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Silver nanoparticles plays a vital role in the development of new antimicrobial substances
against a number of pathogenic microorganisms. These nanoparticles due to their
smaller size could be very effective as they can improve the antibacterial activity through
lysis of bacterial cell wall. Green synthesis of metal nanoparticles using various plants
and plant products has recently been successfully accomplished. However, few studies
have investigated the use of industrial waste materials in nanoparticle synthesis. In the
present investigation, synthesis of silver nanoparticles (AgNPs) was attempted using the
aqueous extract of corn leaf waste of Zea mays, which is a waste material from the corn
industry. The synthesized AgNPs were evaluated for their antibacterial activity against
foodborne pathogenic bacteria (Bacillus cereus ATCC 13061, Listeria monocytogenes
ATCC 19115, Staphylococcus aureus ATCC 49444, Escherichia coli ATCC 43890, and
Salmonella Typhimurium ATCC 43174) along with the study of its synergistic antibacterial
activity. The anticandidal activity of AgNPs were evaluated against Candida species
(C. albicans KACC 30003 and KACC 30062, C. glabrata KBNO6P00368, C. geochares
KACC 30061, and C. saitoana KACC 41238), together with the antioxidant potential.
The biosynthesized AgNPs were characterized by UV-Vis spectrophotometry with
surface plasmon resonance at 450 nm followed by the analysis using scanning
electron microscope, X-ray diffraction, Fourier-transform infrared spectroscopy and
thermogravimetric analysis. The AgNPs displayed moderate antibacterial activity (9.26–
11.57 mm inhibition zone) against all five foodborne pathogenic bacteria. When
AgNPs were mixed with standard antibacterial or anticandidal agent, they displayed
strong synergistic antibacterial (10.62–12.80 mm inhibition zones) and anticandidal
activity (11.43–14.33 mm inhibition zones). In addition, the AgNPs exhibited strong
antioxidant potential. The overall results highlighted the potential use of maize industrial
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waste materials in the synthesis of AgNPs and their utilization in various applications
particularly as antibacterial substance in food packaging, food preservation to protect
against various dreadful foodborne pathogenic bacteria together with its biomedical,
pharmaceutical based activities.

Keywords: antibacterial, anticandidal, antioxidant, foodborne bacteria, green synthesis, silver nanoparticles,
Zea mays

INTRODUCTION

Nanotechnology is an emerging field of interdisciplinary research
that includes all spheres of science starting from physics,
chemistry, biology, and especially biotechnology (Natarajan
et al., 2010). Nanoparticles (NPs) are a group of materials
synthesized from a number of metals or non-metal elements with
distinct features and extensive applications in different fields of
science and medicine (Matei et al., 2008). Among them, silver
nanoparticles (AgNPs) have been extensively studied because of
their good electrical conductivity, as well as their potential for use
in optical applications in nonlinear optics, as spectrally selective
coatings for solar energy absorption, biolabeling, intercalation
materials for electrical batteries as optical receptors, and catalysts
in chemical reactions. Nanoparticles also have potential biological
applications, such as biosensing, catalysis, drug delivery, imaging,
nano device fabrication, and for use as antimicrobial agents and
in medicine (Ghosh et al., 1996; Geddes et al., 2003; Nair and
Laurencin, 2007; Jain et al., 2008; Sharma et al., 2009; Zargar et al.,
2014). AgNPs release Ag+ ions that interact with the thiol groups
in bacterial proteins and affect the DNA replication, resulting
in destruction of the bacteria (Marini et al., 2007). Additionally,
nanoparticles have been shown to have potential anti-bacterial
activity and significantly higher synergistic effects when applied
with many antibiotics (Devi and Joshi, 2012).

Synthesis of AgNPs employing chemical and physical methods
has been extensively studied throughout the world; however,
these methods are often environmentally toxic, technically
laborious and economically expensive (Gopinath et al., 2012).
Accordingly, biological methods for synthesis of AgNPs using
plants, microorganisms and enzymes have been suggested as
possible eco-friendly alternatives (Mohanpuria et al., 2008). The
synthesis of AgNPs using plants or plant extracts as reducing and
capping agents is considered advantageous over other biological
processes because they eliminate the need for the elaborate
process of culturing and maintaining biological cells, and can
be scaled up for large-scale nanoparticle synthesis (Saxena
et al., 2012; Valli and Vaseeharan, 2012). Overall, plant-mediated
nanoparticles synthesis is a cost-effective, environmentally
friendly, a single-step method for biosynthesis process that
is safe for various human therapeutic and food based uses
(Kumar and Yadav, 2009). Generally, the AgNO3 is reduced
by the action of the reducing agents (plant extracts) to form
silver nanoparticles which are further stabilized by the bioactive
compounds from the biological extracts to form a stable silver
nanoparticle.

During recent years, the use of agricultural and industrial
wastes in the synthesis of different types of metal nanoparticles

has been extensively investigated (Basavegowda and Lee, 2013;
Ramamurthy et al., 2013; Nezamdoost et al., 2014) A number
of food crops are industrially used for production of different
types of food products and processed food. Among these,
maize (Zea mays) is widely used throughout the world for
production of popcorn, chips, corn oil, corn starch, and many
other materials. Only the kernels of the corn plant are edible,
while rest of the crop are occasionally used as animal feed
or ingredients in beverages. Different parts of the maize plant
have been effectively utilized in traditional medicines as strong
therapeutic agents (Konstantopoulou et al., 2004; Ullah et al.,
2010; Solihah et al., 2012). A number of bioactive compounds,
such are polyphenols (chlorogenic acid, caffeic acid, rutin,
ferulic acid, morin, quercetin, naringenin, and kaempferol),
anthocyanins, flavonoids, flavonols, and flavanols have been
reported to be present in the Z. mays plant and its various
parts such kernel, leaves, roots etc., which are responsible for
its antioxidant, antiinflammatory and other medicinal potential
(Ramos-Escudero et al., 2012; Bacchetti et al., 2013; Pandey et al.,
2013). Hence utilization of maize waste materials in the synthesis
of nanoparticles would be a profitable approach in ecofriendly
and cost effective nanoparticle synthesis.

Recently there is emergence of multi drug resistant pathogenic
bacterial strains and most of the available antibiotics are not
active against these pathogens (Andersson and Hughes, 2010;
Huh and Kwon, 2011). These drug resistant pathogens are more
pathogenic with high mortality rate than that of wild strain. The
scientific community is continuously searching for a new classes
of disinfection systems that could act efficiently against these
pathogens. Silver-containing systems, and especially the AgNPs
are these days one of the strong alternatives in search for various
antibacterial drugs, as these nanoparticles have been reported
previously to exhibit interesting antibacterial activities against a
broad spectrum of pathogenic bacteria (Shahverdi et al., 2007;
Lara et al., 2011; Guzman et al., 2012; Rai et al., 2012; Ouay
and Stellacci, 2015). However, studies on AgNPs are still under
investigation as antimicrobial and the studies performed since
now demonstrated that a case by case evaluation have to be done
for each nanoparticle and bacterial target. The bactericidal effects
of ionic silver and the antimicrobial activity of colloidal silver
particles is generally influenced by the size of the particles, i.e.,
the smaller the particle size, the greater the antimicrobial activity
(Zhang et al., 2003).

There are many advantages of AgNPs to be used as an
effective antimicrobial agents. They are highly effective against
a broad range of microbes and parasites, even at a very low
concentration with very little systemic toxicity toward humans
(Ouay and Stellacci, 2015). AgNPs have been reported to be
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used and tested for several applications including prevention
of bacterial colonization and elimination of microorganisms on
various medical devices, disinfection in wastewater treatment
plants, and silicone rubber gaskets to protect and transport food
and textile fabrics (Guzman et al., 2012).

The present study investigated synthesis of AgNPs using
the waste leaves of ears of corn following a green route and
evaluate its potential application as antibacterial compound
against a number of five foodborne pathogenic bacteria
(Bacillus cereus ATCC 13061, Listeria monocytogenes ATCC
19115, Staphylococcus aureus ATCC 49444, Escherichia coli
ATCC 43890, and Salmonella Typhimurium ATCC 43174)
along with its anticandidal potential against five different
Candida species (C. albicans KACC 30003 and KACC 30062,
C. glabrata KBNO6P00368, C. geochares KACC 30061, and
C. saitoana KACC 41238) and their antioxidant potentials.
Utilization of these industrial waste materials in the synthesis
of nanoparticles could add the values to the economy of
industry.

MATERIALS AND METHODS

Sample Preparation
The whole corn of Z. mays L. (Figure 1A) was purchased from
a local market located at Gyeonsan, Republic of Korea. The ear
leaves (Figure 1C) were collected from the corn (Figures 1A,B)
and cut into small pieces of approximately 1 cm. A total of 20 g of
leaf pieces were then placed in a 250 mL conical flask, after which
100 mL of double distilled water was added and the samples were
boiled for 15 min with continuous stirring. The aqueous extract of
corn leaves (ACL) was cooled to room temperature, filtered and
stored at 4◦C before being used for the synthesis of AgNPs.

FIGURE 1 | Fruit (A), kernel (B), and non-edible leaves (C) of maize corn
(Zea mays).

Biosynthesis of AgNPs
The synthesis of AgNPs was conducted by the green synthesis
route using ACL. Briefly, 20 mL of ACL was added to 500 mL
conical flasks containing 200 mL of 1 mM AgNO3 and stirred
continuously at room temperature until the solution became
reddish brown. The concentration of ACL to AgNO3 was
maintained at 1:10 ratio with the use of less concentration of
ACL and AgNO3 in order to control the shape and size of the
nanoparticles.

Characterization of AgNPs
The newly synthesized AgNPs were characterized by UV-VIS
spectroscopy, scanning electron microscopy (SEM), energy-
dispersive X-ray spectroscopy (EDS), Fourier-transform infrared
spectroscopy (FT-IR), thermogravimetric and differential
thermogravimetric (TGA/DTG) analysis, and X-ray powder
diffraction (XRD) using standard analytical procedures
(Basavegowda and Lee, 2013; Ramamurthy et al., 2013).

The synthesis of the AgNPs was monitored by the UV-
Vis spectroscopy analysis by measuring the absorption spectra
between 350 and 550 nm at a resolution of 1 nm using
a microplate reader (Infinite 200 PRO NanoQuant, TECAN,
Mannedorf, Switzerland). Changes in the color of the reaction
mixture were observed every 3 h during incubation. The surface
morphology of the AgNPs was analyzed using FE-SEM. The
AgNPs were powdered using an agate mortar and pestle, then
uniformly spread over the sample holder and sputter coated
with platinum in an ion coater for 120 s, after which they
were observed by FE-SEM (S-4200, Hitachi, Japan). Elemental
composition analysis of the powdered AgNPs was conducted
using an EDS detector (EDS, EDAX Inc., Mahwah, NJ, USA)
attached to the FE-SEM machine. FT-IR analysis of the powdered
AgNPs and the ACL extract was conducted using a FT-IR
spectrophotometer (Jasco 5300, Jasco, Mary’s Court, Easton,
MD, USA) in the wavelength range of 400–4000 cm−1. The
powdered AgNPs sample was blended with potassium bromide
(KBr) in a 1:100 ratio using an agate mortar and pestle, then
compressed into a 2 mm semi-transparent disk using a specially
designed screw knot, after which different modes of vibrations
were analyzed for the presence of different types of functional
groups in AgNPs and ACL extract.

Effects of high temperature on synthesized AgNPs were
evaluated using a TGA machine (SDT Q600, TA Instruments,
New Castle, DE, USA). For TGA analysis, powdered AgNPs
(3.0 mg) were placed in an alumina pan and heated from 20 to
700◦C at a ramping time of 10◦C/min under a N2 atmosphere
in a specially designed heating chamber. The corresponding
weight loss data were recorded using a computer attached
to the TG/DTG machine with the SDT software. The AgNPs
nanoparticles were analyzed by XRD (X’Pert MRD model,
PANalytical, Almelo, The Netherlands). Prior to use, the AgNPs
were dried at 60◦C in a vacuum oven and ground to fine powder
using an agate mortar and pestle. The samples were uniformly
spread over the glass sample holder and subsequently analyzed
at 30 kV and 40 mA with Cu Kα radians at an angle of 2θ. The
average particle diameter of AgNPs was calculated from the XRD
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pattern, according to the line width of the maximum intensity
reflection peak. The size of the nanoparticles was calculated
through the Scherer equation (Yousefzadi et al., 2014).

Biological Activity of AgNPs
Antibacterial Activity of AgNPs
The antibacterial potential of AgNPs was determined against
five different foodborne bacteria (B. cereus ATCC 13061,
L. monocytogenes ATCC 19115, S. aureus ATCC 49444, E. coli
ATCC 43890, and S. Typhimurium ATCC 43174) by the standard
disk diffusion method (Diao et al., 2013). The bacterial pathogens
were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA) and maintained on nutrient agar
media (Difco, Becton, Dickinson and Company, Sparks Glencoe,
MD, USA). Prior to use, the colloidal solution of the AgNPs was
prepared by dissolving AgNPs in 5% dimethyl sulfoxide (DMSO,
1000 µg/mL) and sonicating the samples at 30◦C for 15 min.
Filter paper disks containing 50 µg of AgNPs/disk were used
for the assay. Standard antibiotics, kanamycin and rifampicin,
at 5 µg/disk were taken as positive controls, while 5% DMSO
was used as the negative control. The overnight grown cultures
of tested bacteria were diluted to 1 × 10−7 colony forming unit
were used for the assay. The antibacterial activity of the AgNPs
was determined by measuring the diameter of zones of inhibition
after 24 h of incubation at 37◦C. The minimum inhibitory
concentration (MIC) and minimum bactericidal concentration
(MBC) of the AgNPs were determined by the two-fold serial
dilution method (Kubo et al., 2004). Different concentrations of
AgNPs (100–3.12 µg/mL) were used for MIC test. Prior to test,
initially 200 µg of the AgNP was added to initial tube containing,
2 mL of NB media, then 1 mL from it was transferred to next
tube which contains 1 mL of only NB media and mixed properly,
then the dilution was made till the concentration of the last tube
was 3.12 µg/mL. The control tube contains only 1 mL of NB
media. Then 10 µL of the tested pathogen was added to each
tube. This procedure was repeated for all the tested pathogens.
Then all the tubes were mixed properly and were incubated at
37◦C overnight in a shaker incubator. The lowest concentration
of AgNPs that did not show any visible growth of test organisms
was determined as the MIC. Further, the MIC concentration and
the next higher concentration were spread on NA plates and
incubated for another 24 h at 37◦C. The concentration that did
not show any growth of a single bacterial colony on the NA plates
was defined as the MBC value. Both MIC and MBC values were
expressed as µg/mL.

Synergistic Potential of AgNPs
The synergistic activity of the AgNPs was determined with
antibiotics (kanamycin and rifampicin) or anticandidal agent
(amphotericin b).

Synergistic antibacterial activity of AgNPs
The synergistic antibacterial potential of AgNPs, as well as
kanamycin and rifampicin as a standard antibiotics was
determined against five foodborne pathogenic bacteria, B. cereus
ATCC 13061, E. coli ATCC 43890, L. monocytogenes ATCC
19115, S. aureus ATCC 49444, and S. Typhimurium ATCC 43174

by the standard disk diffusion method (Naqvi et al., 2013).
The bacterial pathogens were freshly cultured on nutrient broth
media (Difco, Becton, Dickinson and Company, Sparks Glencoe,
MD, USA). AgNPs (1 mg/mL) and the standard antibiotics
(kanamycin or rifampicin at 200 µg/mL) were mixed properly
at a 1:1 ratio and sonicated for 15 min at room temperature.
Different antibiotic disks were prepared by adding 50 µl of the
AgNPs/antibiotics mixture solution to a 6 mm filter paper disk
that contains 25 µg AgNPs and 5 µg antibiotics together. The
synergistic antibacterial activity of the AgNPs/antibiotics mixture
was measured after 24 h of incubation at 37◦C in terms of the
diameters of the zones of inhibition around the filter paper disks.

Synergistic anticandidal activity of AgNPs
The synergistic anticandidal potentials of AgNPs and
amphotericin b, a standard antifungal agent, were determined
against five different pathogenic Candida species, C. albicans
KACC 30003 and KACC 30062, C. glabrata KBNO6P00368,
C. geochares KACC 30061 and C. saitoana KACC 41238,
by the disk diffusion method (Murray et al., 1995). These
Candida species were obtained from the Korean Agricultural
Culture Collection (KACC, Suwon, Republic of Korea). AgNPs
(2 mg/mL) and amphotericin b (200 µg/mL) were mixed in a 1:1
ratio and sonicated for 15 min at room temperature. Paper disks
were prepared by adding 50 µL of the AgNPs/amphotericin b
mixture solution to a 6 mm filter paper disk that contains 50 µg
AgNPs and 5 µg amphotericin b. The Candida species in liquid
media were spread uniformly on potato-dextrose agar (PDA)
media (Difco, Becton, Dickinson and Company, Sparks Glencoe,
MD, USA), after which the anticandidal disks were placed on
the plates and samples were incubated at 28◦C for 48 h. The
synergistic anticandidal activity of the AgNPs/amphotericin b
mixture solution was determined by measuring the diameters of
the zones of inhibition around the paper disk.

Antioxidant Activity of AgNPs
The antioxidant potential of the AgNPs was determined by
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, nitric
oxide (NO) scavenging, 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulphonic acid) (ABTS) radical scavenging and reducing power
assays.

DPPH Radical Scavenging Activity of AgNPs
The DPPH free radical scavenging potential of AgNPs was
determined as previously described (Patra et al., 2015). Briefly,
five different concentrations (20–100 µg/mL) of AgNPs and
ascorbic acid (ASA) as the standard reference compound was
assayed. The absorbance of the reaction mixtures was recorded
at 517 nm using the microplate reader and the results were
interpreted as the percentage scavenging according to the
following equation:

Percentage scavenging =
AbsC − AbsT

AbsC
× 100

where, AbsC is the absorbance of the control and AbsT is the
absorbance of the treatment.
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NO Scavenging Activity of AgNPs
The NO scavenging potential of AgNPs was determined by
the standard procedure (Makhija et al., 2011). Five different
concentrations (20–100 µg/mL) of AgNPs and ASA as the
standard reference compound were taken for the assay. The
absorbance of the reaction mixtures was recorded at 546 nm
using a microplate reader, after which the results were calculated
as the percentage scavenging activity according to Eq. 1.

ABTS Radical Scavenging Activity of AgNPs
The ABTS radical scavenging potential of AgNPs was determined
by the standard procedure (Thaipong et al., 2006). Briefly, five
different concentrations (20–100 µg/mL) of AgNPs and ASA as
the standard reference compound was taken for the assay. The
absorbance of the reaction mixtures was recorded at 750 nm
using a microplate reader, and the results were interpreted
according to Eq. 1.

Reducing Power of AgNPs
The reducing power of AgNPs was determined by the standard
procedure (Sun et al., 2011). Briefly, five different concentrations
(20–100 µg/mL) of AgNPs and ASA as the standard reference
compound were assayed. The absorbance of the reaction mixture
was measured at 700 nm against an appropriate control and the
results were expressed as OD values at 700 nm.

Statistical Analysis
The results of all the experiments were expressed as the mean
value of three independent replicates ± the standard deviation
(SD). Statistical analysis of the significance differences between
the mean values of the results were identified by one-way analysis
of variance (ANOVA) followed by Duncan’s test at the 5% level
of significance (P < 0.05) using the Statistical Analysis Software
(SAS) (Version: SAS 9.4, SAS Institute Inc., Cary, NC, USA).

RESULTS

Synthesis of AgNPs
The industrial wastes from maize plants (Figures 1A,C) after
utilization of the kernels (Figure 1B) were used in the present
study for synthesis of AgNPs. Biosynthesis of AgNPs was
indicated by gradual color development in the reaction solution
after 1 h of incubation and subsequent increases in the intensity of
the color during the course of reaction. The formation of AgNPs
was monitored by a number of characterization techniques as
described below.

Characterization of AgNPs
The UV-Vis spectra of the synthesized AgNPs recorded at
different time intervals are presented in Figure 2. The absorbance
peaks indexed as different colors indicated the reduction of
AgNO3 by ACL with different time intervals (0 min, 30 min, 1 h,
3 h, 6 h, 12 h, and 24 h) at room temperature (Figure 2). The UV-
Vis spectra of the synthesized AgNPs were further recorded after
24 h, but the intensity of the color did not intensify after 24 h,
confirming that the reaction was completed within 24 h.

FIGURE 2 | UV-visible spectra of silver nanoparticles (AgNPs)
synthesized by the aqueous corn leaves extracts (ACL). Inset: change in
color of the solution confirming the synthesis of AgNPs (A – AgNO3 solution,
B – aqueous corn leaves extracts (ACL), and C – AgNPs).

The morphology of the synthesized AgNPs was revealed by
FE-SEM analysis (Figure 3A). The FE-SEM image revealed the
formation of a cluster of spherical beadlike structures of AgNPs
that were strongly aggregated. The elemental composition of
the synthesized AgNPs was determined by an EDS machine
attached to the FE-SEM. The elemental composition confirmed
that AgNPs were composed of 50.13% Ag, 31.20% C, 11.60%
O, 6.20% Cl, and 0.87% Na (Figures 3B,C). FT-IR analysis
of the ACL and AgNPs is shown in Figure 4. Absorption
peaks located at 3438.38, 2353.05, 2167.81, 1645.40, 779.50,
664.44, and 564.98 cm−1 were observed upon ACL, whereas
absorption peaks located at 3423.44, 2921.74, 2367.78, 1654.34,
1053.13, 671.22, and 527.40 cm−1 were observed for the AgNPs
(Figure 4).

Thermogravimetric and differential thermogravimetric
analysis of the synthesized AgNPs was conducted to show the
nature of AgNPs at higher temperature (Figure 5A). A total
of 44.01% weight loss was observed in three different phases
when the AgNPs were heated to 700◦C in a controlled N2
atmosphere. The first phase of weight loss was observed between
30 and 150◦C with a weight loss of 5.67%. In this phase, the
water molecules that were attached to the AgNPs during the
course of synthesis were degraded. The second phase of weight
loss was observed between 150 and 470◦C with a maximum
weight loss of 33.77%. During this phase, organic molecules,
such as alkanes, phenols, alkenes, proteins, and polysaccharides
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FIGURE 3 | Scanning electron microscopy image (A) and energy-dispersive X-ray analysis (B,C) of silver nanoparticles (AgNPs) synthesized by the aqueous
extracts of corn leaves (ACL).

FIGURE 4 | Fourier-transformed infrared spectroscopy analysis of silver nanoparticles (AgNPs) and the aqueous extracts of corn leaves (ACL).

from the ACL that contributed to the reduction of the AgNPs
as capping and stabilizing agents were degraded. The third
phase extended from 480 to 700◦C, during which time there
was a weight loss of 4.57%. The nature of the synthesized

AgNPs was analyzed by XRD (Figure 5B). The diffraction
pattern showed six diffraction peaks at 27.78◦, 32.04◦, 38.41◦,
46.12◦, 54.95◦, and 76.78◦, which corresponded to (220), (122),
(111), (231), (331), and (311) planes of silver, respectively.
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FIGURE 5 | Thermogravimetric and differential thermogravimetric (TG/DTG) analysis (A) and X-ray diffraction analysis (B) of silver nanoparticles (PE-AgNPs)
synthesized by the aqueous extracts of corn leaves (ACL).

The average crystal size of the silver crystallites was calculated
from the full width at half maximum (FWHMs) values of the
diffraction peaks, using the Scherer equation. The estimated size
of crystallite in different planes of silver was determined as 31.18,
35.74, and 69.14 nm with the mean value of all three peaks as
45.26 nm.

Biological Activity of AgNPs
Antibacterial Activity of AgNPs
The AgNPs at 50 µg/disk displayed moderate antibacterial
activity against all five foodborne pathogenic bacteria, as
indicated by diameter of inhibition zones of 9.26–11.57 mm
(Table 1; Figure 6). The standard antibiotics, kanamycin, and
rifampicin, at 5 µg/disk did not show any inhibitory activity
against any of the five pathogens. Among the pathogenic bacteria,
AgNPs were more active against S. aureus (11.57 mm inhibition
zone) than L. monocytogenes (9.26 mm inhibition zone). The MIC
and the MBC values of AgNPs against all five pathogenic bacteria
ranged from 12.5 to 100 µg/mL (Table 1).

TABLE 1 | Antibacterial activity of AgNPs against five foodborne
pathogenic bacteria.

Bacteria AgNPs
(50 µg/disk)

MIC
(µg/mL)

MBC
(µg/mL)

B. cereus ATCC 13061 11.39 ± 1.2a∗ 25 50

E. coli ATCC 43890 10.55 ± 0.27b 50 100

L. monocytogenes
ATCC 19115

9.26 ± 0.31c 25 50

S. aureus ATCC 49444 11.57 ± 0.25a 12.5 25

S. Typhimurium ATCC
43174

11.22 ± 0.38a 50 100

∗Data are expressed as the mean zone of inhibition in mm ± SD. Values with
different superscript letters are significantly different at P < 0.05.

Synergistic Antimicrobial Potentials of AgNPs
Synergistic antibacterial potential of AgNPs
The synergistic potential of the AgNPs together with the
standard antibiotics, kanamycin and rifampicin, were evaluated
against all five foodborne pathogenic bacteria and the results
are presented in Table 2 and Figure 6. At low concentrations
(5 µg/disk), neither antibiotics exhibited any positive activity
against any of the five pathogenic bacteria, which was also
true for AgNPs at 25 µg/disk concentration. Thus, to study
the synergistic antibacterial potential, both antibiotics and
AgNPs were combined at this low concentration and their
activities were tested against the five foodborne pathogens.
When both antibiotic and AgNPs were mixed, they displayed
strong antibacterial activity against all pathogens, with zones of
inhibition ranging in diameter from 10.62 to 14.33 mm (Table 2).

Synergistic anticandidal potential of AgNPs
The synergistic anticandidal activities of the AgNPs are presented
in Table 3 and Figure 7. AgNPs at a concentration of 50 µg/mL
did not exhibit any anticandidal activity against the five tested
Candida species. However, when AgNPs (50 µg/disk) were
combined with a standard anticandidal agent, amphotericin b
(5 µg/disk), they displayed potent anticandidal activity against all
five Candida species, with zones of inhibition ranging from 9.74
to 14.75 mm (Table 3; Figure 7).

Antioxidant Activity of AgNPs
The antioxidant potential of synthesized AgNPs was determined
by in vitro assays of DPPH radical scavenging, NO scavenging,
ABTS radical scavenging and reducing power. The DPPH radical
scavenging potential of AgNPs is presented in Figure 8A.
AgNPs displayed a moderate DPPH radical scavenging potential
of 34.09% at 100 µg/mL, whereas ASA, which was taken
as the reference standard, showed comparably high DPPH
scavenging activity of 42.41% at 100 µg/mL (Figure 8A). AgNPs
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FIGURE 6 | Antibacterial activity of AgNPs (50 µg/disk) and synergistic antibacterial potential of AgNPs (25 µg) mixed with standard antibiotics,
kanamycin (5 µg), and rifampicin (5 µg).

TABLE 2 | Synergistic antibacterial activity of AgNPs (25 µg) with standard
antibiotics, kanamycin (5 µg) or rifampicin (5 µg), against foodborne
pathogenic bacteria.

Bacteria AgNPs +
Kanamycin

AgNPs +
Rifampicin

B. cereus ATCC 13061 11.67± 0.16c∗ 12.76 ± 0.44b

E. coli ATCC 43890 12.45 ± 2.02b 11.43 ± 0.21c

L. monocytogenes ATCC 19115 10.62 ± 0.29d 11.64 ± 0.23c

S. aureus ATCC 49444 12.57 ± 0.20b 14.33 ± 0.40a

S. Typhimurium ATCC 43174 12.80 ± 0.31a 11.45 ± 0.19c

∗Data are expressed as the mean zone of inhibition in mm ± SD. Values in each
same column with different superscript letters are significantly different at P < 0.05.

exerted comparably high NO scavenging potential of 82.63% at
100 µg/mL compared with that of 41.95% of ASA at 100 µg/mL
(Figure 8B). The ABTS radical scavenging potential of AgNPs
is presented in Figure 8C. AgNPs exhibited a moderate value of
49.29% ABTS radical scavenging potential relative to 82.20% by
ASA at 100 µg/mL. AgNPs also displayed strong reducing power
(Figure 8D).

DISCUSSION

The concentration of ACL to AgNO3 was maintained at 1:10
ratio with the use of less concentration of ACL and AgNO3 in
order to obtain small and controlled size of nanoparticles. It is
presumed that less the concentration of the plant extracts and
AgNO3 used, the smaller will be the size of the nanoparticles.
This hypothesis has been proved by several researchers (Ghosh
et al., 2011; Chandran et al., 2014) and can be confirmed again by

TABLE 3 | Synergistic anticandidal activity of AgNPs (50 µg) with a
standard antifungal agent, amphotericin b (5 µg), against pathogenic
Candida species.

Candida species Mean inhibition zone in mm ± SD

C. albicans KACC 30003 10.34 ± 0.29cd∗

C. albicans KACC 30062 12.88 ± 0.15b

C. glabrata KBNO6P00368 10.98 ± 0.71c

C. glochares KACC 30061 14.75 ± 0.30a

C. saitoana KACC 41238 9.74 ± 0.14d

∗Values with different superscript letters are significantly different at P < 0.05.

the present study. The appearance of brown color in the reaction
solution (Figure 2, inset) was a clear indication of the formation
of AgNPs in the reaction mixture (Wu et al., 2004; Kumar et al.,
2008; Kumari and Philip, 2013). The characterization of the
synthesized AgNPs was achieved using techniques, such as UV-
Vis spectroscopy, FE-SEM, EDS, FT-IR, TG/DTG analysis, and
XRD analysis (Zhang et al., 2006; Choi et al., 2007; Vilchis-Nestor
et al., 2008). These techniques are used for determination of
different parameters, such as nature, particle size, characteristics,
crystallinity, and surface area.

Spectral analysis revealed that the surface plasmon resonance
phenomena (SPR) absorption maxima peak of the synthesized
AgNPs occurred at 450 nm with a high absorbance value specific
for AgNPs (Figure 2) (Kelly et al., 2003; Nazeruddin et al.,
2014). In general, typical AgNPs show characteristic SPR at
wavelengths ranging from 400 to 480 nm (Pal et al., 2007;
Nazeruddin et al., 2014), which was also observed in the present
investigation. The SPR absorbance is sensitive to the shape,
size and nature of particles present in the solution, and also
depends upon inner particle distance and the surrounding media
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FIGURE 7 | Synergistic anticandidal potential of AgNPs (50 µg) mixed with a standard amphotericin b (5 µg).

FIGURE 8 | Antioxidant potentials of AgNPs and ascorbic acid (ASA). (A) DPPH radical scavenging. (B) Nitric oxide scavenging. (C) ABTS radical scavenging.
(D) Reducing power assay. Different superscript letters in each column indicate significant differences at P < 0.05.

(Nazeruddin et al., 2014). The surface morphology was seen by
FE-SEM (Figure 3A) and its elemental composition by EDS
analysis (Figures 3B,C). The EDS pattern indicates that the
synthesized AgNPs were crystalline in nature, which is caused by
the reduction of silver ions. A strong typical absorption peak was
observed at 3.0 keV, which is typical of the absorption of metallic
silver nanocrystallites due to SPR (Das et al., 2013) (Figure 3C).
Similar results upon SEM and EDS analysis of different types
of AgNPs were reported previously (Vijaykumar et al., 2013;
Nazeruddin et al., 2014; Muthukrishnan et al., 2015; Velusamy
et al., 2015).

The intense peaks in FT-IR spectra of both ACL and AgNPs
(Figure 4) located at 3438 and 3423 cm−1 corresponded to
O–H stretching of the alcohols and phenolic compounds, while
the intense peaks at 1654 and 1645 cm−1 corresponded to –
C=C-H stretching of the alkenes group (Ramamurthy et al., 2013;
Rajeshkumar and Malarkodi, 2014). A major peak was observed
at 2921 cm−1 in AgNPs, which could be assigned to the C-H
stretching vibrations of methyl, methylene, and methoxy groups
(Feng et al., 2009). The mechanism of adsorption and capping

of AgNPs by ACL can be explained through the coordination of
carbonyl bonds (3423 cm−1) and subsequent electron transfer
from C=O to AgNPs (Qiu et al., 2006). The peak at 3423 cm−1

that corresponds to O-H stretching, 1654 cm−1 that corresponds
to – C=C-H stretching of the alkenes group, and 1053 cm−1

might be contributed to by the C-O groups of the polysaccharides
in the ACL extract that acted as reducing, capping, and stabilizing
agents for the synthesis of AgNPs (Muthukrishnan et al., 2015).
The slight shifting in the position of different peaks in the AgNPs
from the ACL extract might have been due to progression of
the reduction reaction with capping and stabilization of AgNPs
by the various secondary metabolites present in the ACL. It
is thus evident from the FT-IT spectra of the AgNPs that the
bioactive compounds such are polyphenols (chlorogenic acid,
caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and
kaempferol), anthocyanins, flavonoids, flavonols, and flavanols
which were previously reported to be present in Z. mays (Ramos-
Escudero et al., 2012; Bacchetti et al., 2013; Pandey et al.,
2013) plays a vital role in the capping and stabilization of the
AgNPs.
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Thermogravimetric analysis of the AgNPs during this period
(Figure 5A) indicated that the organic molecules from the ACL
had mostly taken part in the synthesis and capping of the
AgNPs, but were degraded at higher temperatures (Shaik et al.,
2013). The nature of the synthesized AgNPs analyzed by XRD
showed that the six diffraction peaks corresponded to (220),
(122), (111), (231), (331), and (311) planes of silver, respectively,
as per the standard FCC structures of Ag (JCPDS Card no. 04-
0783) (Khurana et al., 2014; Roy et al., 2015). This structural
characteristic pattern confirmed that the AgNPs had a crystalline
structure. (Figure 5B).

The development of resistant pathogenic strains has recently
affected healthcare systems worldwide (Rajeshkumar and
Malarkodi, 2014). Therefore, the positive effects of AgNPs
toward a number of foodborne pathogenic bacteria (Table 1)
could be useful in formulation of new antibacterial drugs
against resistant bacterial pathogens. Silver exhibits toxicity
toward microorganisms but little or no toxicity toward animal
cells; therefore, these properties of Ag particles could be more
beneficial for AgNPs in the development of more potent drugs
against the pathogens.

The exact cause of the antibacterial action of AgNPs against
the pathogenic bacteria is not completely understood. Few
studies have shown that the electrostatic attraction between
negatively charged bacterial cells and the positively charged
nanoparticles could be responsible for its bactericidal effects
(Sondi and Salopek-Sondi, 2004). There are several possible
proposed mechanisms for the positive antibacterial activity of
AgNPs which includes the degradation of enzymes, inactivation
of cellular proteins and breakage of DNA (Jiang et al., 2004;
Sharma et al., 2009; Guzman et al., 2012). It is presumed that
due to smaller size the AgNPs might have attached to the
surface of the bacterial cell membrane and disturbed its power
functions, such as permeability and respiration and then it
could have easily penetrate to the inside of the bacteria and
could have caused further damage, possibly by interacting with
sulfur- and phosphorus-containing compounds, such as DNA
resulting in cell lysis (Gibbins and Warner, 2005; Guzman
et al., 2012; Singh et al., 2014; Yousefzadi et al., 2014; Ramesh
et al., 2015; Swamy et al., 2015). Ovington (2004) reported the
potential antimicrobial activity of nanocrystalline silver products
by the process of releasing a cluster of highly reactive silver
cations and radicals inside the pathogen body or the cell
surface, this could be a possible reason for the antibacterial
activity of AgNPs in the present study. The main possible
mechanism of antimicrobial action of AgNPs could be that,
due to the dissolution of AgNPs, antimicrobial Ag+ ions are
released which can interact with sulfur-containing proteins in the
bacterial cell wall, which may lead to compromised functionality
(Levy, 1998; Lansdown, 2004; Ovington, 2004; Reidy et al.,
2013).

Similarly, many authors have also reported that due to the
smaller size, the interaction of the nanoparticles is better with the
targeted pathogen and thus these were more effective (Panacek
et al., 2006; Suriya et al., 2012). In addition to this, it is also
believed that the AgNPs after penetration into the bacteria
membrane might have inactivated their enzymes, generating

hydrogen peroxide that ultimately resulted in the death of the
bacteria (Raffi et al., 2008). Furthermore, it is also believed that
the high affinity of silver for sulfur or phosphorus compounds
could be a possible reason for its antibacterial activity against
the pathogenic bacteria because as sulfur and phosphorus are
abundantly found throughout the cell membrane, the AgNPs
could have reacted with sulfur-containing proteins inside or
outside the cell membrane and in turn affected the cell viability
causing leakage of bacteria leading to lysis (Hamouda and Baker,
2000). Morones et al. (2005) have reported the presence of
AgNPs not only at the surface of cell membrane, but also inside
the bacteria using the scanning tunneling electron microscopy
(STEM), this proves that due to their smaller size, AgNPs have
penetrated inside the bacteria and fungi, causing damage by
interacting with phosphorus- and sulfur-containing compounds
such as DNA. It is evident that with the decrease in the size
of the particles to the nanoscale range, the specific surface area
of a dose of nanoparticles increases, which allows for greater
material interaction with the surrounding environment such as
the cell membrane of the targeted pathogenic bacteria. Thus for
the inherently antibacterial materials, such as zinc and silver,
increasing the surface to volume ratio enhances the antibacterial
effect that results in positive antimicrobial activity due to a
number of reasons, such as the release of antibacterial metal
ions from the particle surface and the antibacterial physical
properties of a nanoparticle related to cell wall penetration or
membrane damage (Seil and Webster, 2012). It has also been
reported that the crystallographic structure surface and high
surface-to-volume ratio increase the contact area of metallic
nanoparticles with the body of the microorganism that influences
the antibacterial activity of nanosized silver particle (Kora and
Arunachalam, 2011). These properties of AgNPs made it a
potential candidate for the industries in development of modern
antimicrobial products. Moreover, the AgNPs could be useful
in the formulation of polymer materials for packaging of food
items and other durable materials that could be affected by
microorganisms (Rhim and Ng, 2007; Finnigan, 2009).

Further study on the synergistic antibacterial activity of AgNPs
with the antibiotics that showed as strong positive result (Table 2)
could be due to the easy penetration of the mixture solution
into the bacterial cell membrane, causing serious damage to
the cells and death of the bacteria. This synergistic potential of
AgNPs with the antibiotics could help minimize the extensive
use of antibiotics that has resulted in development of many
antibiotic resistant strains. Previously, the positive synergism
impact of nanoparticle-antibiotics combination at significantly
low concentration have been demonstrated against a number of
dreadful multi-drug resistant pathogenic bacteria (Li et al., 2005;
Birla et al., 2009; Ruden et al., 2009; Fayaz et al., 2010; Hwang
et al., 2012; McShan et al., 2015; Barapatre et al., 2016; Deng
et al., 2016; Panacek et al., 2016). All these authors have proposed
that such positive results of nanoparticle-antibiotics combination
might be due to the differences in size of prepared Ag-NPs the
bonding reaction between them which enable the mixture to
better interact with the pathogen.

Similarly, the synergistic anticandidal activities of the AgNPs
as presented in Table 3 and Figure 7 confirmed that the use
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of AgNPs together with lower concentrations of anticandidal
agents could be beneficial in clinical applications by enabling
the application of lower amounts of anticandidal agents
to avoid adverse effects and development of drug resistant
pathogens (Gajbhiye et al., 2009). Candida are among the most
common pathogenic yeast influencing humans, but treatments
for Candida infections are limited because of development of
resistant Candida sp., limited availability of antifungal drugs
and high costs (Khan et al., 2003). Thus, the use of AgNPs
together with low concentrations of amphotericin b has the
potential for improved treatment of Candida related diseases.
There have been only several reports on the antibacterial
effect of AgNPs against Candida sp. (Panacek et al., 2009;
Vazquez-Munoz et al., 2014; Artunduaga Bonilla et al., 2015;
Lara et al., 2015), and the present study also corroborates
with previous claim. As a previous report of the effective
synergistic effects of AgNPs combined with antibiotics (Monteiro
et al., 2013), the present study also corroborates with their
findings.

The strong antioxidant potential of the AgNPs (Figure 8),
could also make it a good source of natural agent for antioxidant.
The strong DPPH and NO scavenging potential of AgNPs could
make it a potential candidate for drug delivery. The moderate
ABTS scavenging potential of AgNPs compared to ASA might
be due to the different types of functional groups from the ACL
that have attached to the surface of AgNPs during synthesis
and capping of AgNPs (Adedapo et al., 2008). AgNPs also
displayed strong reducing power, which might be attributed to
the presence of phenolic compounds from ACL extract on the
surface of AgNPs as surface stabilizers and capping agents. It
is observed in the present investigation that the antioxidant
activity of the AgNPs was higher than that of the standard
ASA which might be possible due to the size and crystalline
nature of the AgNPs as reported by various authors (El-Rafie and
Abdel-Aziz Hamed, 2014; Bhakya et al., 2016; Gopukumar et al.,
2016).

CONCLUSION

In the present study, AgNPs were synthesized using the
aqueous extract of Z. mays corn leaves, which is a novel
approach of waste utilization in nanoparticle synthesis. The
results revealed that the synthesized nanoparticles are within
the nanometer range, with an SPR of 450 nm based on UV-
Vis spectroscopy. The elemental composition and crystallinity
structure confirmed the synthesized particles to be Ag. The
AgNPs displayed positive antibacterial activity against different
foodborne pathogenic bacteria, as well as strong synergistic
antibacterial and anticandidal activity with low concentrations
of antibiotics and anticandidal agents. The AgNPs exhibited
strong antioxidant potential. Based on these results, this approach
of utilization of industrial wastes in nanoparticle synthesis
can be beneficial in large scale fabrication of nanomaterials.
The synergistic study of AgNPs with common antibiotics
and anticandidal agents could be beneficial in formulation
of antibacterial products and anticandidal drugs to be used
in various food, agricultural, cosmetic, and pharmaceutical
industries and future platforms for preparing nano-medicines,
and targeted drug delivery.

AUTHOR CONTRIBUTIONS

JP carried out all the experiment and wrote the manuscript. JP
and K-HB designed and edited the manuscript.

ACKNOWLEDGMENT

This work was supported by grants from the Systems and
Synthetic Agro-biotech Center through the Next-Generation
Bio-Green 21 Program (PJ011117), Rural Development
Administration, Republic of Korea.

REFERENCES
Adedapo, A. A., Jimoh, F. O., Afolayan, A. J., and Masika, P. J. (2008). Antioxidant

activities and phenolic contents of the methanol extracts of the stems of
Acokanthera oppositifolia and Adenia gummifera. BMC Complement. Altern.
Med. 8:54. doi: 10.1186/1472-6882-8-54

Andersson, D. I., and Hughes, D. (2010). Antibiotic resistance and its cost: Is it
possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271. doi: 10.1038/
nrmicro2319

Artunduaga Bonilla, J. J., Paredes-Guerrero, D. J., Sanchez-Suarez, C. I., Ortiz-
Lopez, C. C., and Torres-Saez, R. G. (2015). In vitro antifungal activity of silver
nanoparticles against fluconazole resistant Candida species. World J. Microbiol.
Biotechnol. 31, 1801–1809. doi: 10.1007/s11274-015-1933-z

Bacchetti, T., Masciangelo, S., Micheletti, A., and Ferretti, G. (2013). Carotenoids,
phenolic compounds and antioxidant capacity of five local Italian corn (Zea
mays L.) kernels. J. Nutr. Food Sci. 3:6. doi: 10.4172/2155-9600.1000237

Barapatre, A., Aadil, K. R., and Jha, H. (2016). Synergistic antibacterial and
antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading
fungus. Bioresour. Bioprocess. 3:8. doi: 10.1186/s40643-016-0083-y

Basavegowda, N., and Lee, Y. R. (2013). Synthesis of silver nanoparticles using
Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste
utilization. Mater. Lett. 109, 31–33. doi: 10.1016/j.matlet.2013.07.039

Bhakya, S., Muthukrishnan, S., Sukumaran, M., Grijalva, M., Cumbal, L., Franklin-
Benjamin, J. H., et al. (2016). Antimicrobial, antioxidant and anticancer activity
of biogenic silver nanoparticles – an experimental report. RSC Adv. 6, 81436–
81446. doi: 10.1039/C6RA17569D

Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., and Rai,
M. K. (2009). Fabrication of silver nanoparticles by Phoma glomerata and
its combined effect against Escherichia coli, Pseudomonas aeruginosa and
Staphylococcus aureus. Lett. Appl. Microbiol. 48, 173–179. doi: 10.1111/j.1472-
765X.2008.02510.x

Chandran, K., Song, S., and Yun, S. I. (2014). Effect of size and shape controlled
biogenic synthesis of gold nanoparticles and their mode of interactions against
food borne bacterial pathogens. Arabian J. Chem. doi: 10.1016/j.arabjc.2014.
11.041

Choi, Y., Ho, N., and Tung, C. (2007). Sensing phosphatase activity by using
gold nanoparticles. Angew. Chem. Int. Ed. Engl. 46, 707–709. doi: 10.1002/anie.
200603735

Das, J., Paul Das, M., and Velusamy, P. (2013). Sesbania grandiflora leaf extract
mediated green synthesis of antibacterial silver nanoparticles against selected
human pathogens. Spectrochim. Acta A Mol. Biomol. Spectrosc. 104, 265–270.
doi: 10.1016/j.saa.2012.11.075

Deng, H., McShan, D., Zhang, Y., Sinha, S. S., Arslan, Z., Ray, P. C., et al. (2016).
Mechanistic study of the synergistic antibacterial activity of combined silver

Frontiers in Microbiology | www.frontiersin.org 11 February 2017 | Volume 8 | Article 167

https://doi.org/10.1186/1472-6882-8-54
https://doi.org/10.1038/nrmicro2319
https://doi.org/10.1038/nrmicro2319
https://doi.org/10.1007/s11274-015-1933-z
https://doi.org/10.4172/2155-9600.1000237
https://doi.org/10.1186/s40643-016-0083-y
https://doi.org/10.1016/j.matlet.2013.07.039
https://doi.org/10.1039/C6RA17569D
https://doi.org/10.1111/j.1472-765X.2008.02510.x
https://doi.org/10.1111/j.1472-765X.2008.02510.x
https://doi.org/10.1016/j.arabjc.2014.11.041
https://doi.org/10.1016/j.arabjc.2014.11.041
https://doi.org/10.1002/anie.200603735
https://doi.org/10.1002/anie.200603735
https://doi.org/10.1016/j.saa.2012.11.075
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00167 February 13, 2017 Time: 11:54 # 12

Patra and Baek Antibacterial Activity of Silver Nanoparticle

nanoparticles and common antibiotics. Environ. Sci. Technol. 50, 8840–8848.
doi: 10.1021/acs.est.6b00998

Devi, L. S., and Joshi, S. R. (2012). Antimicrobial and synergistic effects of silver
nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya.
Mycobiology 40, 27–34. doi: 10.5941/MYCO.2012.40.1.027

Diao, W. R., Hu, Q. P., Feng, S. S., Li, W. Q., and Xu, J. G. (2013). Chemical
composition and antibacterial activity of the essential oil from green huajiao
(Zanthoxylum schinifolium) against selected foodborne pathogens. J. Agric.
Food Chem. 61, 6044–6049. doi: 10.1021/jf4007856

El-Rafie, H. M., and Abdel-Aziz Hamed, M. (2014). Antioxidant and anti-
inflammatory activities of silver nanoparticles biosynthesized from aqueous
leaves extracts of four Terminalia species. Adv. Nat. Sci. 5:035008.

Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., and
Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their
synergistic effect with antibiotics: a study against gram-positive and gram-
negative bacteria. J. Nanomed. Nanotechnol. 6, 103–109. doi: 10.1016/j.nano.
2009.04.006

Feng, N., Guo, X., and Liang, S. (2009). Adsorption study of copper (II) by
chemically modified orange peel. J. Hazard. Mater. 164, 1286–1292. doi: 10.
1016/j.jhazmat.2008.09.096

Finnigan, B. (2009). “Barrier polymers,” in The Wiley Encyclopedia of Packaging
Technology, ed. K. L. Yam (New York, NY: John Wiley & Sons), 103–109.

Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., and Rai, M. (2009). Fungus-
mediated synthesis of silver nanoparticles and their activity against pathogenic
fungi in combination with fluconazole. Nanomedicine 5, 382–386. doi: 10.1016/
j.nano.2009.06.005

Geddes, J. R., Carney, S. M., Davies, C., Furukawa, T. A., Kupfer, D. J., Frank, E.,
et al. (2003). Relapse prevention with antidepressant drug treatment in
depressive disorders: a systematic review. Lancet 361, 653–661. doi: 10.1016/
S0140-6736(03)12599-8

Ghosh, P. K., Saxena, T. K., Gupta, R., Yadav, R. P., and Davidson, S. (1996).
Microbial lipases: production and applications. Sci. Prog. 79, 119–157.

Ghosh, S., Patil, S., Ahire, M., Kitture, R., Jabgunde, A., Kale, S., et al. (2011).
Synthesis of gold nanoanisotrops using Dioscorea bulbifera tuber extract.
J. Nanomater. 45, 1–8. doi: 10.1155/2011/354793

Gibbins, B., and Warner, L. (2005). The role of antimicrobial silver
nanotechnology. Med. Device Diagn. Ind. Mag. 1, 1–2.

Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N. M.,
Thajuddin, N., and Velusamy, P. (2012). Biosynthesis of silver nanoparticles
from Tribulus terrestris and its antimicrobial activity: a novel biological
approach. Colloids Surf. B Biointerfaces 96, 69–74. doi: 10.1016/j.colsurfb.2012.
03.023

Gopukumar, S. T., Sana-Fathima, T. K., Alexander, P., Alex, V., and Praseetha, P. K.
(2016). Evaluation of antioxidant properties of silver nanoparticle embedded
medicinal patch. Nanomed. Nanotech. Op. Acc. 1:NNOA-MS-ID-000101.

Guzman, M., Dille, J., and Godet, S. (2012). Synthesis and antibacterial activity
of silver nanoparticles against gram-positive and gram-negative bacteria.
Nanomed. Nanotechnol. Biol. Med. 8, 37–45. doi: 10.1016/j.nano.2011.05.007

Hamouda, T., and Baker, J. R. Jr. (2000). Antimicrobial mechanism of action of
surfactant lipid preparations in enteric gram-negative bacilli. J. Appl. Microbiol.
89, 397–403. doi: 10.1046/j.1365-2672.2000.01127.x

Huh, A. J., and Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for
treating infectious diseases using nanomaterials in the antibiotics resistant era.
J. Control. Release 156, 128–145. doi: 10.1016/j.jconrel.2011.07.002

Hwang, I., Hwang, J. H., Choi, H., Kim, K. J., and Lee, D. G. (2012). Synergistic
effects between silver nanoparticles and antibiotics and the mechanisms
involved. J. Med. Microbiol. 61, 1719–1726. doi: 10.1099/jmm.0.047100-0

Jain, P. K., Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2008). Noble metals
on the nanoscale: optical and photothermal properties and some applications
in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586.
doi: 10.1021/ar7002804

Jiang, H., Manolache, S., Lee-Wong, C., and Denis, F. S. (2004). Plasma-enhanced
deposition of silver nanoparticles onto polymer and metal surfaces for the
generation of antimicrobial characteristics. J. Appl. Polymer Sci. 93, 1411–1422.
doi: 10.1002/app.20561

Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G. C. (2003). The optical
properties of metal nanoparticles: the influence of size, shape, and dielectric
environment. J. Phys. Chem. B 107, 668–677. doi: 10.1021/jp026731y

Khan, Z. U., Chandy, R., and Metwali, K. E. (2003). Candida albicans strain carriage
in patients and nursing staff of an intensive care unit: a study of morphotypes
and resistotypes. Mycoses 46, 476–486. doi: 10.1046/j.0933-7407.2003.
00929.x

Khurana, C., Vala, A. K., Andhariya, N., Pandey, O. P., and Chudasama, B. (2014).
Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver
nanoparticles against biorecycling microbes. Environ. Sci. Proc. Impact 16,
2191–2198. doi: 10.1039/c4em00248b

Konstantopoulou, M. A., Krokos, F. D., and Mazomenos, B. E. (2004). Chemical
composition of corn leaf essential oils and their role in the oviposition behavior
of Sesamia nonagrioides females. J. Chem. Ecol. 30, 2243–2256. doi: 10.1023/B:
JOEC.0000048786.12136.40

Kora, A. J., and Arunachalam, J. (2011). Assessment of antibacterial activity of
silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action.
World J. Microbiol. Biotechnol. 27, 1209–1216. doi: 10.1007/s11274-010-0569-2

Kubo, I., Fujita, K., Kubo, A., Nihei, K., and Ogura, T. (2004). Antibacterial activity
of coriander volatile compounds against Salmonella choleraesuis. J. Agric. Food
Chem. 52, 3329–3332. doi: 10.1021/jf0354186

Kumar, A., Vemula, P. K., Ajayan, P. M., and John, G. (2008). Silver-nanoparticle-
embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236–241.
doi: 10.1038/nmat2099

Kumar, V., and Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold
nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84, 151–157.
doi: 10.1002/jctb.2023

Kumari, M. M., and Philip, D. (2013). Facile one-pot synthesis of gold and silver
nanocatalysts using edible coconut oil. Spectrochim. Acta A. Mol. Biomol.
Spectrosc. 111, 154–160. doi: 10.1016/j.saa.2013.03.076

Lansdown, A. B. G. (2004). A review of the use of silver in wound care: facts and
fallacies. Br. J. Nurs. 13, 6–19. doi: 10.12968/bjon.2004.13.Sup1.12535

Lara, H. H., Garza-Trevino, E. N., Ixtepan-Turrent, L., and Singh, D. K. J. (2011).
Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds.
J. Nanobiotechnol. 9:30. doi: 10.1186/1477-3155-9-30

Lara, H. H., Romero-Urbina, D. G., Pierce, C., Lopez-Ribot, J. L., Arellano-Jimenez,
M. J., and Jose-Yacaman, M. (2015). Effect of silver nanoparticles on Candida
albicans biofilms: an ultrastructural study. J. Nanobiotechnol. 13:91. doi: 10.
1186/s12951-015-0147-8

Levy, S. B. (1998). The challenge of antibiotic resistance. Sci. Am. 3, 32–39.
Li, P., Li, J., Wu, C., Wu, Q., and Li, J. (2005). Synergistic antibacterial effects

of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology
16:1912. doi: 10.1088/0957-4484/16/9/082

Makhija, I. K., Aswatha-Ram, H. N., Shreedhara, C. S., Vijay Kumar, S., and
Devkar, R. (2011). In vitro antioxidant studies of sitopaladi churna, a polyherbal
ayurvedic formulation. Free Radic. Antioxid. 1, 37–41. doi: 10.5530/ax.2011.2.8

Marini, M., De Niederhausern, N., Iseppi, R., Bondi, M., Sabia, C., Toselli, M.,
et al. (2007). Antibacterial activity of plastics coated with silver-doped organic-
inorganic hybrid coatings prepared by sol–gel processes. Biomacromolecules 8,
1246–1254. doi: 10.1021/bm060721b

Matei, A., Cernica, I., Cadar, O., Roman, C., and Schiopu, V. (2008). Synthesis
and characterization of ZnO-polymer nanocomposites. Int. J. Mater. Form. 1,
767–770. doi: 10.1007/s12289-008-0288-5

McShan, D., Zhang, Y., Deng, H., Ray, P. C., and Yu, H. (2015). Synergistic
antibacterial effect of silver nanoparticles combined with ineffective antibiotics
on drug resistant Salmonella typhimurium DT104. J. Environ. Sci. Health. C
Environ. Carcinog. Ecotoxicol. Rev. 33, 369–384. doi: 10.1080/10590501.2015.
1055165

Mohanpuria, P., Rana, N. K., and Yadav, S. K. (2008). Biosynthesis of nanoparticles:
technological concepts and future applications. J. Nanopart. Res. 10, 507–517.
doi: 10.1111/j.1460-9568.2009.06927.x

Monteiro, D. R., Silva, S., Negri, M., Gorup, L. F., de Camargo, E. R.,
Oliveira, R., et al. (2013). Antifungal activity of silver nanoparticles in
combination with nystatin and chlorhexidine digluconate against Candida
albicans and Candida glabrata biofilms. Mycoses 56, 672–680. doi: 10.1111/myc.
12093

Morones, J., Elechiguerra, J., Camacho, A., Holt, K., Kouri, J., Ramirez, J., et al.
(2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16,
2346–2353. doi: 10.1088/0957-4484/16/10/059

Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., and Yolke, R. H. (1995).
Manual of Clinical Microbiology, 6th Edn. Washington, DC: ASM Press.

Frontiers in Microbiology | www.frontiersin.org 12 February 2017 | Volume 8 | Article 167

https://doi.org/10.1021/acs.est.6b00998
https://doi.org/10.5941/MYCO.2012.40.1.027
https://doi.org/10.1021/jf4007856
https://doi.org/10.1016/j.nano.2009.04.006
https://doi.org/10.1016/j.nano.2009.04.006
https://doi.org/10.1016/j.jhazmat.2008.09.096
https://doi.org/10.1016/j.jhazmat.2008.09.096
https://doi.org/10.1016/j.nano.2009.06.005
https://doi.org/10.1016/j.nano.2009.06.005
https://doi.org/10.1016/S0140-6736(03)12599-8
https://doi.org/10.1016/S0140-6736(03)12599-8
https://doi.org/10.1155/2011/354793
https://doi.org/10.1016/j.colsurfb.2012.03.023
https://doi.org/10.1016/j.colsurfb.2012.03.023
https://doi.org/10.1016/j.nano.2011.05.007
https://doi.org/10.1046/j.1365-2672.2000.01127.x
https://doi.org/10.1016/j.jconrel.2011.07.002
https://doi.org/10.1099/jmm.0.047100-0
https://doi.org/10.1021/ar7002804
https://doi.org/10.1002/app.20561
https://doi.org/10.1021/jp026731y
https://doi.org/10.1046/j.0933-7407.2003.00929.x
https://doi.org/10.1046/j.0933-7407.2003.00929.x
https://doi.org/10.1039/c4em00248b
https://doi.org/10.1023/B:JOEC.0000048786.12136.40
https://doi.org/10.1023/B:JOEC.0000048786.12136.40
https://doi.org/10.1007/s11274-010-0569-2
https://doi.org/10.1021/jf0354186
https://doi.org/10.1038/nmat2099
https://doi.org/10.1002/jctb.2023
https://doi.org/10.1016/j.saa.2013.03.076
https://doi.org/10.12968/bjon.2004.13.Sup1.12535
https://doi.org/10.1186/1477-3155-9-30
https://doi.org/10.1186/s12951-015-0147-8
https://doi.org/10.1186/s12951-015-0147-8
https://doi.org/10.1088/0957-4484/16/9/082
https://doi.org/10.5530/ax.2011.2.8
https://doi.org/10.1021/bm060721b
https://doi.org/10.1007/s12289-008-0288-5
https://doi.org/10.1080/10590501.2015.1055165
https://doi.org/10.1080/10590501.2015.1055165
https://doi.org/10.1111/j.1460-9568.2009.06927.x
https://doi.org/10.1111/myc.12093
https://doi.org/10.1111/myc.12093
https://doi.org/10.1088/0957-4484/16/10/059
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00167 February 13, 2017 Time: 11:54 # 13

Patra and Baek Antibacterial Activity of Silver Nanoparticle

Muthukrishnan, S., Bhakya, S., Senthil Kumar, T., and Rao, M. V. (2015).
Biosynthesis, characterization and antibacterial effect of plant-mediated silver
nanoparticles using Ceropegia thwaitesii – an endemic species. Ind. Crop. Prod.
63, 119–124. doi: 10.1016/j.indcrop.2014.10.022

Nair, L. S., and Laurencin, C. T. (2007). Silver nanoparticles: synthesis and
therapeutic applications. J. Biomed. Nanotechnol. 3, 301–316. doi: 10.1166/jbn.
2007.041

Naqvi, S. Z. H., Kiran, U., Ali, M. I., Jamal, A., Hameed, A., Ahmed, S., et al. (2013).
Combined efficacy of biologically synthesized silver nanoparticles and different
antibiotics against multidrug-resistant bacteria. Int. J. Nanomed. 8, 3187–3195.
doi: 10.2147/IJN.S49284

Natarajan, K., Selvaraj, S., and Ramachandra, M. V. (2010). Microbial production
of silver nanoparticles. Dig. J. Nanomater. Biostruct. 5, 135–140.

Nazeruddin, G. M., Prasad, N. R., Prasad, S. R., Shaikh, Y. I., Waghmare, S. R., and
Adhyapakca, P. (2014). Coriandrum sativum seed extract assisted in situ green
synthesis of silver nanoparticle and its anti-microbial activity. Ind. Crop. Prod.
60, 212–216. doi: 10.1016/j.indcrop.2014.05.040

Nezamdoost, T., Bagherieh-Najjarn, M. B., and Aghdasi, M. (2014). Biogenic
synthesis of stable bioactive silver chloride nanoparticles using Onosma
dichroantha Boiss. root extract. Mater. Lett. 137, 225–228. doi: 10.1016/j.matlet.
2014.08.134

Ouay, B., and Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: a
surface science insight. Nano Today 10, 339–354. doi: 10.1016/j.nantod.2015.
04.002

Ovington, L. G. (2004). The truth about silver. Ostomy Wound Manage. 50, 1–10.
Pal, S., Tak, Y. K., and Song, J. M. (2007). Does the antibacterial activity of

silver nanoparticles depend on the shape of the nanoparticle? A study of
the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73,
1712–1720.

Panacek, A., Kolar, M., Vecerova, R., Prucek, R., Soukupova, J., Krystof, V.,
et al. (2009). Antifungal activity of silver nanoparticles against Candida spp.
Biomaterials 30, 6333–6340. doi: 10.1016/j.biomaterials.2009.07.065

Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N.,
et al. (2006). Silver colloid nanoparticles: synthesis, characterization, and
their antibacterial activity. J. Phys. Chem. B 110, 16248–16253. doi: 10.1021/
jp063826h

Panacek, A., Smekalova, M., Kilianova, M., Prucek, R., Bogdanova, K.,
Vecerova, R., et al. (2016). Strong and nonspecific synergistic antibacterial
efficiency of antibiotics combined with silver nanoparticles at very low
concentrations showing no cytotoxic effect. Molecules 21:26. doi: 10.3390/
molecules21010026

Pandey, R., Singh, A., Maurya, S., Singh, U. P., and Singh, M. (2013). Phenolic acids
in different preparations of Maize (Zea mays) and their role in human health.
Int. J. Curr. Microbiol. App. Sci. 2, 84–92.

Patra, J. K., Kim, S. H., and Baek, K. H. (2015). Antioxidant and free radical-
scavenging potential of essential oil from Enteromorpha linza L. prepared by
microwave-assisted hydrodistillation. J. Food Biochem. 39, 80–90. doi: 10.1111/
jfbc.12110

Qiu, L., Liu, F., Zhao, L., Yang, W., and Yao, J. (2006). Evidence of a unique
electron donor-acceptor property for platinum nanoparticles as studied by XPS.
Langmuir 22, 4480–4482. doi: 10.1021/la053071q

Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., and Hasan, M. M.
(2008). Antibacterial characterization of silver nanoparticles against E. coli
ATCC-15224. J. Mater. Sci. Technol. 24, 192–196.

Rai, M. K., Deshmukh, S. D., Ingle, A. P., and Gade, A. K. (2012). Silver
nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.
J. Appl. Microbiol. 112, 841–852. doi: 10.1111/j.1365-2672.2012.05253.x

Rajeshkumar, S., and Malarkodi, C. (2014). In vitro antibacterial activity and
mechanism of silver nanoparticles against foodborne pathogens. Bioinorg.
Chem. Appl. 2014, 1–10. doi: 10.1155/2014/581890

Ramamurthy, C. H., Padma, M., Daisy mariya samadanam, I., Mareeswaran, R.,
Suyavaran, A., Suresh Kumar, M., et al. (2013). The extra cellular synthesis of
gold and silver nanoparticles and their free radical scavenging and antibacterial
properties. Colloids Surf. B Biointerfaces 102, 808–815. doi: 10.1016/j.colsurfb.
2012.09.025

Ramesh, P. S., Kokila, T., and Geetha, D. (2015). Plant mediated green synthesis
and antibacterial activity of silver nanoparticles using Emblica officinalis fruit

extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 142, 339–343. doi: 10.1016/
j.saa.2015.01.062

Ramos-Escudero, F., Munoz, A. M., Alvarado-Ortiz, C., Alvarado, A., and Yanez,
J. A. (2012). Purple corn (Zea mays L.) phenolic compounds profile and its
assessment as an agent against oxidative stress in isolated mouse organs. J. Med.
Food. 15, 206–215. doi: 10.1089/jmf.2010.0342

Reidy, B., Haase, A., Luch, A., Dawson, K. A., and Lynch, I. (2013). Mechanisms
of silver nanoparticle release, transformation and toxicity: a critical review of
current knowledge and recommendations for future studies and applications.
Materials 6, 2295–2350. doi: 10.3390/ma6062295

Rhim, J. W., and Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite
films for packaging applications. Crit. Rev. Food. Sci. 47, 411–433. doi: 10.1080/
10408390600846366

Roy, K., Sarkar, C. K., and Ghosh, C. K. (2015). Photocatalytic activity of biogenic
silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.
Spectrochem. Acta A Mol. Biomol. Spectrosc. 146, 286–291. doi: 10.1016/j.saa.
2015.02.058

Ruden, S., Hilpert, K., Berditsch, M., Wadhwani, P., and Ulrich, A. S.
(2009). Synergistic interaction between silver nanoparticles and membrane-
permeabilizing antimicrobial peptides. Antimicrob. Agents Chemother. 53,
3538–3540. doi: 10.1128/AAC.01106-08

Saxena, A., Tripathi, R. M., Zafar, F., and Singh, P. (2012). Green synthesis of
silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract
and characterization of their antibacterial activity. Mater. Lett. 67, 91–94. doi:
10.1016/j.matlet.2011.09.038

Seil, J. T., and Webster, T. J. (2012). Antimicrobial applications of nanotechnology:
methods and literature. Int. J. Nanomed. 7, 2767–2781. doi: 10.2147/IJN.S24805

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., and Minaian, M. S. (2007).
Synthesis and effect of silver nanoparticles on the antibacterial activity
of different antibiotics against Staphylococcus aureus and Escherichia coli.
Nanomed. Nanotechnol. Biol. Med. 3, 168–171. doi: 10.1016/j.nano.2007.02.001

Shaik, S., Kummara, M. R., Poluru, S., Allu, C., Gooty, J. M., Kashayi, C. R.,
et al. (2013). A green approach to synthesize silver nanoparticles in starch-
co-poly(acrylamide) hydrogels by Tridax procumbens leaf extract and their
antibacterial activity. Int. J. Carbohydrate. Chem. 2013:539636. doi: 10.1155/
2013/539636

Sharma, V. K., Yngard, R. A., and Lin, Y. (2009). Silver nanoparticles: green
synthesis and their antimicrobial activities. Adv. Colloid Interface. Sci. 145,
83–96. doi: 10.1016/j.cis.2008.09.002

Singh, K., Panghal, M., Kadyan, S., Chaudhary, U., and Yadav, J. P. (2014).
Antibacterial activity of synthesized silver nanoparticles from Tinospora
cordifolia against multi drug resistant strains of Pseudomonas aeruginosa
isolated from burn patients. J. Nanomed. Nanotechnol. 5:192. doi: 10.4172/2157-
7439.1000192

Solihah, M. A., Wan Rosli, W. I., and Nurhanan, A. R. (2012). Phytochemicals
screening and total phenolic content of Malaysian Zea mays hair extracts. Int.
Food Res. J. 19, 1533–1538.

Sondi, I., and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent:
a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface.
Sci. 275, 177–182. doi: 10.1016/j.jcis.2004.02.012

Sun, L., Zhang, J., Lu, X., Zhang, L., and Zhang, Y. (2011). Evaluation to the
antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki
L.) leaves. Food Chem. Toxicol. 49, 2689–2696. doi: 10.1016/j.fct.2011.07.042

Suriya, J., Bharathi-Raja, S., Sekar, V., and Rajasekaran, R. (2012). Biosynthesis of
silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr.
J. Biotechnol. 11, 12192–12198. doi: 10.5897/AJB12.452

Swamy, M. K., Mohanty, S. K., Jayanta, K., and Subbanarasiman, B. (2015). The
green synthesis, characterization, and evaluation of the biological activities of
silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl.
Nanosci. 5, 73–81. doi: 10.1007/s13204-014-0293-6

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., and Byrne,
D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for
estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 19,
669–675.

Ullah, I., Ali, M., and Farooqi, A. (2010). Chemical and nutritional properties of
some maize (Zea mays L.) varieties grown in NWFP, Pakistan. Pakistan J. Nutr.
9, 1113–1117. doi: 10.3923/pjn.2010.1113.1117

Frontiers in Microbiology | www.frontiersin.org 13 February 2017 | Volume 8 | Article 167

https://doi.org/10.1016/j.indcrop.2014.10.022
https://doi.org/10.1166/jbn.2007.041
https://doi.org/10.1166/jbn.2007.041
https://doi.org/10.2147/IJN.S49284
https://doi.org/10.1016/j.indcrop.2014.05.040
https://doi.org/10.1016/j.matlet.2014.08.134
https://doi.org/10.1016/j.matlet.2014.08.134
https://doi.org/10.1016/j.nantod.2015.04.002
https://doi.org/10.1016/j.nantod.2015.04.002
https://doi.org/10.1016/j.biomaterials.2009.07.065
https://doi.org/10.1021/jp063826h
https://doi.org/10.1021/jp063826h
https://doi.org/10.3390/molecules21010026
https://doi.org/10.3390/molecules21010026
https://doi.org/10.1111/jfbc.12110
https://doi.org/10.1111/jfbc.12110
https://doi.org/10.1021/la053071q
https://doi.org/10.1111/j.1365-2672.2012.05253.x
https://doi.org/10.1155/2014/581890
https://doi.org/10.1016/j.colsurfb.2012.09.025
https://doi.org/10.1016/j.colsurfb.2012.09.025
https://doi.org/10.1016/j.saa.2015.01.062
https://doi.org/10.1016/j.saa.2015.01.062
https://doi.org/10.1089/jmf.2010.0342
https://doi.org/10.3390/ma6062295
https://doi.org/10.1080/10408390600846366
https://doi.org/10.1080/10408390600846366
https://doi.org/10.1016/j.saa.2015.02.058
https://doi.org/10.1016/j.saa.2015.02.058
https://doi.org/10.1128/AAC.01106-08
https://doi.org/10.1016/j.matlet.2011.09.038
https://doi.org/10.1016/j.matlet.2011.09.038
https://doi.org/10.2147/IJN.S24805
https://doi.org/10.1016/j.nano.2007.02.001
https://doi.org/10.1155/2013/539636
https://doi.org/10.1155/2013/539636
https://doi.org/10.1016/j.cis.2008.09.002
https://doi.org/10.4172/2157-7439.1000192
https://doi.org/10.4172/2157-7439.1000192
https://doi.org/10.1016/j.jcis.2004.02.012
https://doi.org/10.1016/j.fct.2011.07.042
https://doi.org/10.5897/AJB12.452
https://doi.org/10.1007/s13204-014-0293-6
https://doi.org/10.3923/pjn.2010.1113.1117
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00167 February 13, 2017 Time: 11:54 # 14

Patra and Baek Antibacterial Activity of Silver Nanoparticle

Valli, J. S., and Vaseeharan, B. (2012). Biosynthesis of silver nanoparticles by Cissus
quadrangularis extracts. Mater. Lett. 82, 171–173. doi: 10.1016/j.matlet.2012.
05.040

Vazquez-Munoz, R., Avalos-Borja, M., and Castro-Longoria, E. (2014).
Ultrastructural analysis of Candida albicans when exposed to silver
nanoparticles. PLoS ONE 9:e108876. doi: 10.1371/journal.pone.0108876

Velusamy, P., Das, J., Pachaiappan, R., Vaseeharan, B., and Pandian, K. (2015).
Greener approach for synthesis of antibacterial silver nanoparticles using
aqueous solution of neem gum (Azadirachta indica L.). Ind. Crop. Prod. 66,
103–109. doi: 10.1016/j.indcrop.2014.12.042

Vijaykumar, M., Priya, K., Nancy, F. T., Noorlidah, A., and Ahmad, A. B. A. (2013).
Biosynthesis, characterization and anti-bacterial effect of plant-mediated silver
nanoparticles using A. Nilgirica. Ind. Crops Prod. 41, 235–240. doi: 10.1016/j.
indcrop.2012.04.017

Vilchis-Nestor, A. R., Sanchez-Mendieta, V., Camacho-Lopez, M. A., Gomez-
Espinosa, R. M., Camacho-Lopez, M. A., and Arenas-Alatorre, J. A. (2008).
Solvent less synthesis and optical properties of Au and Ag nanoparticles using
Camellia sinensis extract. Mater. Lett. 62, 3103–3105. doi: 10.1016/j.matlet.2008.
01.138

Wu, N., Fu, L., Aslam, M., Wong, K. C., and Dravid, V. W. (2004). Interaction
of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383–386.
doi: 10.1021/nl035139x

Yousefzadi, M., Rahimi, Z., and Ghafori, V. (2014). The green synthesis,
characterization and antimicrobial activities of silver nanoparticles synthesized

from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater. Lett. 137,
1–4. doi: 10.1016/j.matlet.2014.08.110

Zargar, M., Shameli, S., Reza Najafi, G., and Farahani, F. (2014). Plant
mediated green biosynthesis of silver nanoparticles using Vitex negundo
L. extract. J. Ind. Eng. Chem. 20, 4169–4175. doi: 10.3390/molecules160
86667

Zhang, L. Z., Yu, J. C., Yip, H. Y., Li, Q., Kwong, K. W., Xu, A. W., et al. (2003).
Ambient light reduction strategy to synthesize silver nanoparticles and silver
coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir
19, 10372–10380. doi: 10.1021/la035330m

Zhang, W., Qiao, X., Chen, J., and Wang, H. (2006). Preparation of silver
nanoparticles in water-in-oil AOT reverse micelles. J. Colloid Interface Sci. 302,
370–373. doi: 10.1016/j.jcis.2006.06.035

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Patra and Baek. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 14 February 2017 | Volume 8 | Article 167

https://doi.org/10.1016/j.matlet.2012.05.040
https://doi.org/10.1016/j.matlet.2012.05.040
https://doi.org/10.1371/journal.pone.0108876
https://doi.org/10.1016/j.indcrop.2014.12.042
https://doi.org/10.1016/j.indcrop.2012.04.017
https://doi.org/10.1016/j.indcrop.2012.04.017
https://doi.org/10.1016/j.matlet.2008.01.138
https://doi.org/10.1016/j.matlet.2008.01.138
https://doi.org/10.1021/nl035139x
https://doi.org/10.1016/j.matlet.2014.08.110
https://doi.org/10.3390/molecules16086667
https://doi.org/10.3390/molecules16086667
https://doi.org/10.1021/la035330m
https://doi.org/10.1016/j.jcis.2006.06.035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Antibacterial Activity and Synergistic Antibacterial Potential of Biosynthesized Silver Nanoparticles against Foodborne Pathogenic Bacteria along with its Anticandidal and Antioxidant Effects
	Introduction
	Materials And Methods
	Sample Preparation
	Biosynthesis of AgNPs
	Characterization of AgNPs
	Biological Activity of AgNPs
	Antibacterial Activity of AgNPs
	Synergistic Potential of AgNPs
	Synergistic antibacterial activity of AgNPs
	Synergistic anticandidal activity of AgNPs


	Antioxidant Activity of AgNPs
	DPPH Radical Scavenging Activity of AgNPs
	NO Scavenging Activity of AgNPs
	ABTS Radical Scavenging Activity of AgNPs
	Reducing Power of AgNPs

	Statistical Analysis

	Results
	Synthesis of AgNPs
	Characterization of AgNPs
	Biological Activity of AgNPs
	Antibacterial Activity of AgNPs
	Synergistic Antimicrobial Potentials of AgNPs
	Synergistic antibacterial potential of AgNPs
	Synergistic anticandidal potential of AgNPs

	Antioxidant Activity of AgNPs


	Discussion
	Conclusion
	Author Contributions
	Acknowledgment
	References


