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Technological progress in computer science and neuroimaging has resulted in many
approaches that aim to detect brain states and translate them to an external output.
Studies from the field of brain-computer interfaces (BCI) and neurofeedback (NF) have
validated the coupling between brain signals and computer devices; however a cognitive
model of the processes involved remains elusive. Psychological parameters usually play a
moderate role in predicting the performance of BCI and NF users. The concept of a locus
of control, i.e., whether one’s own action is determined by internal or external causes,
may help to unravel inter-individual performance capacities. Here, we present data from
20 healthy participants who performed a feedback task based on EEG recordings of the
sensorimotor rhythm (SMR). One group of 10 participants underwent 10 training sessions
where the amplitude of the SMR was coupled to a vertical feedback bar. The other group
of ten participants participated in the same task but relied on sham feedback. Our analysis
revealed that a locus of control score focusing on control beliefs with regard to technology
negatively correlated with the power of SMR. These preliminary results suggest that
participants whose confidence in control over technical devices is high might consume
additional cognitive resources. This higher effort in turn may interfere with brain states of
relaxation as reflected in the SMR. As a consequence, one way to improve control over
brain signals in NF paradigms may be to explicitly instruct users not to force mastery but
instead to aim at a state of effortless relaxation.

Keywords: EEG, locus of control, neurofeedback, performance prediction, sensorimotor rhythm

INTRODUCTION
In the last twenty years of neuroimaging research a clear view
has emerged that patterns of brain activity can be directly linked
to different cognitive states. Users of neurofeedback (NF) can
learn to modulate their brain signals over several training sessions.
Alternatively, using multivariate analysis methods one can try
to decode these brain states and use the output of a classifier
to control external devices in a so-called brain-computer inter-
face (BCI). A key concept behind all these approaches is the
assumption that the brain activations associated with a cognitive
state are stable over time, highly specific and distinct from other
states. However, these prerequisites are not always fulfilled and
the neural correlates of a cognitive state are masked by various
sources of physiological and environmental noise. The search for
reliable predictors of performance therefore remains one of the
major challenges in this field of research.

To achieve a reliable readout of brain patterns most BCI
studies have put the primary load on the machine-learning side.
This seems a straightforward approach as the goal of many BCIs is
to detect overt brain states, like decoding movement parameters
or stimulus-evoked activity (for review see: Donoghue, 2008;
Green and Kalaska, 2011). Here, a standard procedure is
to adapt the classification across participants and sessions

(McFarland et al., 2005; Shenoy et al., 2006; Blumberg et al.,
2007; Vidaurre et al., 2007). In contrast, NF is inspired by
conditioning and often modulates a covert, unconscious state
by immediate reward. One of the best described examples is
the voluntary regulation of slow cortical potentials in healthy
participants and paralyzed patients (Birbaumer et al., 1999;
Kubler et al., 1999, 2001; Neumann and Birbaumer, 2003). It has
been shown that self-regulation of these brain signals is optimally
learned without giving definite strategies (Birbaumer et al.,
1988; Neumann et al., 2003). An issue in this design is that
users may feel lost at early stages of training and start to
explore different ways to regulate their brain activity. Due to the
immediate closed-loop feedback this “trial-and-error” learning
can result in progressively better control and is believed to
ultimately lead to an automated skill (Wolpaw and McFarland,
1994; Neumann and Birbaumer, 2003; Hinterberger et al., 2005).
However, the literature has also described a significant proportion
of people who are unable to gain control over signals in BCI
and NF paradigms (Guger et al., 2003; Kübler et al., 2004;
Nijboer et al., 2008; Blankertz et al., 2010b). The reasons for
this phenomenon of “illiteracy” are still unknown and only
few studies tried to assess predictors of successful performance.
Factors like mood, motivation, intelligence and personal traits
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have been reported to show only moderate correlations to
performance in healthy and impaired participants (Nijboer et al.,
2008, 2010; Kleih et al., 2010; Hammer et al., 2012). Yet there
is evidence from neuropsychological tests that part of the
variations seen in NF training may be connected to memory
and attentional abilities of participants (Roberts et al., 1989;
Daum et al., 1993; Holzapfel et al., 1998). In particular, fronto-
parietal gamma-band activity has been reported to influence
sensorimotor activity, presumably reflecting attentional networks
(Grosse-Wentrup and Schölkopf, 2012). Furthermore, the
initial performance level was shown to have some predictive
value for future performance (Neumann and Birbaumer, 2003;
Kübler et al., 2004). These results may thus suggest that the
overall, not necessarily task-related, cognitive resources impact
the level of control in NF and BCI tasks.

Given that all experiments in the field of BCI and NF imply the
use and interaction with technologic environments it is surprising
that only one study directly assessed how technology commit-
ment may impact performance (Burde and Blankertz, 2006). The
authors evaluated the “locus of control of reinforcement” (LOC),
a psychological construct developed by Rotter’s social learning
theory (Rotter, 1966). According to this theory, people with an
external LOC tend to attribute the result of their own actions to
external sources like luck, chance or unpredictable circumstances.
Conversely, an internal LOC describes the personal trait to link
results and own actions and thus people feel that they are in
control of the situation. Burde and Blankertz (2006) assessed the
general control belief with an IPC (Internal, Powerful Others
and Chance) questionnaire (Krampen, 1981) and the specific
interaction with technology as indexed by the KUT (Kontrollue-
berzeugug im Umgang mit Technik), i.e., control beliefs while
dealing with technology (Beier, 1999, 2004). They reported a
positive correlation between KUT scores and BCI performance
in 12 healthy participants partaking in a motor imagery task.
However, only a single session was recorded and the features for
classification were individually adapted for each participant.

We therefore sought to clarify whether control beliefs while
dealing with technology, as reflected in the KUT score, can
predict performance in NF training over several sessions.
To this end, 10 participants trained to gain control over
their sensorimotor rhythm (SMR, 12–15 Hz) in 10 sessions
spanning up to five weeks via real-time visual feedback. An
additional control group of 10 participants took part in the
same protocol but received sham visual feedback. SMR is
known to originate from thalamo-cortical loops and increased
SMR amplitude is found during states of relaxed wakefulness
with reduced sensory and motor excitability (Gruzelier et al.,
2006; Serruya and Kahana, 2008). Because SMR desynchronizes
during movement execution and during motor imagery in
an event-related manner (Pfurtscheller and Neuper, 1997;
Pfurtscheller and Lopes Da Silva, 1999; McFarland et al., 2000), it
has been extensively used in BCI research (Cincotti et al., 2003;
Pfurtscheller et al., 2006; Mellinger et al., 2007; Blankertz et al.,
2010a). The opposing effect of voluntarily increasing SMR
amplitude can also be learned through NF training (Vernon et al.,
2003; Egner et al., 2004; Hoedlmoser et al., 2008; Weber et al.,
2011; de Zambotti et al., 2012). However, only few studies

investigated the changes of SMR over longer time periods
of training and, to our knowledge, there is no report on the
influence of technology commitment in training scenarios.

MATERIALS AND METHODS
PARTICIPANTS
Twenty healthy participants (10 males, mean ± SD age: 24.4 ±
1.8 years) participated in this study after giving written informed
consent. The study was approved by the local ethical committee
of the University of Graz in accordance to the Declaration of
Helsinki. No participant had any experience in NF- and BCI-
paradigms prior to this study. In a double-blinded approach par-
ticipants were randomly assigned to one group of 10 participants:
either receiving real visual feedback coupled to brain rhythms
experimental group (EG) or receiving a video of sham feedback
randomly taken from one of these real feedback sessions control
group (CG).

EXPERIMENTAL PARADIGM
We recorded brain signals with a 16 Ag/AgCl electrode system
(g.USBamp, g.tec medical engineering GmbH, Austria) mounted
according to the International 10–20 EEG system and referenced
to the left mastoid. Ground electrode was set on Fpz electrode
and signals digitized at a sampling frequency of 256 Hz. In
addition, electrooculography (EOG) was recorded to eliminate
eye movement artifacts post-hoc.

Online visual NF was implemented via SIMULINK software
(The MathWorks, Natick, USA). Raw signals were band-pass
filtered in the respective target bands (precise frequencies see
below; 6th order butterworth IIR) and squared to obtain power
estimates. To ensure a smooth visual feedback we then applied a
moving average of 256 samples and updated the computer screen
at a rate of 10 Hz. The feedback design was adopted from a pre-
vious study (Weber et al., 2011): while a central bar was coupled
to the user’s absolute power of the SMR (12–15 Hz) recorded at
electrode Cz, two smaller flanking bars reflected absolute power in
θ (4–7 Hz) and β (21–35 Hz) ranges at Cz, respectively. This setup
of three moving bars was chosen to ensure voluntary regulation of
SMR and at the same time minimize influence of eye movements
(θ), muscle activations and other task-unrelated components (β).
Each of the 10 sessions started with a first baseline run (3 min)
where participants were instructed to relax and watch the moving
feedback bars coupled to their brain activity without trying to
control them. Then six feedback runs (3 min each) were recorded
and participants tried to gain voluntary control over their brain
rhythms, i.e., an increase of power was associated with an increase
of the feedback bar.

Participants’ task was to increase the height of the central
bar and at the same time keep the two smaller bars as low as
possible. To facilitate the recognition of current performance,
participants received an additional rewarding feedback whenever
the bigger central bar reached a pre-defined threshold without
concomitant artifacts: a number in the middle of the bar served
as reward counter and was incremented by one unit each time
this target state was achieved for 250 ms (i.e., between 0 and 720
points could be earned per run). The individual threshold was
initially determined on the median absolute SMR power of the

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 478 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Witte et al. Control beliefs in neurofeedback

baseline run and progressively adapted using the median power of
each previous feedback run. Similarly, the small flanker bars were
calibrated once on the baseline recording of each day (threshold:
mean power + 1 SD) and feedback bars changed color from
green to red whenever influence of artifacts reached the individual
thresholds.

DATA ANALYSIS
All preprocessing and data analysis of EEG recordings were per-
formed offline using the Brain Vision Analyzer software (version
2.01, Brain Products GmbH, Munich, Germany). First, 1 s epochs
of data were inspected for eye movement artifacts by a trained
investigator and contaminated epochs were manually rejected.
Next, we applied an automated rejection of additional artifacts
like muscular activity, high-frequency noise or drifts (rejection
criteria: step >50.00 µV per sampling point, absolute voltage
value >120.00 µV).

In line with past studies (Weber et al., 2011; de Zambotti et al.,
2012), absolute values of SMR power in a fixed range (12–15 Hz)
were calculated for all epochs of length 1 s using Brain Vision
Analyzer’s built-in method of complex demodulation. For each
run, this procedure outputs mean SMR power over the whole time
window of 3 min.

LOCUS OF CONTROL OF REINFORCEMENT
The LOC was assessed in the context of dealing with technology by
the KUT questionnaire (Beier, 1999, 2004). This one dimensional
construct of LOC is a subjective 5-point Likert scale rating that
considers actual technologic biography in eight items (range of
total score: 8–40). The questionnaire is available in German and
has a high reliability. To monitor control beliefs over time each
participant was asked twice, before the first and after the 10th

training session.

STATISTICAL DATA ANALYSIS
Absolute SMR power values were calculated for each run sep-
arately and mean power was tested for differences using a 2 ×
3 × 2 repeated measures ANOVA with between-factor group (EG
vs. CG) and within-factors session (sessions 1–3, sessions 4–7,
sessions 8–10) and run (runs 2–4, runs 5–7). Measures of effect
size were reflected in partial eta-squared (η2) and observed power
(Obspow). Post-hoc tests, if necessary, were run on significant
effects using Fisher’s Least Significant Difference (LSD) test.

To report trends of power changes we used a linear fit and
assessed the significance of the regression slope using t-statistics of
the regression model implemented in MATLAB (The MathWorks,
Natick, USA). Group-wise comparisons of power and KUT values
were assessed using paired t-test. All statistics considered a nomi-
nal probability level of p < 0.05 significant.

RESULTS
CONTROL BELIEFS AND NEUROFEEDBACK TRAINING
As a first step, we quantified the distribution and changes of
our predictor variable across the population of participants. Our
assessment of control beliefs while dealing with technology before
NF training revealed no differences (t(18) = −0.15, p = 0.88 n.s.,
paired t-test) in KUT scores between the EG using real NF and

the CG that relied on sham feedback. Overall scores were rather
high varying only little around a value of 33 on average. Next,
we intended to characterize differences within the groups in more
detail. When dividing each group into subgroups using median-
split, significant differences of 7.42 and 7.2 scores on average were
observed between subgroups of high and low KUT within EG and
CG respectively (t(8) = −4.82 for the EG and t(8) = −4.14 for
the CG, p < 0.05, paired t-test, see also Table 1). Re-evaluating
KUT scores after the last session revealed no significant changes
so that in the following sections we will refer to values of the first
assessment on day one.

Our main goal was to explore whether the observed differences
in individual control beliefs were reflected in differential changes
of SMR. Analysis of mean absolute SMR power did not reveal any
significant effects over sessions. However, SMR power changed
within session as indicated by the significant main effect of run
(F(1, 18) = 4.51, p < 0.05, η2 = 0.20, Obspow = 0.52). To further
characterize this trend, we applied a linear fit for each group
separately (Figure 1). While for the CG no trends were found
(slope = 0.008, p = 0.35, R2 = 0.22, n = 10 participants), SMR
of the EG consistently increased across runs (slope = 0.023, p <

0.01, R2 = 0.86, n = 10 participants). As evident in Figure 1B
this effect was dominated by participants with low KUT scores
(slope = 0.035, p < 0.05, R2 = 0.78, n = 5 participants) who
also showed significantly higher SMR values when compared to
participants of the EG with high KUT scores (t(8) = 3.37, p <

0.01, paired t-test). In contrast, this difference of SMR power
between subgroups did not reach statistical significance for the
CG (t(8) = 1.11, p = 0.30 n.s., paired t-test).

CHANGES OF SMR POWER IN BASELINE
To check for possible lasting effects of NF training we additionally
compared baseline SMR power for the different groups.
This analysis failed to show modulations across sessions.
However, similar to the power changes over runs, we found
that participants with lower KUT generally had increased SMR
power compared to those with high KUT (Figure 2B and
Table 1). Again, this difference was more pronounced for the EG

Table 1 | Grand average SMR power (in µV2) of the respective

subgroups for electrode Cz across 10 training sessions and while

watching the feedback bars (baseline), as well as ratings of control

beliefs on day one.

EG CG

all

low

KUT

high

KUT all

low

KUT

high

KUT

KUT mean 32.7 29.0 36.4 33.0 29.4 36.6
SEM 1.4 1.3 0.8 1.5 1.7 0.2

SMR mean 2.06 2.66 1.46 1.86 2.23 1.50
training SEM 0.26 0.35 0.09 0.33 0.62 0.23

SMR mean 1.97 2.46 1.48 1.94 2.39 1.48
baseline SEM 0.22 0.31 0.05 0.38 0.70 0.22

EG, experimental group; CG control group; KUT, control beliefs while dealing

with technology; SMR, sensorimotor rhythm; SEM, standard error of the mean;

note that subgroups “low” and “high” of n = 5 participants were obtained using

median split on KUT scores of “all” n = 10 participants.
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FIGURE 1 | Changes of SMR power during training. (A) Mean absolute
SMR power (12–15 Hz) across sessions during six runs of neurofeedback
training for the experimental group using real feedback (EG, n = 10
participants) and the control group using sham feedback (CG, n = 10
participants). Dotted line indicates a significant slope of 0.023 µV2 per run.
(B,C) Comparison of subgroups (n = 5 participants) obtained by
median-split according to the individual control beliefs of low and high KUT
scores. Dotted line indicates a significant slope of 0.035 µV2 per run. Note
that all error bars represent the standard error of the mean (SEM).

(t(8) = 3.09, p < 0.05, paired t-test) when compared to the CG
(t(8) = 1.24, p = 0.25 n.s., paired t-test).

OVERALL CORRELATION OF KUT AND SMR POWER
The results described hitherto all indicate a trend for differences
in SMR power between participants of low and high KUT scores.
As a direct measure of this relationship we calculated Pearson’s

linear correlation for both groups. This revealed a significant
negative correlation between KUT and overall SMR power during
training of r = −0.69 for the EG (p < 0.05). A strong trend
for negative correlation of the same variables in the CG (r =
−0.36, p = 0.31) was observed, only corrupted by one participant
(Figure 3A).

As the within group differences in absolute SMR power were
also evident in baseline, we additionally evaluated correlation
coefficients between KUT and average SMR of these runs
(Figure 3B). The overall picture was similar to training runs
in that participants of the EG showed a negative correlation of
r = −0.73 (p < 0.05) and participants of the CG displayed a
similar trend (r = −0.42, p = 0.23).

DISCUSSION
As reliable predictors of NF performance still remain elusive, the
goal of the current study was to assess whether control beliefs of
users correlate with brain activity over several training sessions.
Our main results show that voluntary up-regulation of absolute
SMR power is more successful in those participants who report a
lower subjective level of control while dealing with technology.

This novel finding is supported by several lines of evidence.
Firstly, the overall power of SMR in the 12–15 Hz range across
ten training sessions negatively correlated with KUT scores for
the EG. In other words, participants with lower ratings of control
belief were more successful in our training paradigm. Accord-
ing to Krampen (1981) control belief is defined as the indi-
viduals’ expectancy for a contingent result of an action. The
KUT questionnaire quantifies a specific aspect of control, namely
how comfortable and confident users feel when interacting with
technology (Beier, 2004; Burde and Blankertz, 2006). How this
psychological trait may be used to characterize NF performance
has remained unexplored so far. Our findings of a negative corre-
lation between KUT and SMR power indicate a higher relaxation
in people who subjectively do not expect a major influence on
technology. This state of relaxation in turn is known to promote
increased SMR amplitudes (Pfurtscheller, 1992; Gruzelier et al.,
2006, 2010; Pfurtscheller et al., 2006; Serruya and Kahana, 2008).
At the same time our results imply that users with strong con-
trol beliefs may try harder to master the feedback paradigm
and thus activate resources interfering with the SMR synchro-
nization. This idea of “processing interference” has been pro-
posed in healthy participants and seizure patients (Sterman, 1996,
2000).

In the literature there is only one study that assessed the
link between control belief and modulation of brain signals:
Burde and Blankertz (2006) reported a positive correlation
between KUT and BCI performance. However, their task under
investigation and the methods to reveal changes of brain activity
clearly differ from our approach. These authors conducted
a single session and relied on highly participant-optimized
spectro-spatial features for providing feedback. Also they did
not directly use the power of SMR for correlation analyses
but rather assessed the number of runs in which participants
successfully moved a cursor from the center to the target edge of
a computer screen. Most importantly, this BCI control implied
a motor imagery task where the classified pattern is that of a
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FIGURE 2 | Changes of SMR power during baseline. (A) Mean absolute
SMR power across 10 training sessions during the baseline condition.
Participants of the EG were watching a visual feedback of their own brain

activations without trying to gain control, while participants of the CG were
watching a pre-recorded video (B,C) comparison according to the individual
control beliefs (same conventions as in Figure 1).

desynchronization of the SMR. In this light, participants with
higher level of control belief could be more successful simply
because they will likely try to actively control the feedback
and thus down-regulate their SMR stronger during motor
imagery. This decrease of activity is also depending on the level
of SMR during rest (Blankertz et al., 2010a). In contrast, our
NF paradigm directly trained the increase of absolute SMR
power. In this task our findings suggest that stronger control
beliefs can hinder participants’ relaxation and thus an effective
up-regulation of SMR power during training. The ability of an

individual user to succeed in both up- and down-regulation of
SMR may therefore differ based on the different physiological
processes and may furthermore depend on the task and method
used to evaluate these modulations.

A second aspect of our training in the EG was an increase
of SMR power over runs within sessions. Because we applied
an online visual feedback, an overall higher level of relaxation
may thus have promoted a self-rewarding positive loop. This
within session increase is therefore believed to reflect success-
ful training (Vernon et al., 2003; Gruzelier et al., 2006). The fact
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FIGURE 3 | SMR power correlates with control belief. (A) Scatter plot of
individual KUT scores against overall SMR power during feedback training
(total n = 60 runs per participant). (B) Same as in (A) for baseline runs (total
n = 10 runs per participant). For details of the relationships please see
subsection “Overall Correlation of KUT and SMR Power” in Results.

that absolute SMR power increased only moderately may partly
originate from our experimental design: in line with sugges-
tions of other studies (Kubler and Birbaumer, 2008; Nijboer et al.,
2010) we adapted the difficulty of our task from run to run
in the EG. While this procedure was believed to maintain a
high level of motivation and interest in the task, past results
also mentioned the risk of incompetence fear (Nijboer et al.,
2008). In particular, these authors suggested that when perfor-
mance in visual SMR feedback is initially high, incompetence
fear may hamper further learning. Indeed, we do have evidence
for a correlate of negative emotions in insular brain regions
during our paradigm (Ninaus et al., submitted to the current spe-
cial issue). How precisely emotions, task complexity and reward
expectancy interact with performance thus needs to be explored
in further studies. Interestingly, median split of participants of
the EG revealed that those users with low KUT had distinctly
higher SMR amplitudes over all runs and showed a significantly
increasing trend. In our view, this corroborates the interpreta-

tion that control belief is directly linked to the success of SMR
feedback training.

It has to be noted however that we did not find any significant
modulations or interactions across training sessions. Yet, this does
not conflict with past findings as those studies reporting inter-
session changes either used ratios of the power within two or more
frequency bands or relied on relative power changes (Ros et al.,
2009; Gruzelier et al., 2010; de Zambotti et al., 2012). In contrast,
our measure of absolute SMR power represents a direct index
of brain activity. A distinct increase of this index over sessions
actually would not have been expected. de Zambotti et al. (2012)
recently reported an increase of the SMR-θ ratio across weeks of
NF training. However, this ratio was calculated with respect to a
baseline and authors mentioned a decrease of SMR-θ in this base-
line. As a consequence, the observed training effect in the study
of de Zambotti et al. (2012) may not have been solely caused by
brain processes in the active period. Our results during baseline
did not show a change of SMR power ruling out the possibility of
a pseudo training effect. Yet, we again observed a markedly higher
SMR for participants of low KUT scores underlining the general
validity of this relationship. An important difference to previous
work is that during baseline in our approach participants watched
feedback bars coupled to their actual brain activity without try-
ing to control the feedback bars. This might explain why overall
baseline SMR power was not different to training runs. The role
of baseline recordings in assessing changes of power over sessions
may thus need further research.

To check for the task-specificity of the observed effects, we
included the CG receiving a video of sham feedback. Although
the overall SMR power was not significantly different to the
EG and since a strong trend for a negative correlation between
KUT and SMR was evident, some important points should
be considered. First, participants of the CG tended to show
lower power values and a higher variance across participants
was observed (Figures 1,2). Second, there was no clear increase
of power over runs (Figure 1C). And third, the within-group
difference between participants of low and high KUT scores was
less pronounced than in the EG. Altogether, we thus conclude
that in contrast to other studies our CG experienced a residual,
although less effective, training as well. This is supported by the
fact that no member of this group identified the sham feedback.
Instead, the randomized replay of moving bars was accepted
as real feedback so that a similar pattern of the relationship
between KUT and SMR power emerged. The greater amount of
variability and the non-significant dissociation of SMR power
between KUT subgroups of the CG suggest, however, that only
contingent feedback training can produce clear task-specific
effects.

Our findings support the existing NF literature that has sug-
gested a state of relaxed but focused mind for successful perfor-
mance. For example, a recent study showed a strong inhibition
of SMR in initial sessions which was attributed to increased
arousal of participants who most likely needed to get used to
the experimental setup (de Zambotti et al., 2012). Hammer and
colleagues (Hammer et al., 2012) also reported that, besides fine
motor skills, the ability to concentrate on the task explained
a significant proportion of 19% of the variations seen in BCI

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 478 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Witte et al. Control beliefs in neurofeedback

performance. At the same time all other psychological parameters,
like verbal and non-verbal learning abilities, empathy or mood,
did not predict performance in this study. Similarly, motivational
factors seem to be only weak predictors of performance and need
to be considered at a single subject level (Nijboer et al., 2008,
2010; Kleih et al., 2010). Still, the finding that initial performance
during voluntary regulation of brain activity has predictive value
(Neumann and Birbaumer, 2003; Kübler et al., 2004) may suggest
that personal traits can impact the ability to successfully use
feedback paradigms. One important factor in NF and BCI is
clearly the individual control beliefs of participants because the
tasks per se imply the interaction with technology. The only study
in this context we are aware of has already demonstrated a strong
correlation between control belief and BCI performance. We
clearly extend this knowledge as we identified control beliefs while
dealing with technology as a strong predictor of performance
in several training sessions. Whether our findings generalize to
other frequency-bands and experimental setups needs further
validation. In studies that focus on brain activity associated with
relaxation, e.g., in treatment of attention deficit hyperactivity
disorder, one would expect similar predictive effects. In general,
we strongly suggest that concepts of control belief, self-perception

and awareness should be considered in more detail during BCI
and NF operation.

CONCLUSION
In summary, we demonstrate that control beliefs negatively cor-
related with the ability to increase SMR during 10 NF sessions.
An important implication for future training studies therefore
is that participants may not focus on gaining control over the
feedback but instead should try to relax themselves. In the light
of our results, assessment of individual control beliefs can be used
as a predictor of future performance and may thus help to avoid
lengthy training.
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