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Compensatory growth (CG) is a period of accelerated growth that occurs following the
alleviation of growth-stunting conditions during which an organism can make up for lost
growth opportunity and potentially catch up in size with non-stunted cohorts. Fish show a
particularly robust capacity for the response and have been the focus of numerous studies
that demonstrate their ability to compensate for periods of fasting once food is made avail-
able again. CG is characterized by an elevated growth rate resulting from enhanced feed
intake, mitogen production, and feed conversion efficiency. Because little is known about
the underlying mechanisms that drive the response, this review describes the sequen-
tial endocrine adaptations that lead to CG; namely during the precedent catabolic phase
(fasting) that taps endogenous energy reserves, and the following hyperanabolic phase
(refeeding) when accelerated growth occurs. In order to elicit a CG response, endoge-
nous energy reserves must first be moderately depleted, which alters endocrine profiles
that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin
and growth hormone (GH) production increase appetite and protein-sparing lipolysis, while
insulin-like growth factors (IGFs) are suppressed, primarily due to hepatic GH resistance.
During refeeding, temporal hyperphagia provides an influx of energy and metabolic sub-
strates that are then allocated to somatic growth by resumed IGF signaling. Under the right
conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative
to constantly fed controls. The response wanes as energy reserves are re-accumulated
and homeostasis is restored. We ascribe possible roles for select appetite and growth-
regulatory hormones in the context of the prerequisite of these catabolic and hyperanabolic
phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin,
neuropeptide Y, ghrelin, and leptin.
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INTRODUCTION: COMPENSATORY GROWTH OVERVIEW
Compensatory growth (CG) is a period of accelerated somatic
growth following the alleviation of growth-stunting conditions,
that temporarily induces a steeper growth trajectory than that of
cohorts not previously exposed to adverse conditions (Figure 1).
This phenomenon was seminally documented nearly a century
ago (Osborne and Mendel, 1916), and the term “CG” coined
40 years later (Bohman, 1955). CG has been documented in all
vertebrate classes; humans (Prader et al., 1963; Boersma and Wit,
1997; Sapolsky, 1998), other mammals (Bohman, 1955; Wilson
and Osbourn, 1960; Mersmann et al., 1987; Ryan, 1990), birds
(Wilson and Osbourn, 1960), reptiles (Bjorndal et al., 2003; Rad-
der et al., 2007), and amphibians (Alford and Harris, 1988; Vonesh
and Bolker, 2005), but most extensively in fish (Ali et al., 2003
for review). Despite the diversity of animals and plants that can
exhibit CG, the underlying mechanisms governing the response
are still poorly understood.

A broad range of teleosts are capable of undergoing
CG responses following alleviation of various growth-stunting
conditions or their combination, including suboptimal temper-
ature, crowding, or other stressful environments, and feed restric-
tion, the latter reflecting the condition most often studied (Ali
et al., 2003). A CG response has been reported in salmonids

(Dobson and Holmes, 1984; Jobling et al., 1993; Maclean and Met-
calfe, 2001; Nikki et al., 2004), cyprinids (Russell and Wootton,
1992; Wieser et al., 1992), perciformes (Hayward et al., 1997;
Picha et al., 2006, 2008b; Turano et al., 2007, 2008; Ferrando
et al., 2009), flatfish (Cho, 2005; Heide et al., 2006), stickle-
backs (Zhu et al., 2003), cichlids (Wang et al., 2000), catfish
(Gaylord and Gatlin, 2000), and gadids (Jobling et al., 1994).
While the degree of growth compensation achieved depends on
species, it is nonetheless typically characterized by hyperpha-
gia, improved feed conversion efficiency, and elevated specific
growth rate (SGR). Although not often assessed, a critical fea-
ture of individuals undergoing CG is that their SGR is higher
relative to similar-sized cohorts (i.e., SGR normalized to body
mass) that were never subjected to stunting conditions (Skalski
et al., 2005; Picha et al., 2006). Considering that CG results in
enhanced growth rate and feed efficiency, it is not surprising that
commercial production appears to be the driving impetus behind
investigations into CG in fish, as the majority of studies to date
involve cultivated species. Compared to conventional methods
of fish farming that deploy a constant regimen, incorporation
of rearing protocols that induce CG shows promise of reducing
the amount of feed needed to grow at least some species of fish
commercially.
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Won and Borski Endocrine regulation of compensatory growth

FIGURE 1 | Compensatory growth (CG) paradigm during fasting and
refeeding (dashed line) compared to constant growth rate in fed
controls (solid line). Normal growth (A) is disrupted by feed restriction
(hatched bar), which results in a decline in the growth trajectory (B) and a
size disparity compared to control animals fed a constant regimen. When
feeding resumes, hyperphagia and enhanced growth axis activity drive a
hyperanabolic phase (C) marked by a steeper growth curve than that of
constantly fed animals. The CG response potentially allows stunted animals
to fully compensate for lost growth opportunity and re-converge in size with
constantly fed controls before the growth rate returns to normal (D).

Because most fish exhibit indeterminate growth and many are
susceptible to seasonal changes in growth rate associated with nat-
ural variations in temperature and prey availability, they tend to
exhibit a robust capacity for CG (Mommsen, 2001). Hence, they
can ostensibly serve as valuable subjects for evaluating the meta-
bolic and endocrine mechanisms that may contribute to anabolic
processes generally, and hyperanabolism specifically. Acknowledg-
ing the diversity of fish in which CG has been documented and
the complexity of the response itself, few attempts have been made
to consolidate what is known about the endocrine mechanisms
that underlie the response; however, the cumulative research on
isolated components of CG provides insightful information from
which to extrapolate a fundamental framework. In particular, the
CG response can be divided into catabolic (e.g., during fasting,
stress, low temperature) and anabolic (during realimentation or a
return to more favorable conditions) phases, which elicit distinct
and sequential endocrine responses (Figure 2; Table 1). The pur-
pose of this review is to ascribe possible roles to select appetite
and growth-regulatory hormones in the context of the catabolic
and (hyper)anabolic phases of the CG response in teleosts, with
emphasis on growth hormone (GH), insulin-like growth factors
(IGFs), cortisol, somatostatin, neuropeptide Y (NPY), ghrelin, and
leptin.

CATABOLIC STATE: PRIMING THE COMPENSATORY GROWTH
RESPONSE
In order to induce CG, a preceding catabolic period is necessary,
the degree of which affects the overall magnitude of the response
(Russell and Wootton, 1992; Wieser et al., 1992; Wang et al., 2000).
This negative energy period depletes endogenous energy reserves
and alters endocrine profiles that modulate appetite and growth
potential once feeding is reinstated (Figure 2B). Brief periods of
feed restriction do not sufficiently deplete stored energy or result

FIGURE 2 | Endocrine regulation of growth and appetite during normal
anabolism, catabolism, and hyperanabolism (CG) resulting from
feeding status. Growth is regulated by the GH/IGF axis; GH secreted into
circulation by the pituitary binds its receptor (GHR) to stimulate hepatic
IGF-I production, which systemically drives somatic growth and exerts
negative feedback on GH secretion. Lipolysis is an alternate function of GH
during catabolism. Peripheral signals from a lipostatic mechanism
(anorexigenic), possibly leptin, and ghrelin (orexigenic) regulate energy
intake by modulating NPY and other neuropeptides in the central feeding
center. Ghrelin also functions as a GH secretagogue. Arrows show the
direction of regulatory pathways; widening/narrowing of arrows represents
a dynamic increase/decrease in a component over the duration of a
particular metabolic state. (A) During regular feeding, energy homeostasis
is maintained by matching energy intake and expenditure. Peripheral signals
counter-regulate appetite centrally. Growth is regulated by nominal levels of
circulating GH, which stimulates IGF-I production via hepatic GHRs. (B)
Fasting necessitates catabolic processes to provide energy for basal
metabolism. Rising ghrelin production stimulates both appetite and
circulating GH levels. Elevated lipolytic GH levels exploit stored energy
reserves, decreasing lipostatic signaling. Reduced hepatic GHR expression
desensitizes the liver to GH-induced IGF-I production. (C) Refeeding
signifies the switch from catabolic to anabolic processes. Temporally
elevated orexigens carried over from fasting drive hyperphagia. The return
to positive energy status is characterized by the resumption of hepatic GH
sensitivity and a steep rise in circulating IGF-I levels, which promotes
accelerated growth. Eventually, the repletion of energy reserves and
negative feedback from IGF-I returns GH and appetite to nominal levels,
marking the return to normal growth rates. (PIT, pituitary; HYP,
hypothalamus; NPY, neuropeptide Y; GH, growth hormone; GHR, growth
hormone receptor; IGF-I, insulin-like growth factor I).

in stunting, and can be countered with behavioral compensation
such as decreasing energy expenditure (Ali et al., 2003). Excessively
long periods of fasting, on the other hand, lead to an irrecoverable
lapse in growth that prevents full catch up to fed cohorts (Bil-
ton and Robins, 1973; Gaylord and Gatlin, 2000). Nevertheless,
moderate catabolism that taps expendable energy-storing tissues
physiologically primes the CG response by opening pathways that
elevate circulating GH and stimulate orexigens such as ghrelin and
NPY. Studies in striped bass (Morone saxatilis) suggest that a pre-
requisite drop in the hepatosomatic index (HSI) to about 1.5 is
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Won and Borski Endocrine regulation of compensatory growth

Table 1 | Modulation of select endocrine factors during the transition from catabolism (fasting) to hyperanabolism (refeeding).

Catabolism (fasting) Hyperanabolism (refeeding)

Response Effect Reference Response Effect Reference

GH Elevated levels Lipolysis (protein

sparing)

Sheridan (1986), Deng

et al. (2004), Albalat

et al. (2005), Small and

Peterson (2005),

Norbeck et al. (2007),

Picha et al. (2009)

Residually high,

then decreasing

Elevated IGF

production,

enhanced protein

uptake

Collie and Stevens (1985),

Foster et al. (1991), Sun and

Farmanfarmaian (1992), Fine

et al. (1993), Norbeck et al.

(2007), Picha et al. (2009),

Pierce et al. (2011), Kling

et al. (2012)

GHR (liver) Downregulated Hepatic GH

resistance

Gray et al. (1992), Mori

et al. (1992), Duan

(1998), Deng et al.

(2004), Saera-Vila et al.

(2005), Norbeck et al.

(2007), Picha et al.

(2008b)

Upregulated GH-induced IGF

production

Gray et al. (1992), Small

et al. (2006), Picha et al.

(2008b)

IGFs Suppressed Growth stasis Duan and Plisetskaya

(1993), Picha et al.

(2008b)

Elevated/

Overcompensated

Enhanced somatic

growth

Uchida et al. (2003),

Beckman et al. (2004), Picha

et al. (2008a); Picha et al.

(2008b)

Ghrelin Elevated levels Increased

appetite, GH

secretion

Kaiya et al. (2003a); Ran

et al. (2004), Unniappan

and Peter (2004); Fox

et al. (2007), Picha et al.

(2009)

Residually high,

then decreasing

Hyperphagia Riley et al. (2005), Matsuda

et al. (2006), Miura et al.

(2006)

NPY Elevated levels Increased

appetite

Peng et al. (1994),

Silverstein et al. (1998),

Leonard et al. (2001)

Residually high,

then decreasing

Hyperphagia Lopez-Patino et al. (1999),

Narnaware et al. (2000),

Volkoff and Peter (2001),

Aldegunde and Mancebo

(2006), Kiris et al. (2007)

Leptin Species/tissue

dependent

Regulation of

energy

metabolism?

Kling et al. (2009),

Rønnestad et al. (2010),

Fuentes et al. (2012),

Frøiland et al. (2012),

Trombley et al. (2012),

Zhang et al. (2012)

Species/tissue

dependent

Lipostatic signal? Johnson et al. (2000),

Nieminen et al. (2003),

Volkoff et al. (2003),

Murashita et al. (2008),

Gorissen et al. (2009), Won

et al. (2012)

Cortisol Elevated levels GH secretion,

hepatic GH

resistance, IGF-I

suppression

Nishioka et al. (1985),

Kajimura et al. (2003),

Small and Peterson

(2005), Leung et al.

(2008), Pierce et al.

(2011)

Low levels Enhanced somatic

growth

Kajimura et al. (2003), Leung

et al. (2008)

Somatostatin Elevated levels Hepatic GH

resistance, IGF-I

suppression

Very and Sheridan

(2002), Sheridan and

Kittilson (2004)

Low levels Enhanced somatic

growth

Very and Sheridan (2002)

The response, or relative presence of a component, during a particular metabolic state is paired with what is estimated to be the relevant effect it has in eliciting

compensatory growth (GH, growth hormone; GHR, growth hormone receptor; IGFs, insulin-like growth factors; NPY, neuropeptide Y).
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Won and Borski Endocrine regulation of compensatory growth

necessary in order to elicit the response (Picha et al., 2006; Turano
et al., 2007). The rise in appetite and alterations in physiology that
occur during the catabolic phase preceding CG thereby potentiate
hyperphagia and accelerated growth when feeding is reestablished.
Hence, an adequate, but not excessive level of catabolism is essen-
tial to elevating the capacity of an animal to undergo CG and
possibly achieve full catch-up growth when conditions improve.

GROWTH HORMONE: FUNCTION AND REGULATION DURING
CATABOLISM
Under differential regulation by a host of neuroendocrine reg-
ulatory factors, GH serves dual roles depending on metabolic
state, mobilizing lipids during catabolism and promoting somatic
growth during anabolism (reviewed in Canosa et al., 2007). Dur-
ing fasting, rising plasma GH (MacKenzie et al., 1998), along with
the related somatolactin in fish (Mingarro et al., 2002), protects
non-expendable tissue such as muscle and vital organs from being
catabolized by preferentially metabolizing fat over protein. This
lipolytic function has been demonstrated in fish with exogenous
GH treatment in vivo in coho salmon (Oncorhynchus kisutch;
Sheridan, 1986) and in vitro in gilthead sea bream (Sparus aurata)
adipocytes (Albalat et al., 2005), and is a critical adaptation to
surviving negative energy periods.

Catabolically elevated GH secretion is mediated by reduc-
tions in metabolite levels (glucose/amino acids) and is stimulated
in vitro and in vivo by orexigens, including ghrelin (Picha et al.,
2009) and NPY (Peng et al., 1993), as well as by the lack of
negative feedback inhibition from IGF-I. In striped bass pitu-
itaries, IGF-I potently suppresses in vitro GH synthesis and release
(Fruchtman et al., 2000; Picha et al., 2009), which likely con-
tributes to elevated GH production during fasting when IGF-I
levels are depressed. Cortisol, the dominant stress corticosteroid
in fish (Mommsen et al., 1999; Dyer et al., 2004), also stimulates
in vivo GH transcription in channel catfish (Ictalurus punctatus;
Small and Peterson, 2005) and in vitro release from somatotrophs
in Mozambique tilapia (Oreochromis mossambicus; Nishioka et al.,
1985). Plasma GH levels are elevated by as much as twofold in rain-
bow trout (Oncorhynchus mykiss; Sumpter et al., 1991; Farbridge
and Leatherland, 1992; Norbeck et al., 2007), Nile tilapia (Ore-
ochromis niloticus; Toguyeni et al., 1996), channel catfish (Small
and Peterson, 2005), and striped bass (Turano, 2007) during fast-
ing when exogenous metabolic substrates are limited and fat
reserves are needed for energy. Elevated GH is therefore able to
mobilize lipids for maintenance of basal metabolism during food
deprivation, but without directing limited energy resources toward
growth due to catabolic GH resistance in the liver.

The actions of GH are mediated by GH receptors (GHRs), for
which two distinct gene lineages exist in fish and which operate
via different signaling pathways (Kittilson et al., 2011). The teleost
GHR-1 is homologous to the single mammalian GHR (Fuka-
machi and Meyer, 2007) and has a shared affinity for both GH
and somatolactin (Fukada et al., 2005) whereas the type 2 GHR
is specific to GH activation (Fukada et al., 2004; Jiao et al., 2006;
Pierce et al., 2007). The degree to which the individual receptor
types mediate lipolysis or regulate growth is not known, but GH
actions in various tissues are likely contingent on the differen-
tial expression of these receptors depending on whether catabolic

or anabolic processes are required (de Celis et al., 2003; Saera-Vila
et al., 2005; Very et al., 2005; Kittilson et al., 2011). During negative
energy states, hepatic resistance to elevated plasma GH is evident
as decreased IGF-I production (Duan and Plisetskaya, 1993; Picha
et al., 2008b) due to catabolic suppression of ligand binding to
GHRs (Gray et al., 1992; Mori et al., 1992; Duan,1998). This type of
hepatic GH resistance during catabolism is characterized as down-
regulated GHR mRNA levels in striped bass (Picha et al., 2008b)
and gilthead seabream (Saera-Vila et al., 2005), decreased hepatic
GH binding in gilthead sea bream (Pérez-Sánchez et al., 1994) and
both reduced hepatic GHR transcript and GH-binding in rainbow
trout (Norbeck et al., 2007) and black seabream (Acanthopagrus
schlegeli; Deng et al., 2004); alleviated in all cases by refeeding.

Hepatic GH resistance is likely mediated, in part, by cortisol
and somatostatins during fasting. While stimulating GH synthe-
sis, cortisol simultaneously suppresses hepatic IGF-I production
through direct downregulation of transcription and synthesis in
silver sea bream (Sparus sarba; Leung et al., 2008) and Mozam-
bique tilapia (Kajimura et al., 2003; Pierce et al., 2011), or in
conjunction with suppression of GHR transcript in channel catfish
(Small et al., 2006). Somatostatins also reduce GH binding in the
liver and suppress IGF-I gene expression (Very and Sheridan, 2002;
Sheridan and Kittilson, 2004). Hepatic resistance to GH through
reduced receptor expression and signaling, despite elevated levels
of circulating ligand, signifies an uncoupling of the lipolytic and
growth-regulatory functions of GH during negative energy states.
The carry over of catabolically elevated GH, in turn, helps drive
enhanced IGF-I production and may ultimately potentiate hyper-
anabolic growth pending the return to a positive energy state when
hepatic GHR signaling resumes.

GHRELIN: PERIPHERAL MODULATOR OF GH SECRETION AND APPETITE
DURING CATABOLISM
The rise in lipolytic GH during fasting is fundamentally impera-
tive for sparing muscle and organs by deferring catabolism to fat
stores. Upstream regulation of enhanced GH production during
fasting is therefore dependent on an indicator of nutritional state
to coordinate catabolic lipolysis with negative energy states. The
orexigenic peptide, ghrelin, responds to fasting and is a potent GH
secretogogue, comparable in effect to growth hormone releasing
hormone (GHRH) (Hataya et al., 2001). The differential regula-
tion of appetite and GH secretion by ghrelin in fish relies on spe-
cific Ser3 modifications (Unniappan et al., 2002; Riley et al., 2005;
Jönsson et al., 2007). Ghrelin’s actions are mediated by the growth
hormone secretogogue receptor (GHSR), which is distinct from
the GHRH receptor (Kojima et al., 1999). In fish, ghrelin mRNA is
expressed predominantly in the gut and stomach (Unniappan and
Peter, 2005), and it is interestingly the only known peripheral orex-
igen originating from the gut considering its proximity to nutrient
uptake. To a lesser extent, central ghrelin gene expression has also
been detected in rainbow trout (Kaiya et al., 2003a), eel (Anguilla
japonica; Kaiya et al., 2003b), Mozambique tilapia (Kaiya et al.,
2003c), and goldfish (Carassius auratus; Unniappan et al., 2002),
as has GHSR transcript in black sea bream (Chan and Cheng,
2004). Ghrelin stimulates GH secretion in vitro in cultured orange
spotted grouper (Epinephelus coioides) pituitaries (Ran et al., 2004)
and in vivo and in vitro in Mozambique tilapia (Fox et al., 2007),
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Won and Borski Endocrine regulation of compensatory growth

rainbow trout (Kaiya et al., 2003a), goldfish (Unniappan and Peter,
2004), and striped bass (Picha et al., 2009). Besides actively stimu-
lating GH secretion, in mammals ghrelin also independently acts
as a functional antagonist to somatostatin (Arvat et al., 2001; Tan-
nenbaum and Bowers, 2001; Tannenbaum et al., 2003), itself an
inhibitor of GH secretion. Ghrelin is therefore capable of peripher-
ally stimulating GH secretion through vagal afferents originating
near the stomach, as well as by acting directly on the pituitary or
through modulation of central GH release factors.

Ghrelin is also a potent appetite stimulant, serving as a periph-
eral signal to the brain during periods of negative energy balance
(Banks et al., 2002; Cummings et al., 2004). Orexigenic ghrelin
signaling operates via vagal afferents as well as central pathways
paralleling those of GH regulation, although appetite and GH
stimulatory pathways are independent (Tschop et al., 2000; Wren
et al., 2000; Nakazato et al., 2001; Date et al., 2002). The orexigenic
properties of ghrelin have been reviewed in mammals (Ander-
son et al., 2005; Ueno et al., 2005) and fish (Unniappan and Peter,
2005; Kaiya et al., 2008). Appetite was stimulated by a single IP/ICV
injection of homologous ghrelin in goldfish (Matsuda et al., 2006;
Miura et al., 2006) and by chronic treatment in tilapia (Riley et al.,
2005). The effect of ghrelin on appetite is less clear in salmonids,
which undergo seasonal alterations in feeding behavior (Metcalfe
et al., 1986; Metcalfe and Thorpe, 1992). In juvenile rainbow trout,
IP injection of rat ghrelin was orexigenic (Shepherd et al., 2007) as
in other fish, although both IP and ICV delivery of native ghrelin
suppressed feeding (Jönsson et al., 2010) in similar-sized trout or
had no effect (Jönsson et al., 2007) when injected IP in larger fish.
These variable results suggest that ghrelin may have different func-
tions depending on life stage in salmonids, and that homologous
and heterologous peptides could account for the different effects
observed in these studies. Future research will need to consider
these contingencies.

In accord with its orexigenic function, ghrelin levels tend to
rise during fasting and decline after feeding in mammals (Ueno
et al., 2005) as well as in fish (Unniappan et al., 2004; Canosa
et al., 2005; Matsuda et al., 2006; Terova et al., 2008; Picha et al.,
2009). Exceptions were observed in tilapia (Riley et al., 2008) and
rainbow trout (Jönsson et al., 2007), however, and may repre-
sent species-specific differences in regulation of the ghrelin system
among teleosts. Ghrelin nonetheless appears to be an important
peripheral signal for regulating both GH secretion and appetite
based on nutritional status. Studies further suggest that stim-
ulation of ghrelin production during fasting and the lag time
between refeeding and the return of ghrelin to basal levels may
depend on the degree to which catabolic processes deplete energy
reserves. In the short term, gut and hypothalamic preproghre-
lin mRNA along with circulating ghrelin levels increased on the
order of days in fasted goldfish, then went down within several
hours after refeeding (Unniappan et al., 2004). European seabass
(Dicentrarchus labrax) stomach ghrelin mRNA levels increased
over 35 days of fasting, then dropped back to basal levels after
10 days of refeeding (Terova et al., 2008). Striped bass exhib-
ited elevated plasma ghrelin levels after 3 weeks of fasting and
a 43-fold increase relative to fed controls after continued fast-
ing and cold-banking for 90 days, followed by a return to baseline
within 21 days of refeeding and temperature warm up (Picha et al.,

2009). Plasma ghrelin and GH levels in the treatment fish of this
trial were concordantly elevated during fasting and then even-
tually returned to control levels after refeeding. Refeeding was
additionally marked by hyperphagia and full catch up growth.
Picha et al. (2009) show that in vitro stimulation of GH by ghre-
lin occurs in somatotrophs derived from both continually fed and
fasted fish, but not from refed fish, suggesting the hypophyseal
GHSR may be downregulated during CG, which would con-
tribute to the eventual decline in GH seen during refeeding of
fasted fish. Taken together, the trends in ghrelin regulation and
function observed in fish suggest that catabolically elevated ghre-
lin simultaneously raises lipolytic plasma GH while priming a
hyperphagic response during refeeding. The coincidence of these
effects likely contributes significantly to the CG response, and
may in part explain why a catabolic phase is needed to precede
hyperanabolism.

CENTRAL MODULATORS OF APPETITE
Appetite is increased during fasting through the upregulation of
central orexigenic neuropeptides (Kalra et al., 1999), with similar
hormones existing in mammals and fish. In the latter, a num-
ber of orexigens are expressed in the pre-optic hypothalamic
region (Volkoff et al., 2005), which appears to be the teleost ana-
log to the mammalian feeding center. Central injection of NPY
(Lopez-Patino et al., 1999; Narnaware et al., 2000; Aldegunde and
Mancebo, 2006; Kiris et al., 2007), galanin (de Pedro et al., 1995;
Volkoff and Peter, 2001), and orexins (Volkoff et al., 1999) stimu-
late appetite in teleosts. While NPY is considered the most potent
orexigen in fish and has garnered the most research, these other
central peptides interact with NPY to augment appetite in response
to negative energy status (Volkoff et al., 2005).

Central NPY (Peng et al., 1994; Silverstein et al., 1998; Leonard
et al., 2001) and AgRP (Cerdá-Reverter and Peter, 2003) mRNA
is regulated by nutritional state and increases during negative
energy states to promote energy intake. Ghrelin stimulates cen-
tral gene expression of NPY, which has been shown to mediate
the orexigenic effects of ghrelin in goldfish (Miura et al., 2006).
As in mammals (Stephens et al., 1995; Schwartz et al., 2000), the
anorexigen, leptin, suppresses the effects of exogenous NPY on
appetite in fish (Lin et al., 2000; Volkoff et al., 2003). In rodents,
appetite is stimulated by NPY when ghrelin levels are high and lep-
tin low (Bagnasco et al., 2002), or during periods of negative energy
balance; however, leptin’s regulation by metabolic state in fish is
equivocal (discussed below). The upregulation and interaction of
central orexigenic neuropeptides during fasting likely culminates
in the hyperphagic response during refeeding, thus providing the
substrate and energy necessary for a CG response to occur.

REFEEDING: HYPERPHAGIA AND HYPERANABOLISM
(COMPENSATORY GROWTH)
Hyperanabolism, or the accelerated growth phase that charac-
terizes CG, is the result of hyperphagia and heightened growth
axis activity during refeeding, particularly in the rapid rise in
IGF-I production that occurs when hepatic sensitivity to GH
returns. As discussed in the first half of this review, CG is pre-
ceded by a catabolic phase that primes an organism for hyper-
anabolism. If the endurance of the catabolic state is sufficient,
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and food is ample when feeding resumes, then a temporal hyper-
phagic response is elicited and a net positive energy state achieved
through the reintroduction of exogenous energy and metabolic
substrates. When energy stores are regained, orexigenic signaling
declines and hyperphagia subsides. Under these terms, an organ-
ism exhibits lipostatic regulation of energy homeostasis (Jobling
and Johansen, 1999), a system in which energy reserves are main-
tained within a certain range by endocrine signals derived from
energy-storing tissues that regulate feeding and energy expendi-
ture. CG seems to occur during the lag time between refeeding and
the lipostatic abatement of hyperphagia and enhanced growth axis
activity.

HYPERPHAGIA AND ASSIMILATION EFFICIENCY
Hyperphagia is an integral component of CG (Ali et al., 2003) and
is a common response to energy deficit in a variety of fish; Euro-
pean minnow (Phoxinus phoxinus; Russell and Wootton, 1992),
Atlantic salmon (Salmo salar ; Bull and Metcalfe, 1997), centrar-
chid sunfish (genus Lepomis; Hayward et al., 1997), Nile tilapia
(Wang et al., 2000), striped bass (Picha et al., 2008b; Turano et al.,
2008), and stickleback (Gasterosteus aculeatus; Zhu et al., 2003).
The magnitude of the hyperphagic response depends on the dura-
tion of fasting in salmon, and appears to be largely influenced
by the degree to which lipid reserves are depleted by catabolic
processes (Bull et al., 1996). Hyperphagia during CG is attributable
to catabolically elevated levels of orexigens that are upregulated
during negative energy states.

Hyperanabolism during refeeding is fueled by an influx of
metabolic substrates that are rapidly allocated to somatic growth
through heightened mitogenic activity of the growth axis; how-
ever, hyperphagia alone may not account for the accelerated
growth rate experienced during CG. Gurney et al. (2003) pro-
pose, through energetics modeling, that high substrate assimila-
tion rates during hyperphagia drive CG by partitioning resources
specifically to skeletal growth rather than to energy reserve depo-
sition. Skalski et al. (2005) elaborate on the energetics model of
hyperanabolism, suggesting that physiological changes, includ-
ing increased assimilation efficiency during feeding and reduced
mass-specific maintenance costs during fasting, work in conjunc-
tion with hyperphagia to drive CG in striped bass. A subsequent
study that normalizes SGR to body size supports that the growth
rate is significantly higher in fasted/refed hybrid striped bass
relative to controls (Picha et al., 2008b), and is not merely an
allometric artifact of smaller, stunted fish compared to larger, fed
cohorts.

The mechanism that adjusts energy allocation around assim-
ilation rate is undefined, although the lipolytic and growth pro-
moting functions of GH, along with its regulatory profile under
variable metabolic conditions, suggests an influential role in opti-
mizing substrate conversion to skeletal growth. Long-term GH
treatment in rainbow trout improved feed conversion by 60%
(Kling et al., 2012). Exogenous GH treatment enhanced amino acid
uptake (Collie and Stevens, 1985) as well as growth rate, appetite,
and food conversion in coho salmon (Markert et al., 1977). In fed
striped bass, weekly bovine GH injection increased the number
of intestinal amino acid transporters and intestinal mass (Sun
and Farmanfarmaian, 1992), suggesting improved protein uptake

capacity. Similarly in carp (Cyprinus carpio; Fine et al., 1993) and
rainbow trout (Foster et al., 1991), protein assimilation, and feed
conversion were improved by chronic GH treatment. The carry
over of catabolically elevated GH after refeeding, in addition to
driving somatic growth through stimulation of IGFs, may also
improve protein assimilation at a time when substrates are in
abundance due to elevated feeding (Peter and Marchant, 1995;
MacKenzie et al., 1998).

HYPERANABOLISM: AUGMENTATION OF THE GH/IGF GROWTH AXIS
Compensatory growth ultimately refers to the rapid growth, or
hyperanabolic, response that occurs during the feeding of previ-
ously fasted animals, and which allows them to recover lost growth
opportunity. During positive energy states, circulating GH binds
hepatic GHRs to induce production and secretion of IGF-I, the
prominent mitogen responsible for somatic growth in vertebrates
(Froesch et al., 1985; Picha et al., 2008a). Like IGF-I, hepatic IGF-
II transcription is also stimulated by GH in a broad range of fish
(Shamblott et al., 1995; Duguay et al., 1996; Carnevali et al., 2005;
Gabillard et al., 2006; Moriyama et al., 2008a,b; Pierce et al., 2011)
and remains responsive to GH into adulthood. Hepatic GHR tran-
scription positively correlates with GH binding in gilthead sea
bream (Pérez-Sánchez et al., 1994) and with circulating IGF-I
levels in channel catfish (Small et al., 2006) during fasting and
refeeding, corroborating that metabolic state mediates GH signal-
ing through changes in GHR expression in the liver where the
majority of endocrine IGFs are produced (Reinecke and Collet,
1998; Vong et al., 2003; Terova et al., 2007). Chronic GH treat-
ment increases growth rate in a diverse range of fish (Markert
et al., 1977; Weatherley and Gill, 1987; Agellon et al., 1988; Cavari
et al., 1993), suggesting that the catabolically elevated GH levels
that temporarily persist during refeeding may contribute to an
accelerated growth rate by stimulating the growth axis. The return
of hepatic sensitivity to GH during refeeding, which reinstates
IGF synthesis, is therefore critical to CG. The duration of high
plasma GH levels may depend on catabolic history and the extent
to which energy reserves are depleted during fasting, but appears
to decline back to normal levels within 2 weeks of refeeding in
rainbow trout and striped bass (Norbeck et al., 2007; Picha et al.,
2009).

Consistent with the mitogenic attributes of IGFs, plasma IGF-
I (Uchida et al., 2003; Beckman et al., 2004) and hepatic IGF-I
and II mRNA (Picha et al., 2008b) levels positively correlate with
SGR in fasted and refed fish. The relative change in circulat-
ing IGF-I over a growth increment is an even better corollary
to SGR in striped bass than absolute IGF-I levels (Picha et al.,
2006), which may indicate enhancement of IGF receptor sensitiv-
ity during the transition from catabolic back into anabolic states as
plasma IGF-I levels are in the process of rising. The steep rebound
of depressed plasma IGF-I levels during the refeeding of fasted
striped bass corresponded directly to the hyperanabolic phase of
the growth curve (Picha et al., 2008b). Moreover, transcript levels
of hepatic GHRs and IGFs in these fish during refeeding actually
exceeded those of constantly fed control fish, suggesting that over-
compensation in expression of key growth-regulatory hormones
may be contributing significantly to the accelerated growth that
occurs with CG (Picha et al., 2008b). This overcompensation is
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further exacerbated in striped bass when the alleviation of a pre-
vious period of feed restriction is combined with cold-banking,
similar to what wild fish experience during spring warm up when
temperature and prey availability are more optimal for growth
(Perez-Sanchez and Le Bail, 1999; Mingarro et al., 2002; Picha
et al., 2009). Similarly, overcompensation in circulating IGF-I
concomitant with enhanced activation of IGF-I signaling in mus-
cle tissue was observed in fine flounder (Paralichthys adspersus;
Fuentes et al., 2011). An elevation in muscle IGF-I mRNA levels
has been observed in a number of other fish (Chauvigne, 2003;
Montserrat et al., 2007a,b; Picha et al., 2008b; Kling et al., 2012),
suggesting a parallel autocrine or paracrine mechanism within the
skeletal tissue itself. Taken together, the coordinated dynamics of
the GH/IGF growth axis appears key in eliciting CG, whereby the
expression levels of and sensitivity to growth-regulatory hormones
is increased relative to normal animals on a continuous regi-
men, subsequently resulting in a hyperanabolic state characteristic
of CG.

THE LIPOSTATIC RETURN TO ENERGY HOMEOSTASIS
The CG response to fasting is finite, attenuating once lost energy
resources re-accumulate and hyperphagia abates. The lipostatic
model of energy homeostasis proposes that adiposity acts as a
regulatory mechanism on appetite in order to maintain a thresh-
old of energy deposition (Kennedy, 1953). Kennedy observed that
depletion of adipose stores in fasted rats stimulated feeding, which
returned to normal levels when reserves returned to a critical
mass. Studies support the presence of a teleost lipostat-like mech-
anism, as well, although lipid partitioning can vary considerably
between adipose tissue, liver, and muscle in different fishes (Dias
et al., 1999; Frøiland et al., 2012). The hyperphagic response to
long-term fasting in salmonids appears to be driven by a decrease
in whole body lipid content and terminates, along with the CG
response, when proximate composition is restored (Jobling and
Miglavs, 1993; Johansen et al., 2001). Fluctuating gross lipid levels
during fasting and refeeding similarly suggest lipostatic regulation
of hyperphagia in three-spined stickleback (Zhu et al., 2003) and
striped bass (Turano et al., 2007) undergoing CG. The liver is a
significant lipid storing and metabolizing tissue in some fish, and
may also be involved in sensing and maintaining energy reserve
levels. More so than visceral adipose mass, changes in the HSI
during cycles of feed deprivation and refeeding in striped bass,
in which liver is a major lipid storage organ, are indicative of
metabolic state and the likelihood of achieving an elevated SGR,
and hence CG, during refeeding (Picha et al., 2006; Turano et al.,
2008).

IS LEPTIN THE TELEOST LIPOSTATIC HORMONE?
The mechanism that represents overall energetic status, endocrine
or otherwise, is not well defined in teleosts, in part because differ-
ent fish partition stored energy in various locations. In mammals,
the anorexigenic peptide hormone, leptin, reflects fat deposi-
tion. Leptin modulates food consumption and energy expenditure
according to endogenous energy availability, and is considered the
primary lipostatic hormone (Ahima and Flier, 2000; Arora and
Arora, 2008). If leptin functions as a lipostat in teleosts as well, it
would likewise need to be indicative of energy availability. Even

though leptin is consistently anorexigenic in fish as in mammals,
evolutionarily isolated gene duplication events, physiological dif-
ferences in energy storage and diverse life histories may underlie
divergent functions for leptin in fish that only partially resemble
those of higher vertebrates.

Leptin centrally regulates feeding by stimulating appetite-
suppressing neuropeptides and inhibiting appetite-stimulating
neuropeptides in mammals (Ahima et al., 1999; Elias et al.,
1999; Zhang and Felder, 2004) and fish (Volkoff et al., 2003;
Murashita et al., 2008). Leptin injection accordingly reduces feed-
ing in goldfish (de Pedro et al., 2006), rainbow trout (Murashita
et al., 2008), and striped bass (Won et al., 2012). While its
anorexigenic property logically integrates into a system in which
leptin serves as a lipostat, such as the mammalian paradigm,
it fits less aptly into a system where leptin expression may
not correlate with energy reserves, as is the case for some
teleosts.

Studies evaluating leptin responsiveness to metabolic state in
teleosts are equivocal. Circulating leptin (Johnson et al., 2000;
Nieminen et al., 2003) or mRNA levels in liver (Gorissen et al.,
2009; Won et al., 2012) are depressed in some fish during fast-
ing, or otherwise reflect energy deposition (Kling et al., 2012).
Conversely, some species exhibit rising plasma (Kling et al., 2009;
Fuentes et al., 2012; Trombley et al., 2012) or gene expression levels
in lipid storing tissues (Rønnestad et al., 2010; Frøiland et al., 2012;
Gambardella et al., 2012; Trombley et al., 2012; Zhang et al., 2012)
during feed restriction, while others show no long-term regulation
by feeding regimen (Huising et al., 2006). Leptin gene expression
profiles in different energy-storing tissues during altered meta-
bolic states vary, even among closely related species, and are not
necessarily concomitant with plasma levels. These studies call into
question whether leptin functions as a lipostatic endocrine sig-
nal aimed at mobilizing surplus energy stores or might instead
drive other catabolic processes in fish. It is important to consider
that some fish possess multiple leptin genes (Huising et al., 2006;
Kurokawa and Murashita, 2009; Rønnestad et al., 2010; Zhang
et al., 2012) arising from different genome duplication events
within lineages, and that these paralogs may have different roles.
If a lipostatic function for leptin, or one form of leptin, is inherent
in fish, then the replenishment of energy reserves during refeeding
may eventually attenuate hyperphagia and mark the end of the CG
response through leptin signaling. If not, then further studies will
be needed to reconcile the paradox of rising plasma leptin levels
during fasting in some fish in light of its conserved anorexigenic
property.

SUMMARY: SEQUENCE OF EVENTS DURING CATABOLIC AND
ANABOLIC STATES LEADING TO CG
Compensatory growth is a period of accelerated growth follow-
ing the alleviation of growth-stunting conditions, such as fasting,
that potentially allows an organism to make up for lost growth
opportunity (Figure 1). The response can be divided into a cata-
bolic phase, when growth is impeded and energy reserves are
tapped, and a hyperanabolic phase, when growth resumes at an
elevated rate. This review chronologically describes physiological
adjustments and endocrine activity in fish during these meta-
bolic phases, and suggests how they may ultimately make CG
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possible through enhanced feeding, substrate assimilation, and
rapid growth.

During the precedent catabolic phase (Figure 2B), orexigens
stimulate appetite as endogenous energy reserves are depleted.
Ghrelin and cortisol stimulate GH production and elevate circu-
lating GH levels in order to free energy-storing lipids. However,
hepatic GH resistance and the growth-inhibitory effects of corti-
sol and somatostatins suppress IGF production under the pretext
that conditions are unfavorable for growth. Reduced negative
feedback from IGF-I further permits GH levels to rise. A criti-
cal period of catabolism is therefore required to induce hormonal
changes that prime the fish for hyperphagia and super-potentiate
the growth axis.

During refeeding (Figure 2C), CG is fueled by the hyperphagic
influx of exogenous energy and substrates. Food is assimilated with
heightened efficiency as the result of modifications to metabolic
substrate absorption, in part attributable to residually elevated GH
levels. Hepatic GHRs are reinstated and GH sensitivity returns,
followed by a steep rise or even overcompensation in IGF-I pro-
duction. Production of IGFs during refeeding is also influenced by
a decline in growth-inhibitors. Substrate and energy availability,
enhanced assimilation efficiency, and augmentation of the growth
axis culminate in a hyperanabolic, rapid growth phase until a
lipostat-like mechanism initiates the return to basal appetite and

a growth axis profile representative of a normal growth trajectory
(Figure 2A).

Compensatory growth is therefore regulated by sequential
endocrine responses during distinct metabolic states (Table 1).
Teleosts have been the subject of numerous CG studies; how-
ever, our understanding of their endocrine mechanisms during
this phenomenon is commonly limited to observations in a few
model species or extrapolations from studies in higher vertebrates.
While by no means inclusive, this theoretical composite of docu-
mented hormonal activity during catabolic and anabolic states is
intended to provide a basic framework of the endocrine regula-
tion of CG in fish, and perhaps higher vertebrates. The relevance
of certain hormones, time frames, and even the potential of the
CG response itself are likely contingent on species, size, and life
stage. Nonetheless, the variables presented in this review are esti-
mated to be of fundamental importance to CG in fish, although
the degree of their relevance in particular species may vary.
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