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Remote sensing (RS) of plant canopies permits non-intrusive, high-throughput

monitoring of plant physiological characteristics. This study compared three RS

approaches using a low flying UAV (unmanned aerial vehicle), with that of proximal

sensing, and satellite-based imagery. Two physiological traits were considered, canopy

temperature (CT) and a vegetation index (NDVI), to determine themost viable approaches

for large scale crop genetic improvement. The UAV-based platform achieves plot-level

resolution while measuring several hundred plots in one mission via high-resolution

thermal and multispectral imagery measured at altitudes of 30–100 m. The satellite

measures multispectral imagery from an altitude of 770 km. Information was compared

with proximal measurements using IR thermometers and an NDVI sensor at a distance of

0.5–1m above plots. For robust comparisons, CT and NDVI were assessed on panels of

elite cultivars under irrigated and drought conditions, in different thermal regimes, and on

un-adapted genetic resources under water deficit. Correlations between airborne data

and yield/biomass at maturity were generally higher than equivalent proximal correlations.

NDVI was derived from high-resolution satellite imagery for only larger sized plots (8.5 ×

2.4 m) due to restricted pixel density. Results support use of UAV-based RS techniques

for high-throughput phenotyping for both precision and efficiency.

Keywords: UAV, multispectral, thermal, indices, airborne imagery, high-throughput phenotyping

INTRODUCTION

High-throughput phenotyping, particularly through the application of remote sensing tools, offers
a rapid and non-destructive approach to plant screening (White et al., 2012). Recent advances in
remote sensing technologies as well as in data processing has increased applications in both field
and controlled growing conditions (Leinonen and Jones, 2004; Jones et al., 2007; Möller et al.,
2007; Swain and Zaman, 2012; Araus and Cairns, 2014) with important consequences for crop
improvement.

Remotely sensed spectral readings are based on the interaction between incoming radiation
and target objects, resulting in a characteristic signature of reflected light. Such signatures
are typically used to calculate spectral indices, which are a function of the light absorption
properties of the plant at given wavelengths (e.g., see Tables 7.1–7.3 in Mullan, 2012
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and Table 2 in Zarco-Tejada et al., 2013). Two commonly
used traits for high-throughput screening are the Normalized
Difference Vegetation Index (NDVI), and canopy temperature
(CT). NDVI is calculated using wavelengths within the NIR
(near infrared) and VIS (visible) regions of the electromagnetic
spectrum. NDVI relates to chlorophyll content due to absorption
features of the molecule, and hence the photosynthetic capacity
of the plant. CT, which is measured from emitted infra-
red radiation, can be used as a tool to indirectly evaluate
the transpiration rate of a plant (Berliner et al., 1984;
Peñuelas et al., 1992). Based mainly on ground based proximal
sensing approaches, CT shows a robust association with plant
performance, especially under stress, being intimately associated
with water status and stomatal conductance (Blum et al., 1982;
Berliner et al., 1984; Amani et al., 1996) while NDVI can estimate
relative crop biomass at different growth stages (Babar et al.,
2006) as well as N deficiency and crop senescence rate (Blum
et al., 1982; Reynolds et al., 1994, 1998; Raun et al., 2001; Babar
et al., 2006; Olivares-villegas et al., 2007).

Notwithstanding the examples cited above, proximal remote
sensing methods can lose precision at high-throughput due to
changes in environmental conditions between the start and end
of measurements (typically a time period of one to several
hours for breeding trials). Satellite imagery has the advantage of
covering large areas instantaneously, but generally does not offer
the spatial (sub-meter) and temporal (weekly/daily) resolution
required for breeding experiments. Low level, airborne remote
sensing measurements have the advantage in that resolution is
at plot level while at the same time providing the possibility of
instantaneously capturing multiple plots at a practical breeding
scale at a high temporal resolution (Araus and Cairns, 2014;
Chapman et al., 2014).

While a body of literature has shown the value of airborne
derived spectral indices to estimate environmentally determined
performance traits for a number of crops (Shanahan et al., 2001;
Champagne et al., 2002; González-Dugo et al., 2006; Berni et al.,
2009; Zhang et al., 2009; Dupin et al., 2011; Swain and Zaman,
2012; Zarco-Tejada et al., 2012), the use of UAVs to increase
throughput for breeding purposes and the focus on genetic effects
within one agronomic treatment is relatively new (Lelong et al.,
2008; Chapman et al., 2014; Díaz-Varela et al., 2015; Zaman-Allah
et al., 2015). The UAV approach has obvious potential to increase
throughput but the issue of precision relative to other approaches
has not been examined. Moreover, data from UAVs have not
been compared with satellite derived imagery for phenotyping
applications.

The work presented here aims to demonstrate the potential
of low level thermal and multispectral UAV imagery and high-
resolution multispectral satellite imagery for the derivation
of spectral indices of experiments that comprise of 100 s
of plots (Table 1) growing in realistic field environments.
A methodology was developed with three main objectives.
The first was to compare data derived from the UAV with
proximal sensors, to determine how well they relate to
each other, and their relative ability to predict biomass and
yield of wheat. A second objective was to compare data
derived from the UAV with satellite imagery for different

sized experimental breeding plots, as well as with equivalent
data at ground level. The focus of the UAV measurements
was the derivation of NDVI and a spectral index relating
to canopy temperature, and similarly NDVI and CT were
measured using proximal instruments on the ground. For the
satellite imagery, NDVI was calculated. A third objective was to
evaluate the robustness of the UAV derived indices as selection
tools by examining their relationship with crop performance
characteristics of different classes of breeding material growing
in different simulated target environments. Specifically, the
screening traits were measured on advanced breeding lines
under optimal, heat stressed, and water deficit conditions,
while un-adapted genetic resources were evaluated under water
deficit.

MATERIALS AND METHODS

Study Site
Trials were located at an experiment station of the International
Maize and Wheat Improvement Centre (CIMMYT) in the
Sonoran desert, close to Ciudad Obregon, NW Mexico (27◦20′

N; 109◦54′ W; and 38m above sea level). Environmental and
management details of this area are given in (Sayre et al., 1997).
Five trials made up of elite lines and un-adapted genetic resources
were studied in three different environments (Table 1); optimal
irrigated (OPT), drought stress (DRT) (Gutiérrez-Rodríguez
et al., 2004), and hot-irrigated (HOT) (Pinto et al., 2010).
The trials named Elite OPT, Elite HOT 1, Elite HOT 2, and
Elite DRT are made up of advanced spring wheat lines from
CIMMYT adapted to the optimal, hot-irrigated and drought
stress environments, respectively. The trial denoted as Gen Res
DRT, sown under drought stress, is made up of landraces mainly
from Mexico, northern Africa and western central Asia, chosen
for potential expression of drought adaptive traits. All trials were
sown under an alpha-lattice design, with either two or three
replications.

Proximal Data Collection
Grain yield (gm−2) and dry biomass weight (gm−2) were
estimated at maturity for each plot following the methods
described in Pask et al. (2012) (see Table 1 for harvest dates).
Key phenological stages of emergence, heading, anthesis, and
physiological maturity were recorded for each plot (Pask et al.,
2012).

Canopy temperature (CT) was recorded at ground level
using the Sixth Sense LT300 handheld infrared thermometer.
Measurements were made along each of the plots from a distance
of ∼0.5m above canopy, angled to avoid bare soil (about 60◦

to nadir) and directed specifically at the part of the plot most
exposed to the sun (i.e., with the sun behind observer), when
cloud cover was minimal and at times of low wind speed (Pask
et al., 2012).

NDVI was measured at ground level with the Trimble
Greenseeker 505 Hand-Held active sensor. This instrument emits
and measures light at 656 and 774 nm. Measurements were made
close to noon, when the plant canopy and soil surface are dry,
at about 0.5m horizontally above the canopy such that the FOV
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TABLE 1 | Details of the five trials under the three environments of DRT (drought), OPT (irrigated) and HOT (hot irrigated).

Trial Germplasm Env Plot size No. of Sowing Harvest Variable Alternative remote sensing

(m) lines/reps date date approach

Proximal UAV Satellite

date date date

Elite OPT Elite OPT 8.5× 2.4 27/3 Nov 2012 May 2013 NDVI 11/3/13 11/3/13 6/4/13

26/3/13 25/3/13

Elite HOT 1 Elite HOT 2.0× 0.8 30/2 Feb 2012 May 2012 NDVI 15/5/12 11/5/12

CT 14/5/12 17/5/12

Elite HOT 2 Elite HOT 2.0× 0.8 60/2 March 2014 NDVI 23/5/14 15/5/14

1/6/14 3/6/14

CT 13/5/14 13/5/14

15/5/14 15/5/14

20/5/14 16/5/14

Elite DRT Elite DRT 2.0× 0.8 50/3 Dec 2012 June 2013 NDVI 14/2/13 13/2/13

7/3/13 4/3/13

CT 18/2/14 21/2/14

Gen Res DRT Un-adapted genetic DRT 2.0× 0.8 208/2 Dec 2012 June 2013 NDVI 21/2/13 26/2/13

resources CT 31/3/13 25/3/13

7/2/13 22/2/13

Harvest date indicates the approximate date at which harvest was made for yield and biomass estimates. Measurement dates of ground-based, UAV, and satellite data used for

comparisons.

is directly above the plot and centered over the middle row (Pask
et al., 2012). NDVI allows for the estimation of vegetation present
in each measurement via Equation 1 (Rouse et al., 1973):

NDVI =
NIR− R

NIR+ R
(1)

where NIR and R are the measured reflectance in the NIR and
red spectral bands respectively, (774 and 656 nm for the case of
the Greenseeker). Table 1 details the measurement dates for the
proximal instruments.

UAV Data Collection
Aerial imagery was collected via the AscTec Falcon 8 Unmanned
Aerial Vehicle (UAV) (Figure 1). The 8-rotor UAV has a
maximum 750 g payload; hence it has the ability to fly small,
lightweight instruments. The flight system includes an on-
board in-built GPS and a Mobile Ground Station (Figure 1,
inset). Aerial images were collected with two cameras mounted
separately on the UAV; the Tetracam ADC Lite multispectral
camera (2048 × 1536 pixels for Red Green and NIR bands
together) and the FLIR Tau 640 LWIR uncooled thermal imaging
camera (640 × 512 pixels). See Table 2 for specifications of the
cameras. An 8000mAh lithium battery powers the UAV and
cameras, providing ∼15-min flight time. Several batteries allow
for multiple flights in one session. The ADC Lite Tetracam takes
photos in the green, red and NIR regions of the electromagnetic
spectrum (Figure 2A), allowing for the calculation of NDVI,

FIGURE 1 | The airborne remote sensing platform used in this study:

The AscTec Falcon 8 Unmanned Aerial Vehicle (UAV), operated with

the Mobile Ground Station (inset).

while the FLIR thermal camera is used to derive a thermal
index relating to the CT of the target plots. In the specification
used, the thermal camera records analog video (integrated over
7.5–13µm), which is subsequently converted to still images for
processing (Figure 2B).
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TABLE 2 | Specifications of the two cameras mounted on the UAV.

Instrument Dims (in) Weight (g) Resolution Spectral range Lens (mm) Pixel size (µm)

Tetracam ADC lite multispectral

camera

4.5× 3.0× 2.38 200 2048× 1536 Green, red, and NIR (TM2, TM3,

and TM4)

8.0 3.2

FLIR Tau 640 LWIR uncooled thermal

imaging camera

1.74× 1.75× 1.18 <72 640× 512 7.5–13µm 25 17

FIGURE 2 | (A). Raw image of Gen Res DRT trial within the drought environment, taken using the ADC Lite Tetracam on the UAV, approximately at 100m height.

Ground dimensions of plots are 2× 0.8 m, with arrows representing direction of proximal measurements. Assuming a measurement time of 10 s per plot, the time

taken to complete measurements using proximal sensors is ∼69min for this trial, compared to several seconds with the UAV. (B) Raw image of a “HOT” trial extracted

from video footage from the FLIR Tau thermal camera. Flight altitude was ∼30 m. Ground dimensions of plots are 2× 0.8 m. (C) Pan-sharpened WV-2 imagery of Elite

OPT. Pan-sharpened imagery of a trial containing smaller sized plots in (D) did not allow for the extraction of NDVI as plots were mixed within pixels.

Satellite Imagery Description
Satellite imagery was obtained from the commercial Digital
Globe WorldView-2 (WV-2) satellite, taken on 6th April
2013. The imagery includes an 8-band multispectral image
(bands between 396 and 1043 nm) and a panchromatic image
(447–808 nm), with a spatial resolution of 0.46 and 1.85m
respectively. The georeferenced, unprocessed images cover ∼25
km2, including the whole of the CIMMYT research station.

Table 1 presents the measurement dates for the relevant
remotely sensed data for each of the trials. Proximal dates were
compared based on closest dates available between proximal and
airborne data collection.

Image Processing and Analysis
UAV Imagery
Processing was carried out using ENVI version 5.0 (Exelis
Visual Information Solutions, Boulder, Colorado). Radiometric
distortions, e.g., lens vignetting, were solved by applying a cross
track illumination correction, removing any broadband variation
without affecting narrowband features. Geometric distortions are
corrected using a “warping” procedure, by which an image is
resampled to match the geometry of a “base” image or a vector
map via the selection of Ground Control Points (GCPs). Images
are subsequently mosaicked together by identifying overlapping
regions within images.
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FIGURE 3 | Example of the image processing using UAV-mounted FLIR Tau image of “HOT” trial shown in Figure 2B where a mask is applied to

remove any non-vegetation pixels by applying a threshold for each pixel value. This is followed by the detection of each plot using pre-defined location

parameters (red rectangles) and the removal of high variance pixels (using histogram of the pixel values of each plot). An average of pixel values over each band is

taken to get a value per band per plot. This value is then subsequently used to calculate the target indices.

A camera specific mask is applied to the image/mosaic of
each trial, via pixel band ratio thresholds, to differentiate between
vegetation and non-vegetation pixels, aiming to remove any
non-vegetation pixels, such as soil, as different materials can be
distinguished by their pixel signal. An algorithm is then applied
for the automatic detection of plots using pre-defined parameters
by the user, for example the plot size in pixels, and distance
between plots in pixels. An average across all bands for each
pixel is calculated and pixels within each plot that exhibit high
variance are removed, to eliminate any non-vegetation pixels that
the mask may have missed, as well as pixel mixing effects. The
average of each plot at each band is then taken to derive the target
indices at plot level (Figure 3). For the ADC Lite multispectral
camera, the NDVI index is calculated as, TM4−TM3

TM4+TM3 , where TM4
(≈ 760–900 nm) and TM3 (≈ 630–690 nm) denote the Landsat
bands.

The processed images collected from the thermal camera
onboard the UAVwere used to derive a temperature index, which
relates to the CT of each plot. The temperature index TI was
calculated using the sum of the green and blue bands of the
plot averaged values of the processed images acquired from the

recorded analog video:

T1 = TG + TB (2)

where TG and TB are the averaged “plot” values at the green and
blue bands respectively.

Satellite Imagery
The Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH), an ENVI atmospheric correction
tool, was applied to the satellite imagery used here.
FLAASH incorporates the Moderate Resolution Atmospheric
Transmission V4 (MODTRAN4) radiative transfer model
to simulate the spectral radiance at pixel sensor level using
user defined input variables. For a detailed description on the
methods used by FLAASH see Adler-Golden et al. (1999).

The panchromatic (spatial resolution 0.46 m) and the
multispectral imagery (spatial resolution 1.8 m) were fused
together to create a single high resolution multispectral image,
via the ESRI “pan-sharpening” algorithm, using ESRI ArcMap
10.1 (Mishra and Zhang, 2013). The pan-sharpened image, with
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a spatial resolution of 0.46 m, was used to derive NDVI (using
833 nm and 659 nm as the NIR and red wavelengths, respectively)
as this can then be compared with the NDVI derived from the
UAV (ADC Lite), and proximal (GreenSeeker) measurements.

Statistical Analysis
All satellite, airborne and proximal data was spatially corrected
for row and column variation across the experiments using
Multi Environmental Trial Analysis (META) for SAS (Vargas
et al., 2013). Adjusted means were computed individually at
each measurement date for the given traits based on the lattice
design of the trials. Phenotypic correlations among adjusted
genotype means per trial per date were determined to compare
the relationship between the airborne, proximal, and agronomic
traits. Whenmore than one reading of data was available for both
airborne and proximal data, multiple correlations are presented.
Statistical analysis was carried out using R 3.1.2 (R Core Team,
2014). Differences between the phenotypic correlations of the
proximal and UAV indices against yield or biomass were tested
for significance with a Student t-test. The Holm-Bonferroni
method was applied to the p-values of the t-tests to account
for multiple comparisons (Holm, 1979). In addition, in order to
investigate the interactions of the UAV and proximal phenotypic

correlations against yield and biomass under the three different
environments, for the CT/thermal index and NDVI, a multi-
factor analysis of variance (ANOVA) was performed using
R.3.1.2.

RESULTS

Comparison of Data from Airborne and
Proximal Sensing Approaches
Table 3 shows phenotypic correlations between airborne and
proximal sensed data, using mean values of genotypes for
both the thermal index and NDVI measured from the UAV
compared with the equivalent traits -CT and NDVI- measured
using proximal sensors. Correlations between the UAV derived
thermal index and the proximal CT are, in general, significant
for all trials. This adds confidence to the use of the airborne
thermal index. Difficulties can arise when comparing the two
different methodologies due to the sensitivity of CT to external
environmental factors (time of day, temperature, radiation, wind,
irrigation status, VPD, etc.), particularly wind speed. Nonetheless
of all the comparisons made, only one did not show a correlation,
that between CT and the thermal index for the trial Elite DRT,
probably due to variations in wind speed during measurements

TABLE 3 | Phenotypic correlations between genotype means for the airborne/satellite derived thermal index/NDVI, against the corresponding

ground-based CT/NDVI and between the genotypic means for the aerial derived indices and yield/biomass.

Trial ENV Variable Alternative remote Phenotypic correlation Phenotypic correlation Phenotypic correlation

sensing approach between methodologies with yield with biomass

Proximal UAV Proximal UAV Proximal UAV Proximal

date date VS. VS. VS. VS. VS.

UAV yield yield biomass biomass

Elite OPT OPT NDVI 11/3/13 11/3/13 0.78** 0.36+ 0.37+ 0.45* 0.39*

26/3/13 25/3/13 0.79** 0.29+ 0.38+ 0.52** 0.41*

Elite HOT 1 HOT NDVI 15/5/12 11/5/12 0.85** 0.75** 0.52** 0.79** 0.58**

CT 14/5/12 17/5/12 0.78** −0.73** −0.56** −0.78** −0.6**

Elite HOT 2 HOT NDVI 23/5/14 15/5/14 0.86** 0.51** 0.54** 0.59** 0.65**

1/6/14 3/6/14 0.87** 0.64** 0.64** 0.74** 0.73**

CT 13/5/14 13/5/14 0.36** −0.45** −0.34** −0.56** −0.37**

15/5/14 15/5/14 0.4** −0.57** −0.43** −0.57** −0.49**

20/5/14 16/5/14 0.75** −0.62** −0.48** −0.62** −0.55**

Elite DRT DRT NDVI 14/2/13 13/2/13 0.41** 0.56** 0.1 – –

7/3/13 4/3/13 0.80** 0.42** 0.27+ – –

CT 18/2/14 21/2/14 −0.04 −0.41** −0.24+ – –

Gen Res DRT DRT NDVI 21/2/13 26/2/13 0.72** 0.16** 0.25** 0.62** 0.46**

31/3/13 25/3/13 0.91** 0.21** 0.14* 0.72** 0.69**

CT 7/2/13 22/2/13 0.57** −0.44** −0.25** 0.1 0.18+

SATELLITE

Trial ENV Variable Proximal date UAV date Satellite date SAT VS. proximal SAT VS. UAV SAT VS. yield SAT VS. biomass

Elite OPT OPT NDVI 26/3/13 25/3/13 6/4/13 0.85** 0.84** 0.53** 0.58**

Also shown are equivalent correlations with ground-based indices. +, *, ** represent significant levels of 0.1, 0.05, and 0.01 respectively.
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(as was noted at the time of observation). Significant correlations
were also observed between the UAV and proximal NDVI
measurements for all trials.

Association of Traits with Yield and
Biomass Comparing Airborne and
Proximal Sensing Approaches
Phenotypic correlations were estimated between UAV derived
NDVI and the thermal index with both biomass and yield
of genotypes (Table 3). For comparison, the corresponding
correlation between proximal NDVI and CT with yield and
biomass is also shown. Correlations between the UAV derived
thermal index and yield/biomass are significant for almost all
trials, and are generally larger than the corresponding proximal
CT correlations with the yield and biomass. Note that negative
correlations were observed between CT/UAV thermal index
and yield/biomass as cooler canopies are generally associated
with better adaptation. Similarly, the UAV derived NDVI index
generally shows stronger correlations with biomass and yield
compared with the respective proximal NDVI.

The “Gen Res DRT” trial is made up of diverse genetic
resources expressing non-homogeneous height andwhich are not
necessarily well adapted to the photoperiod and other conditions
of the screening environment. This could help explain the
relatively lower, although still significant, correlations between
NDVI and yield for this trial compared to the hot irrigated and
drought data sets from elitematerial, i.e., there was large variation
in development stage and morphology (Table 3). The lower
correlation between CT and biomass for this trial compared
to yield could also be attributed to confounding effects due to
variations in height within the trial and their attendant influence
on boundary air layers that affect transpiration rate when there is
no breeze. Note that this is not the case for NDVI, which is free
from such confounding effects.

For the Elite OPT trial, correlations with yield and NDVI are
of lower significance (p < 0.1) compared to those of the hot
irrigated trials, also made up of elite lines (Table 3). However,
these results are consistent with previous observations that these
techniques are most effective as a selection tools under abiotic
stress (Pinto et al., 2010).

When considered together, correlations between the UAV
derived indices and yield/biomass were significantly different to
the equivalent proximal sensed correlations (t-test, P = 0.01).
When separated into groups, there was significant difference
between the UAV and proximal derived correlations with yield
and biomass for the following groups CT/thermal index (t-test,
P = 0.01), yield (t-test, P = 0.05), biomass (t-test, P = 0.05), and
NDVI (t-test, P = 0.1).

The phenotypic correlations were separated into the three
environments (OPT, DRT, and HOT) and a multi-factor
ANOVA was performed. For the OPT environment, a significant
interaction (P = 0.06) was observed between the proximal
and UAV phenotypic correlations between yield and biomass,
probably associated with the greater biomass correlations,
particularly those of the UAV (see Table 3). For the HOT trials,
there was a significant difference (P = 0.08) between the

proximal and UAV phenotypic correlations between yield and
biomass for both NDVI and the thermal index/CT. This can be
attributed to the higher correlations for the UAV observations.
No interaction was observed for the DRT environment, this
can be partly explained by un-adapted material in the genetic
resource trial, as explained above.

Satellite Imagery
Figure 2C shows the pan-sharpened WV-2 extracted image of
Elite OPT. It can be seen that the satellite image provides
sufficient resolution for multiple (∼20) pixels for each plot and
hence the NDVI index was able to be calculated.

Table 3 compares the NDVI calculated from the three
methods: space-borne collected WV-2 imagery, low level
airborne collected imagery via the UAV and proximal
measurements. The proximal and UAV measurements were
chosen to be as close as possible to the satellite imagery collection
date. It can be seen that the NDVI derived from all methods
are well correlated with each other. The correlation between the
NDVI from the satellite image and the NDVI from the other
two methods gives confidence to the calculation of NDVI from
high resolution satellite imagery for plots of the size of those
in Elite OPT trial (8.5 × 2.4 m). Also compared in Table 3 is
the relationship between each of the NDVI indices and the dry
biomass weight and yield measured at maturity for Elite OPT.
The NDVI derived from the satellite provide the best correlation
with biomass and yield, and proximal NDVI the lowest.

An attempt was made to retrieve NDVI from trials of smaller
sized plots. Figure 2D shows an extract of the pan-sharpened
WV-2 imagery from an OPT trial with plot size at 2m × 0.8 m.
The resolution of the image prevented the separation of plots due
to pixel mixing; hence it was not possible to distinguish between
plots.

DISCUSSION

The results of the current study demonstrate the advantage
of airborne remote sensing as a tool to estimate a range
of physiological and agronomic traits on a large scale in
experimental plots. Proximal measurements have already been
proven to predict yield and biomass in wheat (Reynolds et al.,
1994, 1998; Aparicio et al., 2000) and are beginning to be
used routinely in breeding (Pask et al., 2014). The generally
strong correlations presented here between airborne indices and
equivalent ground-based CT and NDVI, as well as significant
correlations between the airborne indices and yield/biomass,
that were generally greater than the equivalent correlations with
ground-based measurements, suggest that increased precision
results from the use of the indices derived from imagery,
particularly in the stressed environments. This is a promising
result given the impacts of changing climate and its implications
for food security.

Most published work that attempts to thoroughly validate
multispectral indices is based on proximal measurements. Errors
may be introduced when moving from proximal to aerial
measurements at a spatially larger scale, for example atmospheric
scattering may cause absorption features of light by pigments
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to alter, as well as affects related to canopy architecture (angle
and area of leaves), water vapor in the atmosphere, background
noise and measurement geometry (Suarez et al., 2008; Garbulsky
et al., 2011). However, the results presented here demonstrate
the potential of low level UAV measurements to indirectly
measure yield and biomass in field conditions. The relative
precision of airborne measurements can be associated with two
main factors. The first is related to reduced errors linked to
the ability to remove non-vegetation pixels and other statistical
outliers during image analysis (Figure 3). The second is through
limiting confounding effects caused by environmental drift, such
as changes in temperature, sun angle etc., typically associated
with the time taken tomake ground basedmeasurements on large
trials (Figure 2).

Given that the operation of UAVs is less labor intensive
than proximal readings, as well as being free from restrictions
associated with access to plots (due to irrigation or application of
pesticides, for example), the approach lends itself well to routine
measurements including for growth analysis, to measure the
evolution of stress, and the application of regression e.g., (Lopes
and Reynolds, 2012) or spline (Hurtado et al., 2011) models
over time from which additional parameters can be derived to
compare treatments and genotypes.

Despite the promising results presented here for NDVI
derived from the satellite measurements, it is probably not the
most effective tool for this application. While satellite imagery
has the advantage of covering vast areas, resolution restricts its
application to measurements in which target objects are of a
larger scale than the small plots typical of genotypic screening.
Furthermore, it is difficult to obtain satellite imagery at frequent

time intervals and the option to adjust timing of measurement
to avoid cloud cover or other inclement weather conditions is
absent.

The fact that the estimates of CT and NDVI were generally
better associated with performance traits when measured by
UAVs compared to proximal data, under both heat and drought
stressed conditions, and in advanced lines as well as unimproved
genetic backgrounds, confirms the value of the UAV approach in
breeding for climate change, where a new generation of breeding
lines must be developed based on extensive screening of plant
genetic resources.
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