancer:
chemopreventive role of curcumin and resveratrol. Nutr. Cancer 62, 958–967.
doi: 10.1080/01635581.2010.510259

Pietrzyk, L., Torres, A., Maciejewski, R., and Torres, K. (2015). Obesity and obese-
related chronic low-grade inflammation in promotion of colorectal cancer
development. Asian Pac. J. Cancer Prev. 16, 4161–4168. doi: 10.7314/APJCP.
2015.16.10.4161

Ramalingam, S., Subramaniam, D., and Anant, S. (2015). Manipulating miRNA
expression: a novel approach for colon cancer prevention and chemotherapy.
Curr. Pharmacol. Rep. 1, 141–153. doi: 10.1007/s40495-015-0020-3

Renehan, A. G., Roberts, D. L., and Dive, C. (2008). Obesity and cancer:
pathophysiological and biological mechanisms. Arch. Physiol. Biochem. 114,
71–83. doi: 10.1080/13813450801954303

Ress, A. L., Perakis, S., and Pichler, M. (2015). microRNAs and colorectal cancer.
Adv. Exp. Med. Biol. 889, 89–103. doi: 10.1007/978-3-319-23730-5_6

Reuter, S., Gupta, S. C., Park, B., Goel, A., and Aggarwal, B. B. (2011). Epigenetic
changes induced by curcumin and other natural compounds. Genes Nutr. 6,
93–108. doi: 10.1007/s12263-011-0222-1

Roy, S., Levi, E., Majumdar, A. P., and Sarkar, F. H. (2012). Expression of miR-34 is
lost in colon cancer which can be re-expressed by a novel agent CDF. J. Hematol.
Oncol. 5:58. doi: 10.1186/1756-8722-5-58

Roy, S., Yu, Y., Padhye, S. B., Sarkar, F. H., and Majumdar, A. P. (2013).
Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells
by down-regulating miR-21. PLoS ONE 8:e68543. doi: 10.1371/journal.pone.
0068543

Saud, S. M., Li, W., Morris, N. L., Matter, M. S., Colburn, N. H., Kim, Y. S.,
et al. (2014). Resveratrol prevents tumorigenesis in mouse model of Kras
activated sporadic colorectal cancer by suppressing oncogenic Kras expression.
Carcinogenesis 35, 2778–2786. doi: 10.1093/carcin/bgu209

Schou, J. V., Johansen, J., Nielsen, D., and Rossi, S. (2016). Circulating microRNAs
as prognostic and predictive biomarkers in patients with colerectal cancer.
Noncoding RNA 2:5. doi: 10.3390/ncrna2020005

Shah, M. S., Kim, E., Davidson, L. A., Knight, J. M., Zoh, R. S., Goldsby, J. S., et al.
(2016). Comparative effects of diet and carcinogen on microRNA expression
in the stem cell niche of the mouse colonic crypt. Biochim. Biophys. Acta 1862,
121–134. doi: 10.1016/j.bbadis.2015.10.012

Shah, M. S., Schwartz, S. L., Zhao, C., Davidson, L. A., Zhou, B., Lupton, J. R., et al.
(2011). Integrated microRNA and mRNA expression profiling in a rat colon
carcinogenesis model: effect of a chemo-protective diet. Physiol. Genomics 43,
640–654. doi: 10.1152/physiolgenomics.00213.2010

Siegel, R. L., Miller, K. D., and Jemal, A. (2016). Cancer statistics, 2016. CA Cancer
J. Clin. 66, 7–30. doi: 10.3322/caac.21332

Sun, H., Meng, X., Han, J., Zhang, Z., Wang, B., Bai, X., et al. (2013). Anti-cancer
activity of DHA on gastric cancer–an in vitro and in vivo study. Tumour. Biol.
34, 3791–3800. doi: 10.1007/s13277-013-0963-0

Thompson, P. A. (2014). Navigating the maize between red meat and oncomirs.
Cancer Prev. Res. 7, 777–780. doi: 10.1158/1940-6207.CAPR-14-0196

Tili, E., Michaille, J. J., Alder, H., Volinia, S., Delmas, D., Latruffe, N., et al.
(2010). Resveratrol modulates the levels of microRNAs targeting genes
encoding tumor-suppressors and effectors of TGFbeta signaling pathway in
SW480 cells. Biochem. Pharmacol. 80, 2057–2065. doi: 10.1016/j.bcp.2010.
07.003

Toden, S., Okugawa, Y., Buhrmann, C., Nattamai, D., Anguiano, E., Baldwin, N.,
et al. (2015a). Novel evidence for curcumin and boswellic acid-induced
chemoprevention through regulation of miR-34a and miR-27a in colorectal
cancer. Cancer Prev. Res. 8, 431–443. doi: 10.1158/1940-6207.CAPR-
14-0354

Toden, S., Okugawa, Y., Jascur, T., Wodarz, D., Komarova, N. L., Buhrmann, C.,
et al. (2015b). Curcumin mediates chemosensitization to 5-fluorouracil
through miRNA-induced suppression of epithelial-to-mesenchymal transition
in chemoresistant colorectal cancer. Carcinogenesis 36, 355–367. doi: 10.1093/
carcin/bgv006

Torre, L. A., Siegel, R. L., Ward, E. M., and Jemal, A. (2016). Global cancer
incidence and mortality rates and trends–an update. Cancer Epidemiol.
Biomarkers. Prev. 25, 16–27. doi: 10.1158/1055-9965.EPI-15-0578

Tsoukas, M. A., Ko, B. J., Witte, T. R., Dincer, F., Hardman, W. E., and Mantzoros,
C. S. (2015). Dietary walnut suppression of colorectal cancer in mice: mediation
by miRNA patterns and fatty acid incorporation. J. Nutr. Biochem. 26, 776–783.
doi: 10.1016/j.jnutbio.2015.02.009

Turati, F., Edefonti, V., Bravi, F., Ferraroni, M., Talamini, R., Giacosa, A.,
et al. (2012). Adherence to the European food safety authority’s dietary

Frontiers in Microbiology | www.frontiersin.org 9 April 2017 | Volume 8 | Article 597

https://doi.org/10.2105/AJPH.2016.303320
https://doi.org/10.1371/journal.pone.0057709
https://doi.org/10.1590/S0036-36342009001000024
https://doi.org/10.1016/j.pcad.2015.04.003
https://doi.org/10.1016/j.pcad.2015.04.003
https://doi.org/10.1016/j.mam.2012.06.010
https://doi.org/10.1042/BSR20100065
https://doi.org/10.1016/j.bmc.2007.04.071
https://doi.org/10.1016/j.canep.2014.12.016
https://doi.org/10.1016/j.canep.2014.12.016
https://doi.org/10.1016/j.fitote.2011.01.013
https://doi.org/10.1016/j.fitote.2011.01.013
https://doi.org/10.1002/mnfr.201500357
https://doi.org/10.1039/c4fo00459k
https://doi.org/10.1038/ncomms7342
https://doi.org/10.1053/j.gastro.2015.07.011
https://doi.org/10.1371/journal.pone.0094765
https://doi.org/10.1002/mnfr.201200117
https://doi.org/10.1038/nrendo.2014.94
https://doi.org/10.1111/obr.12140
https://doi.org/10.1080/01635581.2010.510259
https://doi.org/10.7314/APJCP.2015.16.10.4161
https://doi.org/10.7314/APJCP.2015.16.10.4161
https://doi.org/10.1007/s40495-015-0020-3
https://doi.org/10.1080/13813450801954303
https://doi.org/10.1007/978-3-319-23730-5_6
https://doi.org/10.1007/s12263-011-0222-1
https://doi.org/10.1186/1756-8722-5-58
https://doi.org/10.1371/journal.pone.0068543
https://doi.org/10.1371/journal.pone.0068543
https://doi.org/10.1093/carcin/bgu209
https://doi.org/10.3390/ncrna2020005
https://doi.org/10.1016/j.bbadis.2015.10.012
https://doi.org/10.1152/physiolgenomics.00213.2010
https://doi.org/10.3322/caac.21332
https://doi.org/10.1007/s13277-013-0963-0
https://doi.org/10.1158/1940-6207.CAPR-14-0196
https://doi.org/10.1016/j.bcp.2010.07.003
https://doi.org/10.1016/j.bcp.2010.07.003
https://doi.org/10.1158/1940-6207.CAPR-14-0354
https://doi.org/10.1158/1940-6207.CAPR-14-0354
https://doi.org/10.1093/carcin/bgv006
https://doi.org/10.1093/carcin/bgv006
https://doi.org/10.1158/1055-9965.EPI-15-0578
https://doi.org/10.1016/j.jnutbio.2015.02.009
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00597 April 3, 2017 Time: 14:46 # 10

Del Cornò et al. Non-coding RNA, Diet, and Cancer

recommendations and colorectal cancer risk. Eur. J. Clin. Nutr. 66, 517–522.
doi: 10.1038/ejcn.2011.217

WHO (2015). Obesity and Overweight. Available at: http://www.who.int/
mediacentre/factsheets/fs311/en/

Wiseman, M. (2008). The second World Cancer Research Fund/American Institute
for Cancer Research expert report. Food, nutrition, physical activity, and the
prevention of cancer: a global perspective. Proc. Nutr. Soc. 67, 253–256. doi:
10.1017/S002966510800712X

Yu, Y., Sarkar, F. H., and Majumdar, A. P. (2013). Down-regulation of miR-
21 induces differentiation of chemoresistant colon cancer cells and enhances
susceptibility to therapeutic regimens. Transl. Oncol. 6, 180–186. doi: 10.1593/
tlo.12397

Zhu, H., Dougherty, U., Robinson, V., Mustafi, R., Pekow, J., Kupfer, S., et al.
(2011). EGFR signals downregulate tumor suppressors miR-143 and miR-145 in

Western diet-promoted murine colon cancer: role of G1 regulators.Mol. Cancer
Res. 9, 960–975. doi: 10.1158/1541-7786.MCR-10-0531

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Del Cornò, Donninelli, Conti and Gessani. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | www.frontiersin.org 10 April 2017 | Volume 8 | Article 597

https://doi.org/10.1038/ejcn.2011.217
http://www.who.int/mediacentre/factsheets/fs311/en/
http://www.who.int/mediacentre/factsheets/fs311/en/
https://doi.org/10.1017/S002966510800712X
https://doi.org/10.1017/S002966510800712X
https://doi.org/10.1593/tlo.12397
https://doi.org/10.1593/tlo.12397
https://doi.org/10.1158/1541-7786.MCR-10-0531
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Linking Diet to Colorectal Cancer: The Emerging Role of MicroRNA in the Communication between Plant and Animal Kingdoms
	Introduction
	The Dual Effect Of Dietary Patterns And/Or Bioactive Food Components In Crc: The Role Of miR
	Protective Effects
	Promoting Effects
	Conclusion
	Author Contributions
	Funding
	References


