
November 2016 | Volume 3 | Article 281

Code
published: 21 November 2016
doi: 10.3389/fict.2016.00028

Frontiers in ICT | www.frontiersin.org

Edited by:
Giuseppe Boccignone,
University of Milan, Italy

Reviewed by:
Stefano Berretti,

University of Florence, Italy
Helder Araujo,

University of Coimbra, Portugal

*Correspondence:
Elishai Ezra Tsur

elishai85@gmail.com

Specialty section:
This article was submitted to Vision

Systems Theory, Tools and
Applications,

a section of the journal
Frontiers in ICT

Received: 29 August 2016
Accepted: 31 October 2016

Published: 21 November 2016

Citation:
Heimlich O and Ezra Tsur E (2016)

OpenVX-Based Python Framework
for Real-time Cross-Platform

Acceleration of Embedded
Computer Vision Applications.

Front. ICT 3:28.
doi: 10.3389/fict.2016.00028

openVX-Based Python Framework
for Real-time Cross-Platform
Acceleration of embedded Computer
Vision Applications
Ori Heimlich and Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab, Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel

Embedded real-time vision applications are being rapidly deployed in a large realm of
consumer electronics, ranging from automotive safety to surveillance systems. However,
the relatively limited computational power of embedded platforms is considered as a
bottleneck for many vision applications, necessitating optimization. OpenVX is a stan-
dardized interface, released in late 2014, in an attempt to provide both system and kernel
level optimization to vision applications. With OpenVX, Vision processing is modeled
with coarse-grained data flow graphs, which can be optimized and accelerated by the
platform implementer. Current full implementations of OpenVX are given in the program-
ming language C, which neither supports advanced programming paradigms, such as
object-oriented, imperative, and functional programming, nor does it has runtime or type
checking. Here, we present a python-based full Implementation of OpenVX, which elim-
inates much of the discrepancies between the object-oriented paradigm used by many
modern applications and the native C implementations. Our open-source implementa-
tion can be used for rapid development of OpenVX applications in embedded platforms.
Demonstration includes static and real-time image acquisition and processing using a
Raspberry Pi and a GoPro camera. Code is given in Supplementary Material. Code
project and linked deployable virtual machine are located on GitHub: https://github.com/
NBEL-lab/PythonOpenVX.

Keywords: embedded computer vision, code: Python, real-time, openVX, object-oriented framework

INTRodUCTIoN

In the last two decades, the emergence of powerful, low-cost, and energy-efficient micro-processors
enabled computer vision (CV) capabilities to be applied in embedded platforms, allowing real-time
machines to visually interpret their environment (Kisacanin and Gelautz, 2014). Embedded vision
applications are currently ingrained into many aspects of modern life, from automotive safety
(Mandal et al., 2014), optical character recognition (Neumann and Matas, 2012), and gesture inter-
faces (Rautaray and Agrawal, 2015) to medical instrumentation (Economou and Papaioannou, 2013)
and surveillance systems (Lin et al., 2012).

Three main challenges are currently considered as bottlenecks in the embedded vision pipeline: the
growing diversity of camera hardware, the relatively limited computational resources of embedded

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82877733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/ICT/
http://crossmark.crossref.org/dialog/?doi=10.3389/fict.2016.00028&domain=pdf&date_stamp=2016-11-21
http://www.frontiersin.org/ICT/archive
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
https://doi.org/10.3389/fict.2016.00028
http://www.frontiersin.org/ICT/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:elishai85@gmail.com
https://doi.org/10.3389/fict.2016.00028
http://www.frontiersin.org/Journal/10.3389/fict.2016.00028/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2016.00028/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2016.00028/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2016.00028/abstract
http://loop.frontiersin.org/people/374140
http://loop.frontiersin.org/people/359800
https://github.com/NBEL-lab/PythonOpenVX
https://github.com/NBEL-lab/PythonOpenVX

FIGURe 1 | Modeling vision processing with coarse-grained data flow graphs. Nodes represent atomic kernels performed on image data, connected
internally via virtual images and externally via real images.

2

Heimlich and Ezra Tsur OpenVX-Based Framework for Embedded Vision

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 28

and real-time platforms, and the execution of vision-based deci-
sions, due to the required integration with other components,
such as sensors and actuators (Lee et al., 2015; Dedeoğlu et al.,
2011). Obviously, the underlying challenge of each bottleneck is
standardization.

Here, we address the second bottleneck: acceleration of CV
application for real-time platforms. A general use case of an
embedded vision application starts with the application (applica-
tion layer), which makes use of a CV library (framework layer).
The CV library uses an accelerator API (acceleration layer) that
was implemented to run on a specific machine (engine layer).

Embedded acceleration of CV application can be performed
in both system and kernel level. While system-level optimization
issues, such as power consumption and memory bandwidth, are

generally dealt within the engine layer, kernel optimization is
locally achieved within the framework layer, where specific algo-
rithms are refactored with more efficient implementation. Both
approaches have their limitations: system-level optimization has
to be addressed at the framework level, and kernel optimization
has only a local effect on the efficiency of the entire algorithmic
process (Rainey et al., 2014).

OpenVX is a standardized interface, designed by the
Khronos Group and released in late 2014, in an attempt to
provide both system and kernel level optimization by modeling
the system with graphs, which can be used for optimization
and acceleration by the platform implementer (Rainey et al.,
2014; Lin et al., 2015; Tagliavini et al., 2014). This model of
standardization defers the responsibility for optimization from

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

3

Heimlich and Ezra Tsur OpenVX-Based Framework for Embedded Vision

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 28

the user to the platform developer – separating the applica-
tion and the hardware knowledge domains. For example,
NVIDIA Corporation, one of the world’s leading companies
in the design of graphics processing units (GPUs), developed
the VisionWorks toolkit – an implementation of OpenVX for
CUDA-capable GPUs and System on Chips (Soc) (Elliott et al.,
2015). CUDA is a software layer, also developed by NVIDIA,
that encapsulates GPU with a virtual instruction set, which
enables a distributed execution of kernels. The development
model of OpenVX is similar to the standardization of computer
graphics provided by OpenGL (Rainey et al., 2014), which
specifies an abstract interface for defining graphical compo-
nents. OpenGL applications are extensively used in a wide
spectrum of fields ranging from virtual reality to computer-
aided design.

Briefly, an OpenVX application starts with constructing
a directed acyclic graph in which nodes representing atomic
kernels performed on image data. Nodes are connected
internally via virtual images (which can be optimized out)
and externally via real images. Essentially, image processing
stages are arranged in a connected graph. Nodes (or process-
ing primitives) are then distributed to available hardware, as
it is implemented by the OpenVX implementation provider.
OpenVX defines an extendible library of ~40 primitives rang-
ing from simple arithmetic to key points detection or tracking
(Khronos Group, 2016). Basic CV data structure includes
images, convolution matrices arrays, and scalars. We note that
OpenVX did not invent the concept of harnessing the expres-
sion power of graphs to accelerate vision application. This idea
was already proposed by Olson et al. (1993), who described
vision processing in terms of coarse-grained data flow graphs,
constructed using a graphical interface. However, while their
implementation was specifically designed for the Datacube
MV20, a pipeline image processor that was once widely used for
research and robot vision, OpenVX provides a standardization
of the process – regardless of the used hardware.

Examples for OpenVX graph model for Canny edge detection
(Canny, 1986), Sobel edge detection (Rainey et al., 2014), and
histogram equalization (Lepley, 2015) are given in Figure 1.

Graph level optimization strategies include remote process-
ing, aggregate function replacements, inner-processor commu-
nication aggregation, peer-to-peer topologies, parallelism, and
pipelining. All are reviewed in length by Rainey et al. (2014).

Current full implementations of OpenVX are given in the
programming language C. While C programming supports low
level operations, structure programming, and portability, it does
not support advanced programming paradigms, such as object-
oriented programming, and has no runtime or type checking.
Therefore, current OpenVX applications are cumbersome.
Moreover, current OpenVX implementations frequently cause
discrepancies between the object-oriented model used by many
modern applications and native C implementations. Code for
Canny edge detection is given in Code listing 1.

Code listing for Sobel edge detection and histogram equaliza-
tion, which were described above, is given in Code listing S1 and
S2 in Supplementary Material, respectively.

Code LISTING 1 | Implementation of Canny edge detection in the
C implementation of openVX.

vx_image nvidia_graph(vx_image input){
int width = 100, height = 100;
vx_status status = VX_SUCCESS;
vx_ context context = vxCreateContext();
vx_graph graph = vxCreateGraph(context);
vx_int32 val = 0;
vx_scalar shift = vxCreateScalar(context, VX_TYPE_INT32, &val);
vx_image output = vxCreateImage(context, width, height,

VX_DF_IMAGE_U8);

vx_image iyuv = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_IYUV);
vx_image y = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT);
vx_image by = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT);
vx_image gx = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT);
vx_image gy = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT);
vx_image ang = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT);
vx_image mag = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT);
vx_image non = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_U8);

vx_threshold t = vxCreateThreshold(context ,VX_THRESHOLD_TYPE_RANGE,
VX_TYPE_UINT8);
vx_uint8 upper = 240 , lower = 10;

vxColorConvertNode (graph, input, iyuv);
vxChannelExtractNode (graph, iyuv, VX_CHANNEL_Y, y);
vxGaussian3x3Node (graph, y, by);
vxSobel3x3Node (graph, by, gx, gy);
vxPhaseNode (graph, gx, gy, ang);
vxMagnitudeNode (graph, gx, gy, mag);
vxConvertDepthNode (graph, mag, non, VX_CONVERT_POLICY_WRAP, shift);
vxThresholdNode (graph, non, t, output);
vxSetThresholdAttribute(t, VX_THRESHOLD_ATTRIBUTE_THRESHOLD_

UPPER, &upper, sizeof(upper));
vxSetThresholdAttribute(t, VX_THRESHOLD_ATTRIBUTE_THRESHOLD_

LOWER, &lower, sizeof(lower));
status = vxVerifyGraph(graph);
if (status == VX_SUCCESS){

status = vxProcessGraph(graph);
if (status == VX_SUCCESS){

return output;
 }

 }
 return NULL;

}

Modern programming environments, such as C#, Java,
Python, and others, offer a more efficient and simple environ-
ment relative to C. They feature high-levels of expressions,
greater readability and object-oriented architecture. A naïve
solution for bridging different programming environments
is called language binding. Binding acts as a bridge between
one programming language to another, allowing invocation of
kernels from different environments. For example, OpenGL,
which was built upon the same development model as OpenVX,
has many language bindings such as for JavaScript (WebGL),
C, and Java. Indeed, the official release of OpenVX includes
language binding services to Java and Ruby. Both are high level
programming languages that supports modern programming
paradigms. Although bindings play important roles in cross-
platform applications, they are only a “glue-code” that bridge
incompatibilities between languages. They do not contribute

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

4

Heimlich and Ezra Tsur OpenVX-Based Framework for Embedded Vision

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 28

functionality or framework, and therefore, they are not sufficient
to simplify or enrich low level implementation with modern
approaches.

Python is a cross-platform, widely spread programming
language, which is also interpreted, dynamic, and modern, that
supports multiple programming paradigms, such as object-
oriented, imperative, and functional programming. Many
examples for Python-binded implementations exists; among
them are PyGtk, which binds the Gtk Toolkit – a cross-platform
toolkit for the generation of graphical user interfaces, originally
written in C, and rpy2, which is used to bridge the language R
to Python.

Here, we utilized a binding implementation for Python and
C, to provide a Python-based full object-oriented framework for
OpenVX.

IMPLeMeNTATIoN ANd ARCHITeCTURe

description
Our OpenVX Python platform is encapsulated within few main
packages: OpenVX implementation in C, our implementa-
tion of OpenVX in Python, and a binding package, which
encapsulates the native C implementation and bridges it to our
implementation. Package view of our design is shown in Figure
S1 in Supplementary Material. This design uncouples the origi-
nal OpenVX C implementation from our Python framework.
Therefore, our framework can be used for any vendor-specific
implementation of OpenVX. Here, the OpenVX interface and the
native C sample implementation of OpenVX (Khronos Group,
2016) was provided by Khronos group, and the Python binding
for OpenVX was adopted from Ardo Hakan’s work (termed
PyVX), which was distributed via PyPI, the official repository of
Python (Ardo, 2014). Class diagram of our python implementa-
tion of OpenVX is shown in Figure S2 in Supplementary Material.
This hierarchical class architecture provides a full object-oriented
framework for OpenVX, enabling the developer to invoke each of
the specified kernels, with the appropriate parameters. Our imple-
mentation includes the entire OpenVX library of ~40 kernels in
a single static class (not shown in Figure S2 in Supplementary
Material). Full specification of our implementation of OpenVX
library is given in Supplementary Material.

Application, example of Use, and Methods
OpenVX provides a definition of a series of image processing
kernels, which can be combinatorially interconnected to form
graphs for the implementation of complicated vision tasks.
Here, we utilized various kernels to implement edge detec-
tions and histogram equalization graph models as they were
described above.

Our Python implementation of OpenVX dramatically simpli-
fies the exemplified Code listing S1–S3 (given in Supplementary
Material). Code example of Canny edge detection is given in
Code listing 2. Additional code examples for Sobel edge detection
and histogram equalization using our Python implementation
are given in Code listing S3 and S4 in Supplementary Material,
respectively.

Code LISTING 2 | Implementation of Canny edge detection in our Python
implementation of openVX.

def cannyEdgeGraph():
 width = 100
 height = 100
 with Graph(verify=True) as g:

 rgb = Image(g.context, width, height, Color.VX_DF_IMAGE_RGB)
 out = Image(g.context, width, height, Color.VX_DF_IMAGE_U8)
 threshold = Threshold(g.context, thresh_type=Threshold.
 THRESHOLD_TYPE_RANGE)
 threshold.set_upper(240)
 threshold.set_lower(10)
 iyuv = ColorConvertNode(g, rgb, color=Color.VX_DF_IMAGE_IYUV)
 y = ChannelExtractNode(g, iyuv, Channel.VX_CHANNEL_Y)
 by = Gaussian3x3Node(g, y)
 gx, gy = Sobel3x3Node(g, by)
 mag = MagnitudeNode(g, gx, gy)
 converted = ConvertDepthNode(g, mag, Policy.

VX_CONVERT_POLICY_WRAP,
color=Data_type.VX_TYPE_UINT8)

 ThresholdNode(g, converted, threshold, out)
 g.vxProcessGraph()

We utilized Python 2.7.6, the compiled sample implementation
of OpenVX provided by Khronos, PyVX, and our implementa-
tions of OpenVX for edge detections and histogram equaliza-
tion on a Raspberry PI 3 Model B board. Results are shown in
Figure 2A. Files are provided in our code repository as stated
in the Code repository section. We used the PyCharm Python
development environment by JetBrains.

Our implementation of edge detection can be iteratively
executed in real-time for processing of camera-acquired images.
However, image acquisition is not a part of OpenVX, and there-
fore, our framework has to be embedded within an existing image
acquisition module. In fact, standardization of image acquisition
is an important bottleneck in embedded CV, as was mentioned
earlier.

In order to exemplified the embodiment of OpenVX in an
image acquisition module, we deployed our framework on a
Raspbery-Pi 3, connected it to a GoPro camera (with fish-eye
lens) and performed phase and edge detection processing. Setup
and results from an image taken statically from the camera is
shown in Figures 2B,C, and real-time processing is shown in
Figure 2D. Code is given in Code listing S5 in Supplementary
Material.

dISCUSSIoN

Embedded vision applications are currently constrained by the
growing diversity of camera hardware, the relatively limited
computational resources of embedded and real-time platforms
and the execution of vision-based decisions. An attempt to
relax the second constraint of limited computational resources
in embedded platforms was made in late 2014 by Khronos
Group, which released their OpenVX standardization for vision
optimization. OpenVX provides definitions of 41 image pro-
cessing kernels, which can be combinatorially interconnected
as graphs for the implementation of complicated vision tasks.

Current full implementations of OpenVX are given in C, a fact
that limits the usability, readability and adaptability of OpenVX

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

5

Heimlich and Ezra Tsur OpenVX-Based Framework for Embedded Vision

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 28

application due to the language’s lack of support of modern
programming paradigms and advanced error handling. Previous
attempts to provide implementation of OpenVX in Python, includ-
ing PyVX (Ardo, 2014). PyVX neither includes implementation
of kernels nor a full object-oriented framework for OpenVX. On
the other hand, PyVX provides a bridge, or a “glue-code,” between
the C implementation and Python, providing us with an impor-
tant stepping stone toward our end-goal of providing a Pythonic
object-oriented framework for OpenVX. We used PyVX as a
binding service and provided a full object-oriented framework
to OpenVX. Our library can be used to implement OpenVX
applications on open-source embedded platforms that support
Python, such as Raspberry pi and Arduino. Other platforms, such
as iOS-based devices, may need to use an additional interpreter,
such as Pythonista, to use this framework. We note that since
image acquisition is not a part of OpenVX, our framework has
to be embedded within an existing image acquisition module as
was exemplified above.

Empowering open-source embedded platforms with a straight
forward API in a powerful programming language can open a
broad spectrum of new possibilities.

Code RePoSIToRY

Code repository
Name: GitHub
Identifier: https://github.com/NBEL-lab/PythonOpenVX

Licence: GNU General Public License V3
Date published: 29/04/2016
Language of repository: Python 2.7x.
Supporting files: OpenVX sample OpenVX implementation

and the PyVX package – both are freely available. In order
to ease framework installation, we have created a virtual
machine that contains the operating system, the compiled
environment, and examples, and can be deployed any VM
framework, such as Oracle VirtualBox. Download links and
detailed instructions for use are given in the README file,
located at the repository.

AUTHoR CoNTRIBUTIoNS

ET and OH conceptualized and designed the framework. OH
wrote the code, and ET wrote the manuscript.

FUNdING

This work was supported by JCT research grant.

SUPPLeMeNTARY MATeRIAL

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/fict.2016.00028/
full#supplementary-material.

FIGURe 2 | (A) Sample results of executing histogram equalization, Soble edge detection, and Canny edge detection using our Python implementation of OpenVX.
(B) Schematics of our embedded framework, which is comprised of a Raspberry Pi and a GoPro camera. (C,d) Static and real-time image acquisition and
processing.

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
https://github.com/NBEL-lab/PythonOpenVX
http://journal.frontiersin.org/article/10.3389/fict.2016.00028/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fict.2016.00028/full#supplementary-material

6

Heimlich and Ezra Tsur OpenVX-Based Framework for Embedded Vision

Frontiers in ICT | www.frontiersin.org November 2016 | Volume 3 | Article 28

ReFeReNCeS

Ardo, H. (2014). PyVX. Available at: https://pypi.python.org/pypi/PyVX/0.2.7.
Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. 8, 679–698. doi:10.1109/TPAMI.1986.4767851
Dedeoğlu, G., Kisačanin, B., Moore, D., Sharma, V., and Miller, A. (2011).

“An optimized vision library approach for embedded systems,” in Computer
Vision and Pattern Recognition (Colorado Springs).

Economou, G.-P. K., and Papaioannou, V. (2013). “Medical decision making via
artificial neural networks: a smart phone-embedded application addressing
pulmonary diseases’ diagnosis,” in Engineering Applications of Neural Networks
(Berlin, Heidelberg: Springer), 156–163.

Elliott, G. A., Yang, K., and Anderson, J. H. (2015). “Supporting real-time computer
vision workloads using OpenVX on multicore+GPU platforms,” in Real-Time
Systems Symposium (San Antonio).

Khronos Group. (2016). Khronos OpenVX Registry. Available at: https://www.
khronos.org/registry/vx/

Kisacanin, B., and Gelautz, M. (2014). Advances in Embedded Computer Vision.
Cham: Springer.

Lee, H., Trevett, N., Olson, T., Erukhimov, V., and Oh-bach, A. (2015). “How
mobile devices are revolutionizing user interaction,” in Extended Abstracts on
Human Factors in Computing Systems (New York).

Lepley, T. (2015). “Tegra X1 and VisionWorks/OpenVX: computer vision on a
chip,” in Signal Images: Architecture and Programming GPU (France).

Lin, F., Dong, X., Chen, B. M., Lum, K.-Y., and Lee, T. H. (2012). A robust real-time
embedded vision system on an unmanned rotorcraft for ground target follow-
ing. IEEE Trans. Ind. Electron. 59, 1038–1049. doi:10.1109/TIE.2011.2161248

Lin, T.-H., Lin, C.-Y., and Lee, J.-K. (2015). “Scheduling methods for OpenVX
programs on heterogeneous multi-core systems,” in Parallel and Distributed
Processing Techniques and Applications (Las Vegas).

Mandal, D. K., Sankaran, J., Gupta, A., Castille, K., Gondkar, S., Kamath, S., et al.
(2014). An Embedded Vision Engine (EVE) for Automotive Vision Processing.
Melbourne: IEEE.

Neumann, L., and Matas, J. (2012). “Real-time scene text localization and recogni-
tion,” in Computer Vision and Pattern Recognition (Providence).

Olson, T. J., Lockwood, R. J., and Taylor, J. R. (1993). “Programming a pipelined
image processor,” in Computer Architectures for Machine Perception (New
Orleans).

Rainey, E., Villarreal, J., Dedeoglu, G., Pulli, K., Lepley, T., and Brill, F. (2014).
“Addressing system-level optimization with OpenVX graphs,” in Computer
Vision and Pattern Recognition Workshops (Columbus).

Rautaray, S. S., and Agrawal, A. (2015). Vision based hand gesture recognition for
human computer interaction: a survey. Artif. Intell. Rev. 1, 1–54. doi:10.1007/
s10462-012-9356-9

Tagliavini, G., Haugou, G., and Benini, L. (2014). “Optimizing memory bandwidth
in OpenVX graph execution on embedded many-core accelerators,” in Design
and Architectures for Signal and Image Processing (Madrid).

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Heimlich and Ezra Tsur. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive
https://pypi.python.org/pypi/PyVX/0.2.7
https://doi.org/10.1109/TPAMI.1986.4767851
https://www.khronos.org/registry/vx/
https://www.khronos.org/registry/vx/
https://doi.org/10.1109/TIE.2011.2161248
https://doi.org/10.1007/s10462-012-9356-9
https://doi.org/10.1007/s10462-012-9356-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	OpenVX-Based Python Framework for Real-time Cross-Platform Acceleration of Embedded Computer Vision Applications
	Introduction
	Implementation and Architecture
	Description
	Application, Example of Use, and Methods

	Discussion
	Code Repository
	Author Contributions
	Funding
	Supplementary Material
	References

