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With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care prob-
lem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control
of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-
resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is
estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb,
but the majority of infected individuals develop long-lived protective immunity, which controls and contains
Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the envi-
ronment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency,
diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response
determines whether the infection resolves or develops into clinically evident disease. Consequently, there
is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating
their effector functions. On the other hand, many aspects remain unsolved in understanding why some
individuals are protected from Mtb infection while others go on to develop disease. Several studies have
demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that
CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals.There are many subsets
of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets
co-operate or interfere with each other to control infection; the dominant subset may differ between active
and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role
for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation
of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells
such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ
during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific
cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a
common routine that supports the studies aimed at focusing the role of the immune system in infectious
diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can
delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed
that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been
highlighted that the number of Mtb-specificT cells producing a combination of IFN-γ, IL-2, and/orTNF-α may
be correlated with the mycobacterial load, while other studies have associated the presence of this particular
functional profile as marker ofTB disease activity. Although the role of CD8T cells inTB is less clear than CD4
T cells, they are generally considered to contribute to optimal immunity and protection. CD8T cells possess
a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T
cells.The interest in studying CD8T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained
more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant
T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8+ T cells in Mtb
infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional
profile termed “multifunctional,” can be a better marker of protection inTB than CD4+ T cells.Their effector
mechanisms could contribute to control Mtb infection, as upon activation, CD8 T cells release cytokines
or cytotoxic molecules, which cause apoptosis of target cells. Taken together, the balance of the immune
response in the control of infection and possibly bacterial eradication is important in understanding whether
the host immune response will be appropriate in contrasting the infection or not, and, consequently, the
inability of the immune response, will determine the dissemination and the transmission of bacilli to new
subjects. In conclusion, the recent highlights on the role of different functional signatures of T cell subsets
in the immune response toward Mtb infection will be discerned in this review, in order to summarize what
is known about the immune response in humanTB. In particular, we will discuss the role of CD4 and CD8T
cells in contrasting the advance of the intracellular pathogen in already infected people or the progression to
active disease in subjects with latent infection. All the information will be aimed at increasing the knowledge
of this complex disease in order to improve diagnosis, prognosis, drug treatment, and vaccination.
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INTRODUCTION
Tuberculosis, with approximately 9 million cases annually, deter-
mines a world-wide mortality and morbidity, especially in low-
income countries (1–3). Mycobacterium tuberculosis (Mtb), the
causative agent of TB, is transmitted via aerosol droplets that are
suspended in the air for prolonged periods of time (4), deter-
mining a risk of infection to people who inhalate these droplets.
However, infection does not necessarily lead to TB disease; in fact,
as reported in several studies, only 3–10% of immunocompe-
tent individuals that are infected will develop the disease during
their life-time (5), while more than 90% of infected subjects con-
tain infection in a subclinical stage known as latent TB infection
(LTBI), in which the pathogen remains in a quiescent state (4).
One of the important aspects that can contribute to reactivation
depends on the immune system of each individual that can be
perturbed by several factors during life-time, such as chronic dis-
eases: diabetes, alcoholic liver disease, HIV co-infection, and in
some circumstances, the use of steroids or other immunosup-
pressive drugs. Another occurrence of active disease in later life
is attributable to reactivation of latent Mtb bacilli or to a new
infection with another Mtb strain. However, this huge reservoir
contributes to fuel the high numbers of new active TB disease
(3, 6); therefore, in order to diminish the risk of new active TB
disease, it is important to treat LTBI cases by chemoprophylaxis,
successfully eradicating the infection in the majority of cases. LTBI
subjects, due to the increasing use of biological drugs, such as
tumor necrosis factor-α (TNF-α)/Interleukin (IL)-12/IL-23 block-
ers for the treatment of inflammatory diseases like rheumatoid
arthritis, Crohn’s disease, and psoriasis, have major risk to progress
toward active disease more than other subjects (3, 7). Diagnosis
of LTBI remains a priority for TB control within high income,
low TB prevalence countries (8, 9), where a high proportion
of TB cases occurs in immigrants from countries with high TB
incidence (10, 11).

The study of subjects that are able to control Mtb infection
in the long-term may be particularly informative in this respect.
Despite two decades of intensified research, the mechanisms
involved in the protective immune response against Mtb are not
well understood. So, the comprehension of the pathways involved
in protection in the host could represent biomarkers useful as cor-
relates of protection, while the inhibition of the pathways involved
in the surviving of host pathogens, could represent a biological
target to contrast the bacilli growth and replication (12, 13).

Mycobacterium tuberculosis involves several conventional and
unconventional T cell subsets that are characterized by distinct
effector functions and surface phenotype markers (14). Th1 CD4
T cells activate effector functions in macrophages that control
intracellular Mtb, and their role has been correlated with pro-
tection (14). Moreover, several studies have reported that Th17
cells, which are able to produce IL-17, are involved in immune
protection against Mtb, primarily due to the effect of this cytokine
in attracting and activating neutrophils (14, 15). Th17 cells have
been involved in protection against TB at early stages (15, 16),
for their capacity to recruit monocytes and Th1 lymphocytes
to the site of granuloma formation (14, 15, 17). On the con-
trary, several studies have demonstrated that unrestricted Th17
stimulation determines an exaggerated inflammation mediated by

neutrophils and inflammatory monocytes that rush to the site of
disease causing tissue damage (14, 18–20).

CD4 T cells recognize antigenic peptides derived from the
phagosomal compartment in the context of MHC-class II mol-
ecules (21). Mtb preferentially resides in the phagosome, where
mycobacterial Ags can be processed and assembled to MHC-class
II molecules (14, 22, 23). Another conventional lymphocytes sub-
set, CD8 T cells, contributes to immune protection against TB (24):
upon specific Ag recognition, CD8 T cells differentiate into effec-
tor cells, which produce cytolytic molecules and cytokines that kill
both host cells and the intracellular Mtb (14, 25).

CD8 T lymphocytes recognize antigenic peptides, which are
generally loaded in the cytosolic compartment in the context
of MHC-class I molecules (21). MHC-class I loading can occur
because of the intracellular pathogen or Mtb proteins diversifi-
cation from the phagosome to the cytosol (14, 26). Moreover,
apoptotic vesicles coming from infected macrophages and den-
dritic cells (DCs) can be uptaken by DCs (27, 28), which, in turn,
will process and shuttled peptides into the canonical MHC-class I
presentation pathway, a process termed cross-presentation (29).

Other cells play a role in the control or in the suppression of
immune responses during Mtb infection such as Th2 cells, which
counter-regulate Th1 cells and likely impair protective immunity
against TB (30, 31), and regulatory T (Treg) cells (32, 33), which
also contribute to the down modulation of the immune response
to the pathogen (14) and to TB reactivation (14, 32–34).

The so-called unconventional T cells are activated during TB;
these cells are able to recognize lipids that are abundant in the
mycobacterial cell wall, in the context of non-polymorphic CD1
molecules (35). Very recently, mucosal-associated invariant T cells
(MAIT) have been found to recognize protein Mtb (Ags) presented
by the non-classical molecule MR1 (36). γδ T cells, recognize
“phosphoAgs” of host or bacterial origin and may also contribute
to the immune response to Mtb as well (14, 37). Figure 1 shows
the different cell populations involved in the immunopathology
of TB.

In the last years, the potential role of distinct T cell subsets as
biomarkers of active TB and/or LTBI has been studied. Functional
CD4 and CD8 T cell subsets have been defined on the bases of
cytokine production as single, double, or triple producer cells.
These different cytokine signatures have been differently asso-
ciated with disease stage, mycobacterial load or treatment, and
several studies, mostly derived from vaccination in animals, have
highlighted that polyfunctional CD4 T cells are associated with
protective immunity. In contrast, more recent studies have sug-
gested that these cells may be not correlated with protection, but
rather with TB disease activity (38, 39).

In this review, we will analyze the complexity of the immune
response of conventional CD4 and CD8 T cells widely described by
recent studies in patients with pulmonary and extra-pulmonary
disease and in subjects with LTBI, in order to better define the
potential of different functional signatures of T cells as potential
biomarkers.

POPULATIONS OF HUMAN MEMORY T CELLS
Individuals that have encountered a pathogen, develop an adap-
tive immune response with the induction of memory cells that
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FIGURE 1 | Cells involved in immune response during Mtb infection. The figure shows conventional and unconventional T cell subsets that contribute to the
immune response against Mtb.

will recognize the same Ag, upon the second encounter, dictating
the type of immune response. Several studies have delineated that
the quality of the memory response is important to dissect the
real difference between protection and immunopathology, and to
design strategies for vaccination (40).

Generally, the generation of memory T cells is characterized
by different phases (41). The first encounter with an Ag, defined
priming, determines a massive proliferation and clonal expansion
of Ag-specific T cells followed by a phase of contraction, where
the majority of these cells, named effector cells, are eliminated by
apoptosis (42, 43). During this primary response, memory T cells
develop and are maintained for extended periods due to several
mechanisms such as the retention of Ag, stimulation/boosters, or
homeostatic proliferation, that will insure the maintenance of a
pool of cells that can rapidly respond to subsequent encounters
with the pathogen.

The induction of memory T cells by vaccination against intra-
cellular pathogens has definitively led a major challenge for the
development of new subunit vaccines (40).

In humans, the functional properties of memory T and B cells
can be defined, at least for those cells circulating in the blood,
using techniques that detect typical surface markers (44). The
combinatorial expression of surface markers such as adhesion
molecules, chemokine receptors, and memory markers, allows for
tissue specific homing of memory and effector lymphocytes and
thus provides full characterization of that particular subsets of
memory T cells, in terms of preferential residence inside tissues
(40, 45, 46).

At least dozens of subsets can be identified and enumerated
on the basis of distinct cellular functions that express unique
combinations of surface and intracellular markers (47).

Memory T cells could be divided into CD62L+ and CD62L−

subsets; moreover some surface markers are specific for T cells
homing to mucosa and skin that are confined to the CD62L− sub-
set (48, 49). The development of techniques that allow to measure
cytokines production at the single-cell level and the analysis of
several surface markers has permitted to correlate the functional
properties of T cells with their phenotype (50). CCR7+ mem-
ory cells are named central memory (TCM) cells: they are able
to home to secondary lymphoid tissues, produce high amounts
of IL-2 but low levels of other effector cytokines (41), while
their CCR7− counter parts, named effector memory (TEM) cells,
are able to produce high levels of cytokines, exert rapid effector
functions and home to peripheral tissues (41). It has been estab-
lished a relationship between TCM and TEM cells suggested by
the analysis of the telomeres that are longer in TCM than TEM

cells and TCM cells are capable of generating TEM cells in vitro,
but not vice versa (41). Studies performed in humans and rhesus
macaques both in vitro and in vivo have led to the identification
of T cells with multiple stem cell-like properties, termed mem-
ory T stem cells (TSCM). These cells constitute a relatively rare
memory population having a largely T naive (TN) phenotype,
while overexpressing CD95 (51, 52), which is usually expressed
at high levels by all memory cells (53, 54). TSCM cells, precede
TCM cells in differentiation. These type of cells are capable of
generating all memory subsets, including TCM cells (51, 52); no
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other memory subset thus far has been found to regenerate TSCM

cells (44).
Another subset of “transitional” memory T cells (TTM) has

been defined, mostly of which were isolated in the peripheral blood
of healthy individuals (55, 56). These TTM cells are more differen-
tiated than TCM cells but not as fully differentiated as TEM cells in
terms of phenotype (55, 56) and ability to expand in response to
IL-15 in vivo (57, 58).

Very recently, Mahnke et al. propose that the phenotypic, func-
tional, and gene expression properties of human memory T cell
differentiation follow a linear progression along a continuum of
major clusters (TN, TSCM, TCM, TTM, TEM, and TTE cells) (44).
According to this linear progression, memory T cells, progressively
acquire or lose their specific functions (Figure 2). Other mole-
cules that mediate lymphocyte functions, including markers of
migration, co-stimulation, and cytotoxic molecules and adhesion
markers can better define these different T cell subsets (Table 1).

Seder et al. have proposed that T cells progressively acquire their
functions with further differentiation, until they reach the phase
that is adequate for their effector function (such as the produc-
tion of cytokines or cytotoxic activity) (44, 59). The authors have
demonstrated that the continued antigenic stimulation led to pro-
gressive loss of memory potential as well as the ability to produce
cytokines, until the last step of the differentiation pathway repre-
sented by effector cells that are able to produce only IFN-γ and are
short-lived, named terminally differentiated effector cells (TEMRA)
(59). Another aspect that can optimize this linear differentiation
process will depend on the amount of initial Ag exposure or the
different conditions that are present in the microenvironment,
which will dictate the extent of differentiation (44, 59).

Hierarchical expression of cytolytic molecules and surface
markers, such as CD27, CD28, and CD57, has been delineated for

CD8 T cell subsets. Granzyme (Gr)A is the first cytotoxic molecule
detected in memory cells, followed by GrB and subsequently by
perforin (60–62). GrB is always expressed in the presence of GrA,
while, perforin+ cells are primarily positive for GrA and GrB, mak-
ing it a choice indicator for cytolytic cells (62). Usually, perforin is
present in cells that are CD27− and CD28− (63), while this mol-
ecule is always associated with the expression of the senescence
marker CD57, which can be used as marker for T cells with high
cytolytic potential (44, 62). Finally, the identification of the differ-
ent subsets of human memory T cells, through the analysis of the
expression of exclusive markers in that particular population could
have a potential implications in T cell-based immunotherapy for
infectious disease or other immune pathological conditions. Sev-
eral studies have evaluated the different distribution of Ag-specific
memory T cells subsets as good model of correlate of protec-
tion; for example, in response to chronic infectious agents such
as HIV-1, hepatitis C virus (HCV), and Mtb, the increase of the
frequency of Ag-specific TCM cells, which produce high levels of
IL-2, is associated with individuals’ ability to control the viral load
(64–68).

Moreover, the response to cytokines used to differentiate
or to maintain the different human memory T cells has been
characterized (69). It has been shown that TEM cells can pro-
liferate in response to IL-7 and IL-15 in vitro but do not
expand because of spontaneous apoptosis; conversely, TCM pro-
liferate and differentiate to TEM cells, in the absence of these
cytokines (70, 71).

Therefore, the quality of T cell responses can be modulated by
several factors, and it is crucial for establishing the disease outcome
in the context of various infections or pathologies.

In summary, the definition of the different subsets of mem-
ory T cells can be used to delineate the quality of a given T

FIGURE 2 | Human memoryT cell subsets. Following encounter with
Ag, quiescent T cells develop into effectors, whose phenotype is highly
dynamic and largely unpredictable. When the Ag is cleared, effector T
cells that survive return to a quiescent memory state. Cells

differentiate from TN to TSCM, TCM, TTM, TEM, and culminating in TTE cells.
Memory T cells progressively lose or acquire specific functions, such as
the ability to migrate to peripheral tissues or to proliferate or produce
effector molecules.
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Table 1 | Expression of functional molecules by circulatingT cell subsets.

Subsets TN TSCM TCM TTM TEM TTE Category Ag Function

+ ++ ++ ++ − − Co-stimulation/survival CD28 Co-stimulation

++ + + + ± − CD27 Co-stimulation

++ +++ +++ ++ ± − CD127 IL-7 signaling

− ± + ++ + + PD-1 Inhibition of effector function

− + ++ +++ +++ +++ CD122 IL-2/IL-15 signaling

+ + + + + + CD132 γc cytokine signaling

− ND ± + ++ +++ KLRG-1 Inhibition of effector function

+ ++ ++ +++ +++ +++ Adhesion CD11a Adhesion to APC/endothelium

− + ++ +++ +++ +++ CD58 Adhesion to APC

± + ++ ++ ++ ++ CD99 Transendothelial migration

+ + + − − − Migration CD62L Secondary lymphoid tissues homing

− − − − + − CD103 Gut homing

± + ++ +++ +++ ± CCR4 Chemokine response/Th2 associated

− − + ++ +++ ++ CCR5 Homing to inflamed tissues

− − ++ +++ +++ − CCR6 Chemokine response/Th17 associated

CD4 − ND + − − − CCR9 Gut homing

CD8 − ND + ++ ++ −

− − + ND ++ − CCR10 Skin homing

CD4 − ± + ++ +++ +++ CXCR3 Homing to inflamed tissues

CD8 ++ +++ +++ ++ + +

+ ++ +++ +++ ++ ++ CXCR4 Homing to Bone Marrow

− ND + ND ++ ND CLA Skin homing

CD4 − − − − ± + Cytolitic molecules Granzyme A Cleavage of cellular proteins

CD8 − − ± ++ +++ +++

CD4 − − − − ± ± Granzyme B Cleavage of cellular proteins

CD8 − − − + ++ +++

CD4 − − − − ± ± Perforin Pore forming

CD8 − − ± + ++ +++

Combination of + and – indicates the expression level respect to TN cells. ND=not determined.

cell response, and this can be achieved by the combination of
cell-surface phenotype, functional properties, and the capacity to
traffic to lymphoid and non-lymphoid tissues: such a complex
analysis should confer more intuition if an immune response will
be protective or not.

SUBSETS OF MEMORY CD4 T CELLS IN TB
Mycobacterium tuberculosis-specific-CD4+ T cell protective
response is typically due to Th1 cells and is mediated by IFN-γ
and TNF-α that recruit monocytes and granulocytes and promote
their anti-microbial activities (72–74).

Recent studies have shown that polyfunctional T cells (i.e., T
cells equipped with multiple effector functions) (44, 75), could
exert immune protection toward viral infections such as HIV (76,
77), models of TB vaccine (78–81), or in murine models of leish-
mania (36). However, the role of polyfunctional T cells during
Mtb infection is controversial and different from that observed in
chronic viral infections (36, 40, 81).

The definition of polyfunctional T cells was attributed to their
ability to proliferate and to secrete multiple cytokines and these
cells were found to play a protective role in antiviral immunity
in chronic infections (when Ag load is low). Conversely, single
IFN-γ-secreting CD4 and CD8 T cells typically predominate in
acute infections (when Ag load is high), and in chronic infec-
tion characterized by the failure of immune control: in the case
of HIV-1 infection, in fact, the response is dominated by HIV-
1-specific-CD4 and -CD8 T cells that are able to produce only
IFN-γ in both the primary and chronic phases of infection. On
the other hand, the distinct cytokines profile during intracellu-
lar pathogens infection, comprises a very wide spectrum of T cell
subpopulations (75).

Several authors have recently shown that polyfunctional T cells
release multiple cytokines simultaneously in a relatively short
period. The analysis of different aspects that could contribute to
the release of cytokines, such as the methodologies used to stimu-
late the cells, peptides, or proteins used, the different cohort groups

www.frontiersin.org April 2014 | Volume 5 | Article 180 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prezzemolo et al. Memory T cells in tuberculosis

included in the study, should be taken into account, considering
that very often the results obtained are controversial (75, 82).

Earlier studies in human TB have investigated on the role of
polyfunctional T cells able to produce IFN-γ in combination with
IL-2 (75, 83–86), and later on, a subset of cells able to simultane-
ously produce IFN-γ, TNF-α, and/or IL-2 was detected in patient
with active TB disease compared to latently infected individuals
(87–90), whose frequency decreased after anti-TB treatment. In
another study, high frequencies of CD4 T cells expressing three
cytokines simultaneously (IFN-γ, TNF-α, and IL-2) was found
in adults with active TB disease, as compared to the frequency
found in LTBI subjects, in which IFN-γ single and IFN-γ/IL-
2 dual secreting CD4 T cells dominated the anti-mycobacterial
response. Therefore, the presence of multifunctional CD4 T cells
in TB patients was associated with the bacterial loads, as suggested
by their decrease after completion of anti-TB chemotherapy (82,
91). This implies that multifunctional CD4 T cells are indicative
of active TB rather than assuming a protective role. However, dur-
ing these years, several contrasting findings have been reported,
which do not allow a clear-cut conclusion on the role of poly-
functional CD4 T cells (40). In fact, some authors have found
a reduced frequency of polyfunctional T cells in patients with
active TB disease compared to latently infected individuals, which
is recovered with the anti-TB therapy (75, 92, 93). Similar recovery
of dual IFN-γ/IL-2-producing cells with the anti-TB therapy was
also previously reported (82, 94).

Finally, a higher proportion of Ag-specific effector memory
TEM cells and a decreased frequency of TCM CD4+ T cells has
been found in patients with active TB (95, 96), as compared to the
distribution found in LTBI individuals (75).

Since it is not possible to associate any specific cytokine profile
with protection against active TB, recent studies have tried to find
a correlation between functional signatures of CD4 or CD8 T cells
and the state of infection/disease.

Marin et al. have analyzed the Th1 and Th17 responses through
the counts of IFN-γ and IL-17 producing T cells by elispot assay,
the frequencies of polyfunctional T cells producing IFN-γ, TNF-
α, IL-2, and IL-17 by ICS, and the amounts of the above cited
cytokines released after 1 day (short term) and 6 days (long-term)
of in vitro stimulation using different Ags (CFP-10, PPD, or Mtb)
(75) by ELISA. The evaluation of different T cell subsets after
short- and long-term in vitro stimulation with different Ags has
permitted to find a significant increase in single and double pro-
ducer CD4+cells in long-term in vitro stimulation compared to
short term in vitro stimulation in LTBI subjects and a significant
increase of the frequency of single producer cells in patients with
active disease (75). Mtb stimulation determined an increase in the
frequency of single and triple producer T cells in LTBI subjects
in 6 days compared to the frequency found in 1 day in vitro stim-
ulated cells, with a significant value found for the frequency of
double producer T cells in patients with active disease (75). These
results suggest that the use of different mycobacterial Ags could
induce distinct T cell functional signatures in LTBI subjects and
in patients with active disease, highlighting that it is possible to
define “functional signatures” of CD4 T cells correlated with the
state of infection and that could be used as indicators of the clinical
activity of the disease (82).

Very recently, Petruccioli et al. have correlated bifunctional
“RD1-proteins”-specific-CD4 T cells with effector memory phe-
notype with active TB disease, while“RD1-proteins”-specific-CD4
T cells with a central memory phenotype were associated with
cured TB and LTBI subjects (82). According to this study, the EM
phenotype should be associated with inactive TB due to the pres-
ence of live and replicating bacteria, whereas the contraction of
this phenotype and the further differentiation toward CM T cells
in LTBI and cured TB subjects could indicate Mtb control, sug-
gesting that the different expression of the memory/effector status
may be used to monitor treatment efficacy, as previously suggested
in patients with active TB with HIV co-infection (82, 97, 98).

A more detailed study on the role of Ag-specific T cell phe-
notype and function has been carried out by Lalvani et al. who
delineated the association of TB disease stage with Mtb-specific
cellular immunity. The authors have found the same trend of func-
tional signature demonstrated by Petruccioli, but in response to
different antigenic stimulation, namely PPD and RD1-peptides:
in fact, Ag-specific-CD4 T cells were principally of the CM phe-
notype in subjects with latent infection compared to EM cells
predominantly found in patients with active disease. Combined
measurement of both functional profile and differentiation phe-
notype, in this study, reflects a discriminatory immunological
status in the different cohort groups studied (patients with active
disease vs. LTBI) (99). Moreover, HIV infection did not influ-
ence the number of Mtb-specific-CD4 effector cells, which instead
was influenced by TB disease stage. This last aspect could be
intriguing for the fact that assessment of cellular changes could
be used also for immune compromised patients; in fact, it is
known that HIV and active TB both impact Mtb-specific T cell
immunity, such as skin test anergy, and therefore, dissection of
distinct subsets as biomarkers could have an impact also in HIV
co-infection.

Altogether, the above studies highlight the concept that the pro-
tective immune response against mycobacterial infection seems to
depend more on the quality of CD4 T cell response assessed as
the capacity to exert multiple functions, than on their magnitude,
which is due to their Ag-specific frequency (44, 75). Finally, several
methodologies used for the evaluation of the profiles of Mtb-
specific-CD4 T cells in the reported studies led to different results:
these include Ag specificity and type, in vitro stimulation condi-
tions (short- or long-term in vitro stimulation), variability of the
study cohort characteristics and at least, the monoclonal antibod-
ies used to distinguish the subsets of CD4 T cells or intracellular
cytokines content (40).

Thus, further studies are necessary to define particular phe-
notypes of Mtb-specific-CD4 T cells, assessing several functional
properties such as activation, memory, migratory and inhibitory
receptors, and ligands.

SUBSETS OF MEMORY CD8 T CELLS IN TB
CD8+ T cells contribute to protective response against TB (100,
101). CD8+T cells recognize Ags derived from an intracellular
environment and could serve as sensors of bacterial burden. In fact,
human CD8+T cells preferentially recognize cells heavily infected
with Mtb (102) and in animal models, the magnitude of the CD8
response correlates with bacterial load (103–105).
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The mechanisms involved in CD8+ T cell activation dur-
ing Mtb infection are incompletely defined. DCs possess several
pathways to load MHC-class I molecules, such as classical cytoso-
lic processing, or alternative processing of phagosome located
pathogens and endosome-located Ags. The recent evidences that
virulent mycobacteria can escape from the phagosome into the
cytoplasm and the possibility to direct access MHC-class I pro-
cessing/presentation pathway provide a new mechanism (27). DCs
also can take up vesicles derived from apoptotic Mtb-infected
cells, after which the Ags are cross-presented through MHC-class
I and class II molecules (28, 29). Finally, autophagy, which has a
prominent role in cellular homeostasis and bacterial sequestration
into vacuolar organelles, is involved in Ag presentation and cross-
priming of T cells in response to intracellular pathogens, including
Mtb (106, 107).

It has been demonstrated that several pathways are used in order
to activate CD8+ T cells by phagosomal Ags, and, very recently,
MHC-class Ib-restricted CD8+ T cells have received attention,
including a role for HLA-E, which presents peptides from a wide
range of mycobacterial Ags (34, 108). CD1-restricted CD8T cells
recognize lipids such as mycolic acids and lipoarabinomannan
from the bacterial cell wall (34) and lung MAIT recognize Mtb
Ags in the context of the non-classical MR1 molecule (109).

Thus, CD8+ T cell immunity offers evidences of their clear syn-
ergy of action and complementarities in association with CD4+ T
cell immunity, for the fact that CD8+ T cells display other direct
effector functions such as the secretion of granules that contain
cytotoxic molecules as perforin, granzymes, and granulysin. These
molecules can lyse host cells,or can have a direct killing toward Mtb
and other bacteria. Moreover, CD8+ T cells can induce apoptosis
of infected target cells through molecules such as Fas or TNF-R
family-related cell-death receptors. Finally, CD8+ T cells release,
upon activation, cytokines such as IFN-γ, TNF-α, and in many
cases also IL-2. These functions are also used by MHC-class Ib-
restricted CD8+ T cells, suggesting a role for classical as well as
non-classical CD8+ T cells in TB protection.

From the functional point of view, different studies conducted
in mice and non-human models have delineated a role for Mtb-
specific CD8+T cells in the control of Mtb infection (102–104). In
these studies, it has been demonstrated that IFN-γ and perforin
released by Mtb-specific CD8+ T cells were necessary to induce
protection in Mtb-infected mice (102, 105). The role of these mol-
ecules has been efforted in humans’ studies that have reported the
same conclusions (21, 110).

Hence, other in vitro studies have indicated that perforin-
and/or granulysin-containing Mtb-specific CD8+ T cell lines
were able to kill Mtb-infected macrophages or even free bacte-
ria (25, 111, 112), other studies have found the complete absence
of these molecules released by Mtb-specific CD8+ T cells from
lung-associated tissues (113, 114).

Though it is not still possible to attribute a role to polyfunc-
tional T cells as marker of protective immunity or of disease activ-
ity, multi-, or polyfunctionality of CD8 T cells is referred to the
simultaneous production of several cytokines (IFN-γ, IL-2, TNF-
α) and/or the expression of multiple effector functions (perforin,
granulysin, cytolysis, etc.). However, contrary to initial expecta-
tions, these cells do not appear to correlate with BCG-induced

protection in infants (115) and adults (116). Moreover, they are
also present in active TB, although they may nevertheless be part
of the protective host response attempting to limit infection rather
than contributing to active disease.

Previously, we have correlated the frequency of Mtb-Ag85A-
specific CD8+ T cells with the efficacy of anti-mycobacterial
therapy in children. In particular, we found that Ag85A epitope-
specific CD8+ T cells in children with active disease were able
to produce low levels of IFN-γ and perforin, which recovered
after successful therapy (117). In a later study, the analysis of
the ex vivo frequencies, cytokine production, and memory phe-
notype of circulating CD8 T cells specific for different non-amers
of Mtb proteins was performed in adult HLA-A*0201 different
cohorts (87).

We found a lower percentage of circulating tetramer specific
CD8 T cells in TB patients before therapy respect to LTBI subjects,
but values increased after 4 months of anti-mycobacterial therapy
to those found in subjects with LTBI. In this study, we also found
high percentages of IL-2+/IFN-γ+ and single IFN-γ+ in subjects
with LTBI, and a reduction of IL-2+/IFN-γ+ population in TB
patients, suggesting a restricted functional profile of Mtb-specific
CD8 T cells during active disease (87).

Many studies have focused on the response to different Mtb Ags
expressed in the early phase of infection such as ESAT6, CFP-10,
and Ag85B proteins but further studies should also incorporate
those Ags expressed at different phases of infection (40).

Another study, using defined cohorts of individuals with smear-
positive and smear-negative TB and LTBI subjects, evaluated Mtb-
specific responses in correlation to mycobacterial load (93). The
authors found, in individuals with high mycobacterial load smear-
positive TB, a decrease of polyfunctional and IL-2-producing cells,
and an increase of TNF-α+ Mtb-specific-CD4 T cells and CD8 T
cells, both of which had an impaired proliferative capacity (40).
These patients were followed during the anti-mycobacterial ther-
apy and it was shown that the percentage of triple positive CD8 T
cells (producing IFN-γ, IL-2, and TNF-α) increased over time in
7 out of 13 patients and this increase was paralleled by decrease of
the frequency of IFN-γ+ T cells, providing another evidence that
the cytokine production capacity of Mtb-specific CD8 T cells is
associated with mycobacterial load.

In children or immunocompromised individuals, where it is
very difficult to distinguish Mtb infection from disease, and in
people that are at high risk to develop active disease, the increase
of polyfuntional CD8 T cells and the reduction of single IFN-γ or
TNF-α producing cells may be used to correlate these CD8 T cell
subsets with TB disease progression, highlighting a new possible
role as indicator of successful response to treatment.

Mycobacterium tuberculosis DosR-regulon encoded Ags (118)
expressed by Mtb during in vitro conditions, represent rational
targets for TB vaccination because they mimic intracellular infec-
tion. It has been shown that LTBI individuals are able to recognize
Mtb DosR-regulon encoded Ags belonging to different ethnically
and geographically distinct populations (40, 111, 118, 119). More-
over, Mtb DosR Ag-specific-CD4+ and -CD8+ polyfunctional T
cells were found in LTBI subjects. In detail, a hierarchy of response,
in terms of the ability of Ag-specific CD8 T cells to produce one
or more cytokines, was found. The highest response was observed
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among single cytokine producing CD4+ and CD8+ T cell subsets,
followed by double producing CD4+ and particularly CD8+ T
cells. In particular, the most frequent multiple-cytokine producing
T cells were IFN-γ+TNF-α+ CD8+ T cells. These cells were effec-
tor memory (CCR7− and CD45RA−) or terminally differentiated
effector memory (CCR7− and CD45RA+) T cells, both pheno-
types associated with the protective role of CD8+ T cells in Mtb
infection (40, 111, 120). Another important observation was the
number of epitopes identified, in accordance with their immuno-
genicity and recognition by a wide variety of HLA backgrounds
(121, 122).

Therefore, the role of Mtb DosR-regulon encoded peptide Ag-
specific single and double functional CD4+ and CD8+ T cell
responses in LTBI, significantly improves the understanding of
the immune response to Mtb phase-dependent Ags in the control
of infection, and suggests a possible role for using MtbDosR-Ag
and/or peptide based diagnostic tests or vaccination approaches
to TB.

Several studies have tried to correlate the frequency, the phe-
notype, and the effector functions of CD8 T cells in patients
with disease and subjects with latent infection. Here, we report
other additional recent studies aimed at identify biological indica-
tors useful to discriminate between patients with active disease,
subjects with latent infection and patients that recovery after
successful therapy.

Niendak et al. have observed that specific CD8+ T cell response
decreased by 58.4% at 24 weeks, with the majority of the decrease
(38.7%) noted at 8 weeks in subjects receiving successful anti-
TB treatment (123); decrease of the CD8+ T cell response was
relatively unaffected by malnutrition, supporting the hypothesis
that the frequency of Mtb-specific CD8+ T cells declines with
anti-tuberculosis therapy potentially as consequence of decreasing
intracellular mycobacterial Ags, and may prove to be a surrogate
marker of response to therapy (34, 124). The authors postulate
that each individual has a CD8 “set point,” which reflects the
complex interplay of antigenic exposure, in conjunction with host
factors such as the HLA background. Nonetheless, these findings
are concordant with the observation that removal of Ag results
in decreasing T cell frequencies, and help to explain the observed
reduction in CD8+ T cell frequency following anti-tuberculosis
therapy.

Another recent study of Harari et al. (92) highlighted phe-
notypic and functional properties of Mtb-specific CD8 T cell
responses in 326 TB patients and LTBI subjects in order to cor-
relate their presence with different clinical form of Mtb infection
(74). Authors found a higher frequency of Mtb-specific CD8 T
cell responses in TB patients, which was correlated with the pres-
ence of higher Ag load (74, 92). These results were confirmed by
two different studies, the first performed in children with active
disease, where Mtb-specific CD8 T cells were detected in active
TB disease but not in healthy children recently exposed to Mtb
(92), and the second that demonstrated the presence of higher
number of granulomas in TB patients as compared with those
in LTBI subjects (74). Moreover, major phenotypic and func-
tional differences were observed between TB and LTBI subjects,
as Mtb-specific CD8+ T cells were mostly represented by termi-
nally differentiated effector memory cells (TEMRA) in LTBI and of

TEM cells in TB patients. These results also suggests that TEMRA

and TEM cell subsets, are involved in the control of Mtb infection,
as already demonstrated in chronic controlled and uncontrolled
virus infection, respectively (74, 125).

The authors did not find any statistically significant difference
in the cytokines profile of Mtb-specific CD8+ T cell responses
between LTBI subjects and TB patients, while they found that Mtb-
specific CD8+ T cells were more polyfunctional (i.e., IFN-γ+TNF-
α+IL-2+) in LTBI subjects, according to the role that these cells
play in anti-viral immunity (74, 125). Instead, it was found that
Mtb-specific CD8+ T cells have a higher frequency as single TNF-
α-producer cells in TB patients, as occurred for CD4+ T cells (125).
Further analysis of the functional properties of these Mtb-specific
CD8+ T cells, permitted to detect significant high levels of GrB
and GrA, but low level of perforin, suggesting a mechanism of
action of Mtb-specific CD8+ T cells that is independent on the
expression of perforin (74).

Another intriguing aspect of that study was the finding of a
higher prevalence of Mtb-specific CD8+ T cell responses in pul-
monary TB patients compared with extra-pulmonary TB patients
and the higher magnitude of these responses in smear-positive
versus smear-negative pulmonary TB patients (74). Moreover,
Mtb-specific CD8+ T cells from pulmonary TB patients were not
able to proliferate compared to CD8 T cells from extra-pulmonary
TB patients (74). These functional differences of the CD8 T cell
responses, in term of cytokines release or proliferation, most likely
depend on antigenic stimulation that occur at different anatomic
sites, that could be correlated with high Ag burden (88, 126, 127),
attributing to tropism of responding T cells (74).

In conclusion, Mtb-specific CD8 T cell response, as defined by
the qualitative and the quantitative aspects above cited, could have
significance in understand how the immune system fails to control
the progression of TB, or how the quality of the response could
facilitate early diagnosis in order to reduce TB associated morbid-
ity and mortality and to individuate subjects that are at high risk
to develop active disease (40).

ROLE OF T CELLS IN TB-HIV CO-INFECTION
HIV infection has led to an increase in the incidence of TB, and
TB-HIV co-infection has determined not easy decisions in both
the diagnosis and treatment. The treatment of co-infected patients
requires anti-tuberculosis and antiretroviral drugs to be adminis-
tered together. The therapeutic treatment leads to different results,
according to patient compliance, drug toxic effects, and, finally to
a syndrome that appears following the initiation of antiretrovi-
ral therapy (ART) named immune reconstitution inflammatory
syndrome (IRIS).

Several studies have provided to clarify the relationship that
exists between HIV and Mtb pathogens and how they interact
both in vitro and in vivo, highlighting how HIV infection could
increase the risk of TB and how Mtb infection may accelerate
the evolution of HIV infection. Flynn et al., very recently, have
summarized the results obtained from different studies, discern-
ing the several hypotheses on the role of the immune system in the
co-infection (128).

It is well known that TB-HIV co-infection is destructive (129–
131), but nowadays the mechanisms involved in the impairment
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of the immune system, guiding to the morbidity and mortality of
co-infected subjects, remain to be elucidated (132). In countries
with low rates of TB and, of course, with high-burden TB, the
identification of LTBI within individuals co-infected with HIV is
important due to the high risk to develop active TB. One of the
control strategy adopted by the WHO is the use of preventive ther-
apy of LTBI with isoniazid (INH) treatment (133). HIV-infected
individuals are at high risk to develop active TB for the progres-
sive CD4 depletion in the first few years after infection, even if the
number of peripheral CD4 T cells is still high at the beginning
(134–136). Although, the ART could restore absolute CD4 T cell
numbers, it does not reduce the risk of TB progression in HIV
patients (137). Conversely, TB infection has a negative impact on
clinical progression of HIV infection (138).

Studies of human disease have characterized functional defects
in CD4 T cells in TB-HIV co-infection by the analysis of cytokine
production (e.g., IFN-γ) by CD4 cells in response to Mtb Ags (139–
142) and by the analysis of phenotype distribution of CD4 T cells in
lymphoid tissue, peripheral blood, and at the sites of disease (139,
143, 144). The correlation of different phenotypes of Ag-specific-
CD4 T cells, and their role on the protection or susceptibility to
infection, has been clearly demonstrated by the emerging charac-
terization of polyfunctional CD4 T cells in TB-HIV co-infection.
In the peripheral blood of TB-HIV-infected people, CD4 T cells are
less able to secrete more than one cytokine when the viral load is
high (145). Kalsdorf et al. have demonstrated that polyfunctional
T cells specific for mycobacterial Ags are reduced in BAL from
latent TB-HIV-infected subjects with no symptoms of active TB.
The impairment of mycobacterial specific T cells could contribute
to develop active TB, suggesting that HIV infection affects the fre-
quency of Ag-specific polyfunctional T cells in the BAL of people
with latent TB-HIV (140). Therefore, several studies have tried to
correlate the presence of these cells in blood or in fluids recov-
ered at the site of infection, highlighting how their presence can
be reduced or increased, in term of absolute number. In fact, some
authors have found a reduction of polyfunctional CD4 T cells in
the peripheral blood of HIV-infected infants, in response to res-
timulation with BCG, compared with HIV-uninfected infants, or
in BAL samples from HIV-infected subjects compared with HIV-
uninfected healthy subjects, and finally, an increase in pericardial
fluid of TB-HIV patients, with a terminally effector phenotype
(143). Matthews et al. have found a lower proportions of Ag-
specific polyfunctional T cells, with the less mature phenotype of
CD4 T memory, at the site of disease of both HIV-infected and
uninfected TB patients, supporting the hypothesis that their pres-
ence could correlate with Ag load and disease status, instead than
with protection (143). Finally, understanding how the immune
system contributes to TB-HIV co-infection could provide the basis
for the discovery and development of new drugs and vaccines that
can prevent or cure TB in co-infected people. At the moment,
an early ART treatment still represents the gold standard in the
control of TB-HIV co-infection.

CONCLUDING REMARKS
Tuberculosis research in the field of vaccine and diagnostic tests
development suffers from lack of rigorous correlates of protection
in order to better understand the basic mechanisms underlying

pathophysiology. Therefore, the identification of biosignatures
that predict risk of disease, but also vaccine efficacy would be
important.

Studies of human T cell responses, using different protocols of
in vitro stimulation, have made possible to delineate some func-
tional signatures indicative of the immunological status of each
studied individual (40).

From the above cited studies, it has clearly emerged that, for
TB diagnosis it is necessary to investigate on several biomarkers.
The different expression levels of several cytokines, evaluated ex
vivo in cells obtained from blood samples, comparing uninfected
subjects, LTBI individuals, and patients with active disease, led to
not unique results. This issue, therefore, requires further investiga-
tion by different analytical platforms. In particular, we believe that
TB biomarkers research may continue to generate signatures with
clinical applicability and additionally provides novel hypotheses
related to disease pathophysiology (146).

Finally, the identification of such functional T cell signatures
could help to better make diagnosis of different stages of TB,
including also the cases of risk of reactivation and/or progression
to active disease such as occurs in HIV patients (146).
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