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Hopfield networks are a variant of associative memory that recall patterns stored in the
couplings of an Ising model. Stored memories are conventionally accessed as fixed points
in the network dynamics that correspond to energetic minima of the spin state. We show
that memories stored in a Hopfield network may also be recalled by energy minimization
using adiabatic quantum optimization (AQO). Numerical simulations of the underlying
quantum dynamics allow us to quantify AQO recall accuracy with respect to the number
of stored memories and noise in the input key. We investigate AQO performance with
respect to how memories are stored in the Ising model according to different learning
rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule,
a behavior that is attributed to differences in energy landscapes. Consequently, learning
rules offer a family of methods for programming adiabatic quantum optimization that we
expect to be useful for characterizing AQO performance.
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1. INTRODUCTION
Content-addressable memory (CAM) is a form of associative
memory that recalls information by value [1]. Given an exact or
approximate input value, a CAM returns the closest matching key
stored in memory. This is in contrast to random access mem-
ory (RAM), which returns the value stored at a provided key or
address. CAMs are of particular interest for applications tasked
to quickly search large databases including, for example, network
switching, pattern matching, and machine vision [2]. An auto-
associative CAM is a memory in which the key and value are the
same and partial knowledge of the input value triggers complete
recall of the key.

Auto-associative CAMs have proven of interest for modeling
neural behavior and cognition [3]. This is due partly to their
properties of operating in massively parallel mode and being
robust to noisy input. These features motivated Hopfield to pro-
pose a model for an auto-associative CAM based on a network
of computational neurons [1, 4]. The Hopfield neural network
stores memories in the synaptic weights describing the connec-
tivity between the neurons. An initial state of the neural network
propagates discretely by updating each neuron based on the
synapses and states of the other neurons. Hopfield showed that
memories stored in the network become fixed point attractors
under these Markov dynamics. The Hopfield network functions
as an auto-associative CAM in which the initial network state rep-
resents the input value and the final state represents the recovered
key or memory. The memory capacity for a Hopfield network
depends strongly on how the synaptic weights are set [5–7].

The theoretical underpinning of the Hopfield network is a clas-
sical Ising model in which each binary neuron is mapped into
a spin-1/2 system [3]. The synaptic weights define the couplings
between these spins and the susceptibility for a neuron to become

activated is set by the applied bias. The energy of the Ising model
represents a Lyapunov function and stochastic dynamics guaran-
tees convergence to a fixed point attractor in the asymptotic limit
[1]. Conventionally, Hopfield networks are formulated in terms
of an update rule governed by the Ising energy. However, finding
stable points of this Lyapunov function can also be viewed as min-
imization of the network energy [8]. In the case of the Hopfield
network, spin configurations that minimize the network energy
are fixed point attractors representing stored memories.

A fundamental concern for accurate memory recall is the like-
lihood for the network dynamics to converge to the correct mem-
ory state. Although stored memories are guaranteed to reside at
minima in the network energy, the number of stored memories
greatly influences the radius of attraction for each stable point
[9]. The radius of attraction determines how close (measured by
Hamming distance) an initial network state must be in order to
converge to a fixed point. As the number of stored memories
increases, the radius of attraction for each fixed point decreases
due to interference between memories [8]. The initial network
state must then start closer to the sought after memory in order to
accurately recall it. Conventional Hopfield networks rely on gra-
dient descent to recover these stable fixed points. However, this
method lacks any mechanism for escaping from the local minima
that represent interfering memories [3].

In this work, we investigate the recall accuracy of an auto-
associative CAM using methods of energy minimization by adi-
abatic quantum optimization (AQO). AQO represents a novel
approach to optimization that leverages quantum computational
primitives for minimizing the energy of a system of coupled spin
states [10, 11]. In particular, AQO recovers the spin state that
corresponds with the global minimum in energy. We formu-
late memory recall in terms of global energy minimization by
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AQO in order to avoid the local minima that undermine gradient
descent in conventional Hopfield networks. We apply the promise
that AQO returns the global network minimum by investigating
how accurately a sought-after-memory can be recalled. As part of
the broader adiabatic quantum computing model, AQO has also
been investigated for a number of applications, including classi-
fication [12, 13], machine learning [14], graph theory [15–18],
and protein folding [19, 20] among others [21–25]. In each of
these representative applications, the respective problems require
reduction first to a discrete optimization problem that is sub-
sequently mapped into the AQO paradigm. By comparison, we
show that memory recall within a Hopfield network is a direct
application of AQO. Moreover, this task may be implemented
using an Ising model in a transverse field with no reduction in
the original problem required [26].

Our analysis is also directed at quantifying the influence that
learning rules have on AQO recall accuracy. Although learn-
ing rules are well understood to influence memory capacity of
Hopfield networks, these rules have not been applied to the study
of AQO dynamics. Learning rules define the synaptic couplings
that store memories and thus shape the energy landscape of the
Ising model. It is an outstanding question to understand how
the shape of the energy landscape determines the computational
complexity of AQO, and we use these learning rules as a means of
comparing performance between different AQO programs that
implement the same recall task. This is possible due to the one-
to-one correspondence between the Hopfield network and the
Ising model. We ensure that the AQO dynamics are always adi-
abatic by using sufficiently long annealing times in our simulated
networks. This enables us to focus on quantifying the relative
recall accuracy of AQO under three different learning rules as
opposed to questions about adiabaticity. We analyze changes in
AQO recall accuracy with respect to the number of stored pat-
terns and type of learning rule employed. We defer to future
studies the question of how AQO performs relative to the abso-
lute scaling of the minimum spectral gap. This question for Ising
models in a traverse field is presently addressed by many others
[27–30]. Our interest is in assessing how learning rules influence
recall accuracy in the limit of sufficiently long annealing times. By
guaranteeing the adiabatic condition, we avoid trapping in local
minima but not interference between memories and the forma-
tion of spurious states. We use numerical simulations to quantify
the conditions under which AQO may be useful for memory
recall.

The use of AQO for performing memory recall in a Hopfield
network has been investigated previously by Neigovzen et al.
in the context of pattern recognition [31]. Specifically, they
employed AQO to minimize the energy of a Hopfield net-
work expressed as an Ising Hamiltonian. Neigovzen et al. per-
formed an experimental demonstration of these ideas using a
2-neuron example in the context of NMR spin-based encoding.
Their results confirmed that AQO provided accurate recall for
that small network and invited questions as to how details of
the Hopfield network influence performance. Our investigation
addresses those questions by quantifying how different network
parameters, including size, memories, and learning rules, influ-
ence recall accuracy.

Hopfield networks are tasked with finding an unknown value
within an unsorted database, i.e., the network memory. There is a
strong connection between this type of tagged search and Grover’s
search algorithm, which is formulated in terms of a quantum ora-
cle. Previous work by Farhi et al. as well as Roland and Cerf using
AQO to perform search tasks makes this point clear [32, 33].
Both have shown that Grover’s search algorithm can be cast in
terms of AQO by mapping the oracle operator to the terminal
Hamiltonian. A Hopfield neural network using AQO for memory
recall is equivalent to these implementations of Grover’s search
when the oracle expresses a one-memory network. However, a
Hopfield network extends the search task to a more general con-
text in which the oracle must discriminate between both tagged
and untagged keys. This requires a more complex implementation
of the oracle that we find plays a role in overall recall performance.
This increase in oracle complexity likely undermine the optimal
scaling reported by Roland and Cerf, i.e., O(2n/2), which stores
only a single pattern in an n-qubit network. Our statistical analy-
ses of multi-memory instances suggest that the optimal annealing
schedule is dependent on both the learning rule and the number
of stored memories.

In Section 2, we define the task of memory recall using a con-
ventional Hopfield network and describe the Hebb, Storkey, and
projection learning rules for preparing the synaptic weights. In
Section 3, we introduce adiabatic quantum optimization, its use
for memory recall, and the basis for our numerical simulation
studies. In Section 4, we present results for example instances
of Hopfield networks that demonstrate the behavior of AQO for
memory recall while in Section 5 we present calculations of the
average recall success for an ensemble of different networks. We
present final conclusions in Section 6.

2. HOPFIELD NETWORKS
We define a classical Hopfield network of n neurons with each
neuron described by a bipolar spin state zj ∈ {±1}. Neurons i
and j are symmetrically coupled by synaptic weights wij = wji

while self-connections are not permitted, i.e., wii = 0, to ensure
dynamic stability. Different choices for the weights are described
below, but in all cases the energy of the network in a spin state
z = (z1, z2, . . . , zn)T is

E(z; θ) = −1

2

n∑
i,j = 1

ziwijzj −
n∑

i = 1

θizi, (1)

with θ = (θ1, θ2, . . . , θn)T and θi the real-valued activation
threshold for the i-th neuron. This form for the energy represents
a classical Ising model in which the spin configuration describes
the orientation of the n-dimensional system. The dynamics of
the Hopfield network are conventionally modeled by the discrete
Markov process

zi =
{

1 if
∑

j wijzj > θi

−1 otherwise
(2)

where the state of the i-th neuron may be updated either in
series (asynchronously) or in parallel (synchronously) with all
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other neurons in the network. The network is initialized in the
input state zi = z0,i and subsequently updated under repeated
application of Equation (2) until it reaches a steady state

zi = sign

(∑
j

wijzj

)
(3)

Steady states of the Hopfield network represent fixed point attrac-
tors and are local minima in the energy landscape of Equations (1,
3). The stable fixed points are set by the choice of the synaptic cou-
plings wij and the network converges to the memory state closest
to the initial state z0. However, the network has a finite capacity to
store memories and it is well known that the dynamics converge
to a spurious mixture of memories when too many memories
are stored [5–7]. The emergence of spurious states places a limit
on the storage capacity of the Hopfield network that depends on
both the interference or overlap between the memories and the
learning rule used to set the synaptic weights.

2.1. SYNAPTIC LEARNING RULES
Learning rules specify how memories are stored in the synaptic
weights of a Hopfield network and they play an important role in
determining the memory capacity. The capacity cn = p/n is the
maximum number of patterns p that can be stored in a network
of n neurons and then accurately recalled [9]. Different learning
rules yield different capacities and we will be interested in under-
standing how these differences influence performance of the AQO
algorithm. Setting the synaptic weights wij for a Hopfield network
is done using a specific choice of learning rule that in turn gen-
erates a different Ising model. Learning rules represent a form of
unsupervised learning in which the memories are stored in the
network without any corrective back-action. We make use of three
learning rules that have been found previously to yield different
capacities for Hopfield networks in the classical setting.

2.1.1. Hebb rule
The Hebb learning rule defines the synaptic weights

wij = 1

n

p∑
μ= 1

ξ
μ

i ξ
μ

j (4)

for a set of p memories {ξ 1, ξ 2, . . . , ξp}, each of length n with
bipolar elements ξμi ∈ {±1}. Geometrically, each summand cor-
responds to the projection of the neuron configuration into the
μ-th memory subspace. These projections are orthogonal if all
p patterns are mutually orthogonal. More generally, the Hebb
rule maps non-orthogonal memory states into overlapping pro-
jections. This leads to interference during memory recall as two
or more correlated memories may both be close to the input state.
In the asymptotic limit for the number of neurons, the capacity of
the Hebb rule is cn = n/2 ln n under conditions of perfect recall,
i.e., no errors in the retrieved state. By comparison, under condi-
tions of imperfect recall the asymptotic capacity is cn ≈ 0.14 [5].
It is worth noting that the Hebb rule is incremental as it is a sum
over individual patterns. The rule is also local since the synaptic
weights depend only on the value of the adjacent neurons.

2.1.2. Storkey rule
The Storkey learning rule defines the synaptic weights in an
iterative fashion as

wνij = wν− 1
ij + 1

n
ξνi ξ

ν
j − 1

n
ξνi hνji − 1

n
hνijξ

ν
j (5)

where ξν is the memory to be learned in the ν-th iteration for
ν = 1 to p and

hνij =
∑

k = 1,k �= i,j

wν− 1
ik ξνk (6)

is the local field at the i-th neuron [7]. The final synaptic weight
storing p memories is given by wij = w

p
ij. The Storkey rule is found

to more evenly distribute the fixed points and increases the capac-
ity of the network. The asymptotic Storkey capacity under perfect
recall is n/

√
2 ln n, which represents an improvement over the

Hebb rule. As with the Hebb rule, the Storkey rule is incremental
and permits the addition of new memories.

2.1.3. Projection rule
The projection rule defines the synaptic weights for p memories as

wij = 1

n

p∑
μ,μ′ = 1

ξ
μ

i C−1
μμ′ξ

μ′
j (7)

where Cμμ′ = 1
n

∑n
k = 1 ξ

μ

k ξ
μ′
k is the covariance matrix and C−1

is the inverse of C. This rule has a theoretical capacity of n for lin-
early independent patterns and approximately n/2 for interfering
memories [6, 34]. The projection rule is neither local nor incre-
mental as adding memories to the network requires resetting each
element using knowledge of all other memories. In the limit of
orthogonal memories, all three learning rules reduce to the Hebb
rule.

3. MEMORY RECALL BY ADIABATIC QUANTUM
OPTIMIZATION

The learning rules defined in Section 2.1 offer different meth-
ods for preparing the synaptic weights and the fixed points of a
Hopfield network. Conventionally, the network finds those states
that satisfy the equilibrium condition of Equation (3) by evolving
under the discrete Markov process of Equation (2). However, the
fixed points of a Hopfield network are also minima of the energy
function known as stable fixed points. The stability of these solu-
tions is due to the quadratic form of the energy function E(z; θ),
which is a Lyapunov function that monotonically decreases under
updates of network state [3]. As an example, consider that the k-
th spin in the state z updates, i.e., zk → z′

k. The relative change in
unbiased energy is then

�E(z′, z) = −2(z′
k − zk)

∑
j

wjkzj ≤ 0 (8)

The sign of the summation always correlates with the change
in the spin state, cf. Equation (2). Thus, network energy never
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increases with respect to updates in the state z. More impor-
tantly, the Lyapunov stability of the Hopfield network guarantees
that the stochastic dynamics converge to fixed points representing
stored memories.

As an alternative to fixed point convergence under stochastic
update, we apply the principle of optimization for finding the
global minima of the energy function and for recalling a stored
memory. We are motivated by the stability analysis of the Ising
model under Markov dynamics, which guarantees that memories
represent fixed point attractors and, more importantly, energy
minima. Our formulation uses the same synaptic weight matrix
and underlying Ising model of a conventional Hopfield network.
However, we set the activation thresholds θi in place of initializing
the network to a known initial state z0. This feature casts recov-
ery of an unknown memory in terms of minimizing the energy
of the network. We formally define the energy minimization
condition as

z = arg min
z′ E(z′; θ). (9)

in which the vector θ represents the activation thresholds θi =
�z0,i and � is an energy scale for the applied bias. The activa-
tion threshold θ serves as an energetic bias toward network states
that best match the input z0. The behavior for a classical Hopfield
network is recovered by initializing the state of all neurons to
an indeterminate value, i.e., zi = 0, and using the first update to
prepare the state z0.

In the absence of any bias, finding the global minima of E(z, 0)
is equivalent to computing the lowest energy eigenstates of the
synaptic weight matrix wij with the constraint zi ∈ {±1} (indeter-
minate values are not valid output states). Due to the symmetry
of the unbiased energy, the complement of each memory is also
an eigenstate. If the network stores p memories, then the ground
state manifold is 2p degenerate subspace. However, the presence
of a non-zero bias breaks this symmetry and leads to a lower
energy for only one memory state relative to the other stored
memories.

In the presence of bias, global minimization of E(z, θ) returns
the spin configuration that encodes a recalled memory. The
promise that the encoded memory is a global minimum depends
on several factors. First, if the applied bias is too large then the
input state itself becomes a fixed point and the global minimum
becomes z0. This behavior is unwanted since it does not confirm
whether the input or its closest match were part of the mem-
ory. This effect can be detected by decreasing � and monitoring
changes in the recall. However, we can also compute an upper
bound on � by comparing network energies of a memory state ξ k

with a non-memory state z0, e.g., for the projection rule

� <

∑
i,j ξ

k
i wijξ

k
j − z0,iwijz0,j

2(n − ∑
i z0,iξ

k
i )

(10)

ensures that the network does not become over biased. In the
limit that the memories are orthogonal to each other as well as the
input key, this reduces to the result � < 1/(2n) previously noted
by Neigovzen et al. [31].

Interference between memories prevents their discrimination
when insufficient knowledge about the sought-after memory
is provided. The number of memories stored in the network
may also exceed the network capacity and lead to erroneous
recall results. As an example, perfect recall is observed when
using the Hebb rule in a classical network storing p orthog-
onal memories provided p ≤ n, since there is no interference
in these non-overlapping states. However, the capacity for non-
orthogonal memories is much lower and varies with learning
rule, as described above. In our optimization paradigm, interfer-
ence manifests as degeneracy in the ground state manifold. These
degeneracies are formed from superpositions of stored mem-
ory states and the applied bias. These states are valid energetic
minima that correspond to the aforementioned spurious states.
Differences between learning rules seek to remove the presence of
spurious states while also increasing the network capacity.

3.1. ADIABATIC QUANTUM OPTIMIZATION ALGORITHM
Adiabatic quantum optimization (AQO) is based on the principle
of adiabatically evolving the ground state of an initial well-known
Hamiltonian to the unknown ground state of a final Hamiltonian.
By defining the final Hamiltonian in terms of the Ising model
representing a Hopfield network, we use AQO to recover the
ground state expressing a stored memory. The Ising model for
AQO will use the same synaptic weights and activation thresh-
olds discussed in Section 2 for the Hopfield network. The recall
operation begins by preparing a register of n spin-1/2 quantum
systems (qubits) in a superposition of all possible network states
and adiabatically evolving the register state toward the final Ising
Hamiltonian. Assuming the adiabatic condition has remained sat-
isfied, the qubit register is prepared in the ground state of the Ising
Hamiltonian. Upon completion of the evolution, each qubit in
the register is then measured and the resulting string of bits is
interpreted as the network state.

Formally, we consider a time-dependent Hamiltonian

H(t) = A(t)H0 + B(t)H1 (11)

with piece-wise continuous annealing schedules A(t) and
B(t) that satisfy A(0) = 1,B(0) = 0 and A(T) = 1,B(T) = 1.
Together, the initial Hamiltonian

H0 = −
n∑
i

Xi (12)

and the final Hamiltonian

H1 = −
n∑
i,j

JijZiZj −
n∑
i

hiZi (13)

represent an Ising model in a transverse field. In the latter equa-
tions, the Pauli Zi and Xi operators act on the i-th qubit while the
constants hi and Jij denote the qubit bias and coupling, respec-
tively. Of course, the latter quantities are exactly the activation
threshold and synaptic weights of the Hopfield network, i.e.,
hi = θi and Jij = wij, and we use the symbols interchangeably.
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We choose the computational basis in terms of tensor product
states of the +1 and −1 eigenstates of operators Zi denoted as |0〉
and |1〉, respectively. In this basis, the correspondence between
the binary spin label si ∈ {0, 1} and the bipolar spin configuration
label is zi = 2si − 1.

The quantum state of an n-qubit register is prepared at time
t = 0 in the ground state of H0,

|ψ(t = 0)〉 = 1√
2n

2n−1∑
x = 0

|s〉, (14)

with |s〉 = |s1〉 ⊗ |s2〉 . . .⊗ |sn〉 and

s =
n∑

i = 1

si2
i − 1, si ∈ {0, 1} (15)

the binary expansion of the state label s. The register state ψ(t)
evolves under the Schrodinger equation

i
d |ψ(t)〉

dt
= H(t) |ψ(t)〉 (16)

from the initial time 0 to a final time T. We set h̄ = 1. The time
scale T is chosen so that changes in the register stateψ(t) are slow
(adiabatic) relative to the inverse of the minimum energy gap of
H(t), which has instantaneous eigenspectrum

H(t) |ϕi(t)〉 = Ei(t) |ϕi(t)〉 i = 1 to 2n, (17)

where the i-th eigenstate ϕi has energy Ei. The minimum energy
gap �min is defined as the smallest energy difference between
the instantaneous ground state manifold and those excited states
that do not terminate as a ground state. Provided the time scale
T � �−α

min for α = 2, 3, then the register typically remains in the
ground state of the instantaneous Hamiltonian and evolution to
the time T prepares the ground state of H(T) = H1. However, the
exact scaling for the minimal T with respect to Ising model size
and parametrization is an open question.

After preparation of the final register state ψ(T), each qubit
is measured in the computational basis. Because the final
Hamiltonian H1 is diagonal in the computational basis, measure-
ment results represent the prepared (ground) state. The measure-
ments may be directly related to a valid spin configuration of
the Hopfield network. The state of the i-th qubit is measured in
the Zi basis and the resulting label zi is the corresponding spin
configuration for the i-th neuron.

Regarding execution time, the average-case time complexity
for the AQO algorithm is currently observed to require T � �−α

min
with α = 2, 3 in order to recover the global minimum with neg-
ligible error. The scaling of energy gap �min with respect to n,
however, is currently poorly understood except in a few cases.
For example, some studies have found a gap that shrinks expo-
nentially with increasing n [10], whereas others observe polyno-
mial scaling [35]. By comparison, the algorithmic complexity for
stochastic update in Equation (3) is dominated by the matrix-
vector multiply. Assuming the classical operations are directly

proportional to time, the execution time for stochastic update
scales as O(n2). If �min scaled as 1/n, then AQO would at best
have the same time scaling as stochastic update. Such weak scal-
ing of the energy gap is unlikely for the average case, and it is far
more likely that AQO provides a slowdown relative to gradient
descent. This is because AQO makes a stronger promise than the
stochastic update rule in Equation (3), i.e., the latter only finds a
local stable fixed point.

3.2. AQO RECALL ACCURACY
The accuracy with which a memory is recalled using the AQO
algorithm can be measured in terms of the probability that
the correct (expected) network state is recovered. We define a
measure of the probabilistic recall success as

fx =
⎧⎨
⎩

1, Pans ≥ x

0, Pans < x
(18)

where Pans is the probability to recover the correct memory and
x ∈ [0, 1] is the threshold probability. Denoting the correct mem-
ory state as φans, the probability to recover the correct memory
can be computed from the simulated register state as

Pans = | 〈φans|ψ(T)〉 |2 (19)

We assume in this analysis that the register state is a pure state and
therefore neglect sources of noise including finite temperature
and external couplings.

From this definition for probabilistic success, we consider
average success for an ensemble of N problem instances as

〈fx〉 = 1

N

N∑
i = 1

f i
x, (20)

where f i
x represents the probability for success of the i-th problem

instance of n neurons storing p memories. This is a binomial dis-
tribution with variance 〈�fx〉 = 〈fx〉(1 − 〈fx〉). We use the statistic
〈fx〉 to characterize accuracy for the ensemble of simulated recall
operations.

We use several tests of recall accuracy to characterize each
learning rule. First, we quantify the recall success with respect
to the applied bias when recalling a state known to be stored in
the network. This removes any uncertainty (noise) in the input
z0. Second, we quantify recall as the failure rate when the input
z0 is noisy. This tests the ability for the network to discriminate
noisy input from unknown memories. We quantify noise in terms
of Hamming distance of the input state from the expected mem-
ory state. We perform these tests for all three learning rules and
variable numbers of stored memories.

3.3. NUMERICAL SIMULATIONS OF THE AQO ALGORITHM
We use numerical simulations of the time-dependent Schrodinger
equation in Equation (16) to compute the register state ψ(T)
prepared by the AQO algorithm. These simulations provide the
information needed to calculate the probabilistic success fx as well
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as the average success with respect to network size and learn-
ing rule. Our methods are restricted to pure-state simulations,
which provide an idealized environment for the AQO algorithm
and permit our analysis to emphasize how learning rules influence
success via changes to the Ising model.

Our numerical methods make use of a first-order Magnus
expansion of the time-evolution operator

U(t j + 1, tj) = exp

[
−i

∫ t j + 1

tj

H(τ )dτ

]
(21)

over the interval [tj, tj + 1] for j = 0 to jmax − 1. The use of a
first-order approximation is justified by limiting our simulations
to annealing times T that produce states well approximated by
the ground state. We confirm this approximation by testing the
convergence of the ground state population with respect to T,
cf. Figure 11. Our simulations use a uniform time step �t =
tj + 1 − tj such that T = jmax�t. Starting from the initial state
Equation (14), an intermediate state is generated from the series
of time evolution operators

∣∣ψ(tj′)
〉 =

j′−1∏
j = 0

U(tj + 1, tj) |ψ(0)〉 (22)

In these calculations, the action of the jth time-evolution opera-
tor onto the appropriate state vector is calculated directly [36, 37].
The simulation code is available for download [38]. In our sim-
ulations, we use annealing schedules A(t) = 1 − t/T and B(t) =
t/T, and we do not place any constraints on the qubit connec-
tivity or the coupling precision. Simulated problem instances are
detailed below but in general input parameters include the num-
ber of neurons n, the number of stored patterns p, the applied
learning rule (Hebb, Storkey, or projection), the annealing time
T, the applied bias � and the input key z0. The large number of
parametrized simulations has limited our problem instances to
only a few neurons.

4. RECALL INSTANCES
We first present some example instances to demonstrate AQO
behavior during memory recall for different learning rules. We
begin by considering the case of p orthogonal memories. A con-
venient source of orthogonal bipolar states is the n-dimensional
Hadamard matrix for n = 2k, whose unnormalized columns are
orthogonal with respect to the usual inner product. We use these
memories to prepare the synaptic weights and corresponding
Ising Hamiltonians. Orthogonal memories are a special case for
which all learning rules prepare the same synaptic weights. In the
absence of any bias (θi = 0), we expect recall to recover each of
the p encoded memories with uniform probability. The quadratic
symmetry of the energy in Equation (1) also makes the comple-
ment of each memory state a valid fixed point. This implies a total
ground state degeneracy of 2p in the absence of bias. An exam-
ple of the time-dependent spectral behavior is shown in Figure 1
for the case p = n = 4, and all the eigenstates converge to a sin-
gle ground state energy. The same case but with θ set to the first
memory and � = 1 is shown in Figure 2. The presence of the bias

FIGURE 1 | Time-dependent eigenspectrum for p = 4 orthogonal

memories stored in a network of n = 4 neurons in the absence of bias,

θi = 0. For orthogonal memories, the spectrum is the same for the Hebb,
Storkey, and projection learning rules.

FIGURE 2 | Time-dependent eigenspectrum for p = 4 orthogonal

memories stored in a network of n = 4 neurons in the presence of

bias. We define θ in terms of the first input memory and � = 1. For
orthogonal memories, the spectrum is the same for the Hebb, Storkey, and
projection learning rules.

removes the ground state degeneracy and, not apparent from the
figure, the prepared ground state matches the biased input state.

We next consider an instance of non-orthogonal memories
defined to have a non-zero inner product between pairs of mem-
ories. Interference is expected to cause failure during recall when
the applied bias is insufficient to distinguish between similar
states. With p = n = 4, we use the memory set

� =

⎛
⎜⎜⎝

+1 −1 −1 +1
−1 +1 −1 −1
+1 +1 +1 +1
−1 +1 +1 +1

⎞
⎟⎟⎠ (23)
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FIGURE 3 | Probability q to recall the correct memory with respect to

applied bias � for n = 4 neurons and p = 1 memory from the set in

Equation (23). All three learning rules coincide in behavior and provide unit
recall success for any amount of applied bias. Inset: a semi-log plot
showing how recall error decreases with applied bias. Numerical noise
dominates the inset plot beyond � ≈ 0.02

where columns 1, 2, and 3 overlap while columns 2 and 4 are
orthogonal. We use an input state z0 = (1,−1, 1,−1) that most
matches the first memory �i,1. For these simulations, we found
the annealing time T = 1000 was sufficiently long to yield con-
vergence in the prepared quantum state. Both time and energy
are expressed in arbitrary units since all calculated quantities are
independent of the absolute energy scale of the Ising model.

Figure 3 through 6 plot the probability q = |〈ϕans|ψ〉|2 to suc-
cessfully recall the answer state ϕans as a function of the applied
bias � ∈ [0, 1]. The inset for each figure shows the semi-log plot
of recall error under the same conditions. Recall probability q
varies with input bias, number of memories, and learning rule.
For p = 1, there is only one memory stored in the network and
any non-zero bias distinguishes between the memory and its com-
plement. Similarly, all three rules behave the same for the case of
p = 2 in Figure 4. This is because there are not significant ener-
getic differences between the rules using the first two memories
above. The Hebb and Storkey rules coincide exactly, while the
projection rule is identical only for the lowest energy eigenstate.
However, for the case of p = 3 in Figure 5, there is a distinction
between all three rules. The answer state probability using the
projection rule is nearly the same as was observed for fewer mem-
ories while the Hebb rule shows a shift to larger bias. This shift is
due to the added memory creating an energy basin that is lower
than the unbiased answer state. Larger bias must be applied to
lower the answer state below that of the new memory. In contrast,
the Storkey shifts to smaller bias as a result of memory addition.
This is because the Storkey rule attempts to mitigate interfer-
ence by using the local field calculation. As shown in Figure 6
for p = 4, adding another memory makes the Hebb rule become
more evenly distributed in energy across the degenerate memory
states while the Storkey rule shows a slight shift to a larger bias and
the projection rule remains unchanged. Differences in the recall
errors are readily seen from the semi-log plots inset in the figures.

FIGURE 4 | Probability q to recall the correct memory with respect to

applied bias � for n = 4 neurons and p = 2 memories from the set in

Equation (23). All three learning rules coincide and show unit recall
success for � > 0.10. Inset: a semi-log plot showing how recall error
decreases with applied bias. Numerical noise dominates the inset plot
beyond � ≈ 0.4

FIGURE 5 | Probability q to recall the correct memory with respect to

applied bias � for n = 4 neurons and p = 3 memories from the set in

Equation (23). The Hebb rule has strong dependency on � due to memory
interference while the Storkey and projection rules accommodate
interference better. Inset: a semi-log plot showing how recall error
decreases with applied bias. Numerical noise dominates the inset plot
beyond � ≈ 0.5

The slopes of these lines highlight that each learning rule has a
different sensitivity to �. Note that the inset plots show oscilla-
tions in the recall error when it is less than about 10−12; this is
due to the finite precision of the numerical simulations.

5. STATISTICAL RECALL BEHAVIOR
Our results for recall success of individual Hopfield networks
indicate a large degree of variability in performance with respect
to the stored memory states. We have found it useful to average
performance across a range of problem instances. Under these
circumstances, we use the average success probability defined by
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Equation (20) to quantify the relative performance of each learn-
ing rule in terms of neurons n, memories p, and bias �. As noted
earlier, these statistics correspond to a binomial distribution with
parameter 〈fx〉.

We first investigate average AQO recall behavior with respect
to the bias �. An ensemble of problem instances is constructed
for n = 5 neurons in which each instance consists of p memo-
ries with elements sampled uniform random from {±1}. Among
the p memories, one is selected as the answer state while all
other memories are distinct from the answer state. The selected
answer state is then chosen as the input state. This defines the
activation threshold θ = �z0 for some choice of �. The simu-
lation computes the full quantum state using an annealing time
T = 1000. The probability to occupy the expected answer state

FIGURE 6 | Recall probability q with respect to applied bias � for n = 4

neurons and p = 4 memories from the set in Equation (23). The Hebb
rule is least sensitive to the applied bias, and nearly the same as the
projection rule, while the Storkey rule becomes more sensitive to applied
bias. Inset: a semi-log plot showing how recall error decreases with applied
bias. Numerical noise dominates the inset plot beyond � ≈ 0.3

is then computed using Equation (18) with a threshold x = 2/3.
The exact value of x is not expected to be significant provided it is
above the probability for a uniform superposition.

Figure 7 shows the average recall success for recovering the
answer state as the bias � increases from 0 to 1. Each panel repre-
sents the results of a single learning rule and each line represents
a network storing p = 1, 2, 3, 4, or 5 memories. We find that each
learning rule exhibits a distinct behavior with respect to recall
accuracy. For the Hebb rule there is a step-wise decrease in success
as the number of memories increases, indicating greater interfer-
ence during recall. A much weakened version of this dependency
is seen for the Storkey rule at values of � below about 0.25. Above
this threshold the Storkey rule recovers unit success for every
memory set. The projection rule demonstrates a very different
behavior; unit success is seen in every case for any non-zero value
of �. Unlike the Hebb rule, there is a complete lack of interference
during recall. The plots in Figure 7 indicate when the prepared
ground state has greater than 2/3 probability to be in the answer
state given an input that matches a memory. The better perfor-
mance of both the Storkey and projection rules is a result of how
they exploit correlations between memories. Both rules effectively
raise the energy barrier between fixed stable points, while the
Hebb rule preserves this interference. As the number of memories
increases, so does the interference within the the typical problem
instance. This behavior is underscored by the strong dependence
of the Hebb rule on the number of stored memories p.

We also investigate AQO recall accuracy when a noisy input
state is provided. As before, we construct an ensemble of problem
instances for n = 5 neurons in which each instance consists of p
memories with elements sampled uniform random from {±1}.
We modify the procedure by selecting one memory as the answer
state while creating all other memories at least Hamming dis-
tance 2 away from this answer state. We select an input state that
is Hamming distance 1 away from the answer state by randomly
flipping a bit in the answer state. This construction of the memory

FIGURE 7 | Average probability to recall the correct memory with

respect to applied bias. The average is taken over an ensemble of
network instances with n = 5 neurons and p = 1,2,3,4, or 5 stored

memories. Each panel plots the average recall success of a learning rule
(Hebb, Storkey, projection) using an input state that is Hamming distance
0 from a stored memory.
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FIGURE 8 | Average probability to recall the correct memory with

respect to applied bias. The average is taken over an ensemble of
network instances with n = 5 neurons and p = 1,2,3,4, or 5 stored
memories. Each panel plots the average recall success of a learning

rule (Hebb, Storkey, projection) using an input state that is Hamming
distance 1 from a stored memory. For sufficiently large �, the recall
success drops because the input state becomes the global minimum of
the network.

set ensures that the noisy input state is closest to the answer state.
In Figure 8, the recall success for the noisy input test is plotted
with respect to � and number of memories for each learning
rule. For the Hebb rule, there is again a step-wise decrease in
recall success as the number of stored memories is increased. This
behavior indicates that the energy basin representing the answer
state is not narrow with respect to the Hamming distance between
spin configurations. As the stored memories increase, there is a
greater chance that the applied bias lowers the energy of non-
answer states. As the bias � increases beyond about 0.75, the
input state is over biased. This leads to a recall accuracy of about
50% independent of stored memories. The Storkey rule exhibits
a different behavior with respect to noisy input. Recall accuracy
again decreases with the addition of new memories but much
more weakly than was observed with the Hebb rule. The recall
success also tends to vanish as the bias is increased. These dif-
ferences underlie the fact that the Storkey rule distributes stored
memories better than Hebb, such that an over-biased input is well
separated from the expected answer state. Recall accuracy with the
projection rule also vanishes for sufficiently strong bias due to the
well-separated memory states. However, there is a much stronger
dependence on recall accuracy with respect to the number of
stored memories.

We have investigated further the influence on the network of
over-biasing the input state. As noted previously, there are loose
upper bounds on � based on the energetic analysis of the learning
rules [31]. We have tested these bounds by attempting to recall a
memory that is not stored in the network. These tests attempt to
recall a stored memory using an input state that is guaranteed to
be either Hamming distance 1 or 2 away from any stored mem-
ory. We would expect the failure rate for this test to increase as
either the number of stored patterns or the bias � increases. This
is because the biased state should eventually reach an energy lower
than any stored memory. Figure 9 plots the average failure as the

recall accuracy 〈fx〉. In these plots, the input state is not among
the stored memories. As expected, the failure rate increases as �
increases. For all the learning rules, there is a narrow range for �
above which the network returns the input state. These thresholds
mark that the system is over biased. It is notable, however, that
each learning rules exhibit a different behavior from over biasing.
Whereas the Hebb rule terminates at lower failure probability as
the memories are increased, both the Storkey and projection rules
reach unit failure with sufficiently large �. This is again due to
the inability for the Hebb rule to discriminate between interfer-
ing memories. A similar plot is shown in Figure 10 for the case
that the input is at least Hamming distance 2 from all the stored
memories. The sensitivity to failure increases with the increase in
Hamming distance as noted by the lower thresholds on � for over
biasing.

Finally, we have investigated the role of the annealing time T
on recall success. Because the state dynamics must be adiabatic
relative to the minimum energy gap, the diversity of instances
used for 〈fx〉 are also likely to support a diversity of �min. This
implies that there may be some maximum T for the ensem-
ble which ensures every instance is quasi-adiabatic. In Figure 11,
we show a series of recall averages for different annealing times.
For small values of T, the average success is low, especially as p
approaches n. This suggests that many instances do not meet the
x = 2/3 threshold for success. As T increases, the average success
also increases but only up to a limit that depends on each learn-
ing rule. For the Storkey and projection rule, this limit is before
T = 500, while for the Hebb rule the limit occurs before T = 50.
Annealing times larger than these limits do not lead to significant
changes in the average recall success (assuming a linear annealing
schedule). Thus, the annealing time is not the limiting factor in
recall success and the adiabatic condition has been met for these
problem instances. Notably, the shortest annealing time is found
for the Hebb rule but this rule also exhibits the most interference
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FIGURE 9 | Average probability to recall a memory not stored in the

network with respect to applied bias, i.e., failure. The average is
taken over an ensemble of network instances with n = 5 neurons and
p = 1,2,3,4, or 5 stored memories. Each panel plots the failure

probability of a learning rule (Hebb, Storkey, projection) using an input
state that is Hamming distance 1 from a stored memory. Failure
increases with � when the non-memory input state forms a fixed point
in the network.

FIGURE 10 | Average probability to recall a memory not stored in

the network with respect to applied bias, i.e., failure. The
average is taken over an ensemble of network instances with n = 5
neurons and p = 1,2,3,4, or 5 stored memories. Each panel plots

the failure of a learning rule (Hebb, Storkey, projection) using an
input state that is Hamming distance 2 from a stored memory.
Failure increases with � when the non-memory input state forms a
fixed point in the network.

during memory recall. By contrast, the projection and Storkey
rule require an order of magnitude increase in annealing time to
ensure adiabaticity but these rules also exhibit greater accuracy
during memory recall.

6. CONCLUSIONS
We have presented a theoretical formulation of auto-associative
memory recall in terms of adiabatic quantum optimization. We
have used numerical simulations to quantify the recall success
with respect to three different learning rules (Hebb, Storkey, and
projection) and we have accumulated statistics on recall accuracy

and failure across an ensemble of different network instances. We
have found that the probability to populate the expected ground
state using AQO is sensitive to learning rule, number of memo-
ries, and size of the network. Our simulation studies have been
limited in size, but for these small networks there are notable dif-
ferences in both the success and failure rates across learning rules.
These differences represent the strategies of each learning rule
to manage memory interference and the sensitivity of the AQO
algorithm to those different strategies.

The use of AQO for memory recall is closely related to its use
for searching an unsorted database [32, 33]. Both Farhi et al. and
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FIGURE 11 | Average probability to recall the correct memory with

respect to number of input patterns for n = 5 neurons. Each panel plots
recall success with respect to the number of stored patterns p = 1,2,3,4,
and 5 for a different learning rule and applied bias (Hebb, � = 0.5; Storkey
� = 0.15; projection, � = 0.15). Each line corresponds to a different annealing

time T = 10,20,50,100,500,1000,5000,10000, and 50000. The computed
recall success converges as T increases with upper bounds given by (Hebb)
T < 50, (Storkey) T < 500, (projection) T < 500. Note that results reported in
other figures used an annealing time much longer than these upper bounds,
i.e., T = 1000.

Roland and Cerf have previously constructed the search prob-
lem using an oracle based on projection operators, which with
an unbiased Hopfield network trained using the Hebb rule. Their
previous work considered the task of recovering any valid mem-
ory from the network. We have used the activation threshold θ of
the Hopfield network as the input key for a context-addressable
memory. The activation threshold corresponds to the classical
input to the oracle that identifies which memory is being sought.
In this sense, the Hopfield network offers a robust implementa-
tion of Grover’s search by permitting input to the task. However,
this comes at the cost of a more complex oracle implementation.
The three learning rules discussed here represent three different
methods for oracle construction within the model of an Ising
Hamiltonian. We have shown how choices in learning rule impact
recall accuracy and we have observed that the projection rule
seems to offer the most robust behavior. We have not attempted
to optimize the annealing schedule associated with memory recall
for each learning rule. It seems unlikely that the optimized
annealing schedule recovered by Roland and Cerf for untagged
search would extend to the current oracle implementations due
to the influence of the variable activation threshold.

Recent work to assess the scaling of the spectral gap that deter-
mines the minimum AQO annealing time has underscored that
the relative height of energy barriers play a fundamental role in
determining which Ising Hamiltonians are challenging [27–30].
Historically, learning rules that provide well separated but broad
energy basins have been the goal of classical Hopfield networks, as
these landscapes favor methods like gradient descent [1, 6, 7]. We
have found that the AQO recall accuracy and minimal annealing
time also demonstrate a significant dependence on the learning
rule. In particular, energy basins prepared by the projection rule
are known to be better separated than by either the Hebb or
Storkey rules. Consequently, the projection rule provides the best

performance with respect to AQO recall accuracy. However, bet-
ter performance is not due to the avoidance of local minima but
rather to the reduced interference between the stored memories
and the biased input. Because the shape of the energy basins also
influence the spectral gap of the time-dependent Hamiltonian,
we anticipate that learning rules can provide a form of energetic
control over AQO scaling.
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