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Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis

and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR

is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates

neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency

affects a specific subset of neurotransmitters and results in an unique behavioral

phenotype. The FXR knockout mice showed less depressive-like and anxiety-related

behavior, but increased motor activity. They had impaired memory and reduced motor

coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and

norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion

decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but

increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum

concentrations of many bile acids, including taurodehydrocholic acid, taurocholic

acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid,

tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes

in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic

acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken

together, the results from studies with FXR knockout mice suggest that FXR contributes

to the homeostasis of multiple neurotransmitter systems in different brain regions and

modulates neurobehavior. The effect appears to be at least partially mediated by

bile acids that are known to cross the blood-brain barrier (BBB) inducing potential

neurotoxicity.

Keywords: FXR, bile acid, neurobehavior, neurotransmitter, neurotransmission, emotion, memory, motor

performance

Introduction

Farnesoid X receptor (FXR) is a member of the family of nuclear hormone receptors. Upon acti-
vation and nuclear translocation, FXR forms a heterodimer with retinoid X receptor (RXR) that
binds to its cognate DNA response elements. FXR is a bile acid receptor (BAR) and plays a
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critical role in the maintenance of bile acid (BA) synthesis and
homeostasis (Maruyama et al., 2002; Pircher et al., 2003). Activa-
tion of FXR inhibits hepatic acid biosynthesis and accelerates the
transport of BAs from the intestinal lumen to the liver. On the
contrary, FXR deletion results in disrupted bile acid homeosta-
sis, shown by elevated serum bile acid, cholesterol, and triglyc-
erides, as well as increased hepatic cholesterol and triglycerides
(Sinal et al., 2000). FXR dysfunction contributes to many dis-
eases, such as hepatic tumorigenesis (Kim et al., 2007b; Yang et al.,
2007), intestinal diseases (Kim et al., 2007a), cholestasis (Stedman
et al., 2006), atherosclerosis (Guo et al., 2006), and impaired liver
regeneration (Huang et al., 2006; Fan et al., 2015).

Not surprisingly, FXRmRNA is most abundant in liver, ileum,
and kidney, tissues that are exposed to high concentrations
of BAs (Forman et al., 1995; Seol et al., 1995). This is con-
sistent with its active involvement in BA synthesis, secretion,
transport, absorption, conjugation, and detoxification. Unlike
other nuclear hormone receptors including liver X receptor,
retinoid X receptor and peroxisome proliferator activating recep-
tor, FXR mRNA is not detectable in brain cells or capillary
endothelial cells (Akanuma et al., 2008). In agreement with
the reports, our unpublished data (Supplementary Figure 1)
showed that FXR mRNA was not present in mouse brain. More-
over, one of the natural FXR ligands, chenodeoxycholic acid,
does not appear to cross the normal mouse blood-brain barrier
(BBB) (Jia et al., 2014). Therefore, FXR appears to be absent in
mouse central nervous system (CNS). Perhaps for such a reason,
whether FXR deletion alters mouse neurobehavior has not been
reported yet.

Many hepatic diseases are associated with neurological pre-
sentations, such as anxiety (Tkachenko et al., 2013), depression
(Suh et al., 2013), mania (Machado et al., 2008), and cogni-
tive impairment (Monfort et al., 2007). Cholestasis is one of
such disorders that can produce encephalopathy by deposition
of neurotoxins in the brain (Garcia-Moreno et al., 2002). This
in turn changes glutamatergic, GABAergic, and serotoninergic
transmission and neuronal circuits (Cauli et al., 2009; Magen
et al., 2010). Moreover, cholestasis can affect cytoarchitecture
of the brain, including the hippocampus and inferiotemporal
cortex.

FXR KO mice have been reported to show less obstruc-
tive cholestasis but increased serum BAs in comparison with
normal mice (Stedman et al., 2006). Circulating serum BAs,
such as DCA and CDCA, can increase permeability of the
BBB via disruption of tight junctions (Quinn et al., 2014).
Therefore, we speculated that FXR deletion may disrupt the
BBB so as to increase the access of BAs and other tox-
ins from blood to brain, which interferes with neurotrans-
mission and leads to specific behavioral changes. To test this
hypothesis, in the current study we examined the neurobe-
havior of FXR KO mice with their controls through a bat-
tery of behavioral tests, including open-field, elevated plus
maze, forced-swimming, tail-suspension, passive avoidance, and
rotarod. Neurotransmitters in the hippocampus, cerebellum, and
prefrontal cortex of the mice were analyzed by LC-MS/MS. We
also investigated the expression of relevant proteins involved
in the synthesis, transport, and signaling of neurotransmitters

by western blotting assay as well as serum and brain BAs by
an UPLC-MS approach. The results indicate that FXR dele-
tion changes many aspects of neurobehavior in mice linked
to specific neurochemical changes. The novel findings extend
our understanding of the role of FXR in modulation of mouse
neurobehavior.

Materials and Methods

Animals
FXR knockout (KO) mice were provided by the Laboratory of
Metabolism in the Division of Basic Sciences of National Insti-
tutes of Health (Bethesda, MD, USA) and bred in the Experimen-
tal Animal Center of Shanghai University of Traditional Chinese
Medicine (SHUTCM, Shanghai, China). The KO mice had nor-
mal weight gain, normal developmental milestones, and were fer-
tile (Sinal et al., 2000). Since FXR null mice have been maintained
on a C57BL/6 background, age matched wild-type C57BL/6 mice
were used as the experimental controls. The behavioral tests were
conducted when the mice were 4–5 months old. Each group
contained 12 male mice that were group-housed with a 12 h
light/12 h dark cycle at room temperature (25 ± 1◦C) and fed
regular rodent chow and water ad libitum. All experiments on
animals were performed according to a protocol approved by the
Institutional Animal Care and Use Committee of SHUTCM.

Behavioral Studies
All behavioral tests were conducted during the light phase
between 09:00 a.m. and 17:00 p.m. To avoid experimental bias,
all behavioral observers were blind to the genotype of the test
mice. The experimental paradigm for behavioral tests is shown
as Figure 1. This includes open-field, elevated plus maze, forced-
swimming, tail-suspension, passive avoidance, and rotarod. All
tests were performed sequentially in 2 weeks with proper resting
time to avoid fatigue. Moreover, the mice from different groups
were tested in a random order. To avoid reciprocal influence
among mice due to odor from feces and urine, the apparatus sur-
faces were cleaned with 10% ethanol among batches of individual
subjects.

Open-Field Test (OFT)
Mice were placed in the center of a square field (50× 50 cm) that
was enclosed by white walls (height 40 cm) and well-illuminated
(150 lux). Locomotor activity of individual mice was video-
recorded for 5min. The central and total distance traveled as well

FIGURE 1 | Experimental paradigm of the behavioral tests.
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as the time spent in the central and peripheral areas were analyzed
by a video-tracking system (Mobiledatum Inc., Shanghai, China).

Elevated Plus Maze Test (EPMT)
The experiments were conducted in a dark room illuminated
with a dim lamp (12-W fluorescent). The apparatus was elevated
60 cm from the floor, composed of a central platform (5 × 5 cm)
connected with two open arms and two enclosed arms (30 ×

5 cm). The mouse was placed in the central platform facing the
open arms. Total time spent completely in the open arms and the
number of exploring the open arms were recorded for 5min.

Forced-Swimming Test (FST)
Mice were individually placed in a glass cylinder (tall 30 cm,
diameter 20 cm) filled with water (height 20 cm) at ambient tem-
perature. The animals were allowed to swim freely for 6min, and
the duration of immobility was video-recorded. Immobility was
defined as time floating passively without any active movement
in the last 4min.

Tail-Suspension Test (TST)
Tails of mice were taped to a horizontal bar elevated 60 cm from
the floor. The behavior of mice for 6min and the duration of
immobility in the last 4min were video-recorded for final com-
parison. Immobility was defined as no active movements except
for respiration.

Passive Avoidance Test (PAT)
The shuttle box used for PAT was divided into bright and dark
chambers (30× 30× 30 cm for each one) by an opaque Plexiglas
door. The bright chamber was illuminated by fluorescent light
(approximately 500 lux). The floor of the box was made of stain-
less steel grids connected to an electric shock generator. At the
beginning of training, the mice were placed in the bright chamber
with their back toward the entrance of the dark one. Once mice
entered the dark chamber, they immediately received an electric
shock of 0.4mA until they returned to the bright chamber. Each
mouse was trained until it met a learning criterion of 300-s totally
staying in the bright chamber. On the second day, the time for
the passive avoidance response of the mice was evaluated in 300-
s. The latency to enter the dark chamber as well as the number
of entries was analyzed by a video-tracking system (Mobileda-
tum). The number of trials to criterion was used to measure PAT
acquisition, and time before entering the dark chamber 24 h after
training was used to measure PAT memory.

Rotarod Test (RRT)
The rotarod test was performed using a Rota-Rod Treadmill
(Mobiledatum). The mice were trained to learn to walk steadily
on a horizontally oriented rod rotating at the speed of 15 rpm.
On the test day, they were obliged to walk on the rod rotating
at 35 rpm for a maximal 600 s. The duration for a mouse to stay
on the rod was recorded. The trials were repeated for three times
at 40min intervals in 1 day. Finally, the data were averaged for
statistical analysis.

Neurotransmitter and Bile Acid Analysis
Upon completion of all behavioral tests, the mice were anes-
thetized with 20% urethane and sacrificed. The hippocampus,
cerebellum, and prefrontal cortex were dissected immedi-
ately on ice, snap frozen in liquid nitrogen and stored at
−80◦C until analysis. The concentrations of neurotransmitters
including dopamine (DA), 5-hydroxy tryptamine (5-HT), γ-
aminobutyric acid (GABA), glutamic acid (Glu), norepinephrine
(NE), epinephrine (Epi), and 5-hydroxyindole acetic acid (5-
HIAA) were determined by LC-MS/MS method described
previously (Huang et al., 2014).

Blood samples were obtained from the retinal venous plexus
of each mouse and stored at 4◦C overnight. Whole serum
was collected after centrifugation of whole blood at 845 g for
10min at 4◦C. Brain samples were prepared by homogeniza-
tion of the whole brains in 1ml of 50% methanol on ice.
After centrifugation at 18,400 g for 15min at 4◦C, the super-
natant was mixed with an equal volume of acetonitrile and
subjected to centrifugation again. The supernatant was blown
dry by nitrogen, dissolved in 100µl of 50% methanol, and
used for further analysis. Concentrations of 22 kinds of bile
acids, including primary and secondary BAs as well as their
taurine conjugates, were determined by the UPLC-MS method
(Yang et al., 2008; Zhang and Klaassen, 2010). Primary BAs
analyzed included cholic acid (CA), chenodeoxycholic acid
(CDCA), α-muricholic acid (αMCA), and β-muricholic acid
(βMCA). Secondary BAs converted from corresponding primary
BAs contained glycocholic acid (GCA) and deoxycholic acid
(DCA) from CA; lithocholic acid (LCA) and ursodeoxycholic
acid (UDCA) from CDCA; and murideoxycholic acid (MDCA),
ωMCA, and hyodeoxycholic acid (HDCA) from αMCA and
βMCA.

Western Blotting Analysis
To examine the effect of FXR KO on the expression of
proteins involved in neurotransmission, samples from hip-
pocampus and cerebellum were homogenized, sonicated, and
subjected to western blotting analysis. Total 30mg proteins
from each sample were separated on 12% SDS-PAGE. After
transfer onto PVDF membranes, the proteins were incubated
with respective primary antibodies against GABA transporter
1 (GAT1, cat# ab426), glutamate decarboxylase 2 (GAD65,
cat# ab26113), GABA receptor subunits (GABAARα5, cat#
ab9678; GABAARβ2/3, cat# MAB341), 5-HT receptor 1A
(5-HT1A, cat# GTX104703), and norepinephrine transporter
(SLC6A2, cat# sc-67216), and horseradish peroxidase conju-
gated secondary antibodies sequentially as described previously
(He et al., 2013). The protein bands were visualized by an
ECL-prime kit and quantified with Image J 1.46r software
(NIH, USA).

RT-PCR
Total RNAs from brain tissues of wild-type and FXR KO mice
were extracted using Trizol according to the manufacturer’s
instructions (Life Technologies, MA, USA). After treatment with
DNase I to eliminate trace amount of DNA contamination, the
RNA samples were reversely transcribed into cDNA with Revert
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Aid First Strand cDNA Synthesis kit (Fermentas, MA, USA).
Afterwards, the synthesized cDNA was used as templates for
PCR reaction with respective primers: for FXR, 5′-TCTCTTTA
AGTGATGACGGG-3′ and 5′-TTCTGCAGGGATGGAAACAT-
3′; for GAPDH, 5′-ATGTGTCCGTCGTGGATCTGA-3′ and 5′-
ATGCCTGCTTCACCACCTTCT-3′. PCR condition was set as
following: 95◦C for 5min; then 35 cycles of 95◦C for 30 s, 60◦C
for 30 s and 72◦C for 30 s; finally 72◦C for 5min. PCR prod-
ucts were visualized by GeneGreen after electrophoresis on a 2%
agarose gel.

Statistical Analysis
All data were presented as mean± S.E.M. The difference between
the two groups was evaluated by unpaired t-test. A value of
p < 0.05 was regarded as statistically significant.

Results

Effect of FXR Deletion on Depressive-Like
Behavior
To determine the role of FXR on depression-like behavior, KO
mice and their controls were subjected to the TST and FST.
As shown in Figure 2A, in comparison with wild-type controls,
FXR KO mice had significantly reduced immobility time [t(20) =
3.426, p < 0.01] in the TST. Unexpectedly, in the FST the KO

FIGURE 2 | FXR KO mice showed less depressive-like behavior. In

comparison with wild-type controls, FXR KO mice did not have reduced

immobility time in the FST (B), but exhibited significantly decreased immobility

time in the TST (A). N = 12/group; **p < 0.01.

mice were not more active than the controls [Figure 2B; t(22) =
0.799, p > 0.05]. Overall, results from these two tests reflect a
possible anti-depressive effect of FXR deletion.

Effect of FXR Deletion on Anxiety-Related
Behavior
In the two behavioral tests for anxiety, FXR deletion showed
different behavioral effect on mice. In the OFT, FXR KO mice
traveled more in the central area of the open field when com-
pared with the controls [Figure 3A; t(21) = 2.195, p < 0.05].
Similarly, in EPMT, mice with FXR deletion showed a greater
tendency to enter the open arms to explore the new environment.
The number of attempts to get into the open arms by FXR KO
mice was significantly more than that of the controls [Figure 3B;
t(21) = 3.054, p < 0.01]. Moreover, once those KO mice entered
the open arms of the elevated plus maze, they stayed there much
longer than the controls [Figure 3C; t(21) = 2.268, p < 0.05].

Effect of FXR Deletion on Learning and Memory
FXR deletion impaired the emotional memory of mice. In PAT,
compared with the controls, the latency for FXR KO mice to
enter the dark chamber on the test day was significantly shorter
[Figure 4A; t(21) = 2.231, p < 0.05]. Meanwhile, the number of
entries into the dark chamber increased markedly in the KOmice
[Figure 4B, t(20) = 2.546, p < 0.05]. All these results indicate
that the FXR deletion impaired the cognitive ability of mice.

Effect of FXR Deletion on Motor Performance
When FXR was deleted, the mice seemed to lose motor control.
In the RRT, FXR KOmice lost their coordination of body and fell
more easily from the rotating rods [Figure 5A; t(20) = 2.927, p <

0.01]. However, KO mice appeared to be hyperactive. The total
distance traveled in OFT was much longer in the KO mice than
their wild-type controls [Figure 5B; t(20) = 3.146, p < 0.01].

Effect of FXR Deletion on Brain
Neurotransmitters
Since neurobiochemical signals in neurobehaviors such as mood,
memory, and motor, are mediated by neurotransmitters in the
CNS, seven common neurotransmitters in hippocampus, cere-
bellum, and prefrontal cortex were investigated by a LC-MS/MS
method in this study. In the prefrontal cortex, none of the neuro-
transmitters examined showed any difference between FXR KO
mice and their controls (Table 1). Similar results were seen in the
hippocampus except for a significantly increased ratio of GABA
to Glu [t(22) = 2.887, p < 0.01]. However, in the cerebellum, the
concentrations of GABA, NE, and HIAA were elevated promi-
nently in FXR KO mice [t(20) = 5.348, p < 0.001; t(22) = 2.579,
p < 0.05; and t(22) = 3.594, p < 0.01, respectively] as well as the
ratio of GABA to Glu [t(20) = 3.469, p < 0.01]. In short, FXR
deletion modulated neurotransmitter concentrations in different
brain regions.

Effect of FXR Deletion on Proteins Involved in
Neurotransmission
To examine whether FXR deletion affects the expression of pro-
teins involved in neurotransmission, total proteins from the
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hippocampus and cerebellum of FXR KO mice and their con-
trols were subjected to western blotting analysis. As shown
in Figures 6A,B, FXR deletion did not change hippocam-
pal expression of GAT1, and GABAARα5, and GABAARβ2/3.

FIGURE 3 | FXR KO mice had low levels of anxiety-related behavior. In

comparison with wild-type controls, FXR KO mice had high ratio of central

distance/total distance in the OFT (A). Moreover, the KO mice had a greater

tendency to explore (B) and to stay in the open arm in the EPMT (C).

N = 12/group; *p < 0.05; **p < 0.01.

However, FXR KO mice showed down-regulated hippocampal
GAD65 (p < 0.05). In the cerebellum, as shown in Figures 7A,B,
most proteins examined were not altered, including GAD65,
GABAARα5, GABAARβ2/3, 5-HT1A, and SLC6A2. The only
exception was GAT1. FXR deletion tended to increase GAT1 in
the cerebellum (p < 0.1).

Effect of FXR Deletion on Serum and Brain
Concentrations of Bile Acids
To determine the effect of FXR on the homeostasis of the
peripheral bile acid system, serum concentrations of primary
and secondary BAs were examined. However, six of them were
too low to be detected. For the other 16 BAs, as shown in
Figures 8A,B, FXR deletion led to up-regulation of THDCA
[t(26) = 2.314, p < 0.05], TCA [t(24) = 2.463, p < 0.01],
TωMCA [t(25) = 2.186, p < 0.05], TαMCA [t(25) = 2.375,
p < 0.01], GCA [t(27) = 2.765, p < 0.05], HDCA [t(28) = 2.319,
p < 0.05], and DCA [t(30) = 3.186, p < 0.01] without alteration
of other kinds of BAs.

By contrast, in brain, most of the BAs were not detectable.
However, FXR deletion changed the relative concentrations of
several brain BAs. As shown in Figures 9A,B, FXR deletion
increased TωMCA [t(16) = 2.343, p < 0.05] and DCA [t(14) =
2.339, p < 0.05]. Meanwhile, concentrations of TCA [t(15) =

1.924, p = 0.0735] and TCDCA [t(15) = 1.918, p = 0.0743]
showed a tendency to increase. However, brain concentrations of

FIGURE 4 | FXR KO impaired cognitive ability of the mice. In comparison

with wild-type controls, FXR KO mice displayed decreased latency (A) but

increased number of errors (B) in PAT. N = 12/group; *p < 0.05.
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TβMCA [t(18) = 2.065, p = 0.0536] and LCA [t(17) = 2.082,
p = 0.0528] tended to decrease.

Discussion

FXR modulates the synthesis and homeostasis of BAs. However,
little is known whether FXR regulates neural circuitry or ani-
mal behavior. In the current study, we examined neural functions

FIGURE 5 | FXR KO altered motor performance of the mice. In

comparison with wild-type controls, FXR KO mice fell from the rod more often

in the RRT (A) but seemed to be hyperactive in the OFT (B). N = 12/group;

**p < 0.01.

by comparing the behavior of FXR KO mice and their controls.
Although FXR mRNA was undetectable in mouse brain, embry-
onic deletion of this otherwise ubiquitously expressed recep-
tor altered many aspects of mouse behavior. FXR KO mice
showed less depressive-like behavior in the TST and less anxiety-
related behavior in the OFT and EPMT. These KO mice also had
impaired memory in PAT and loss of locomotor coordination
in the RRT but increased locomotor activity in the OFT. Fur-
ther study showed that FXR deletion selectively altered the neu-
rotransmitter profile in different brain regions. Moreover, FXR

regulated protein expression associated with neurotransmission.

All these results indicate that FXR plays an essential role in the
maintenance of the homeostasis of neural transmission, although

perhaps indirectly via modulation of homeostasis of BAs, thus

influencing neurobehavior.
As expected, FXR KO showed less depressive-like and

low levels of anxiety-related effects in mice in the respective

behavioral tests. However, FXR deletion impaired cognitive func-
tion andmotor coordination but enhanced locomotor activity. As

mentioned previously, FXR itself is not present in mouse brain.

Therefore, the CNS effects might be indirect. It is well-known

that gene-knockout in mice may cause a compensatory change
in comprehensive gene expressions and physiological activities,

which in turn results in an indirect phenotypic effect on behav-

ioral tasks (Stiedl andMeyer, 2003). As reduced body weight gain
is seen in FXR KO mice aged from 15 to 39 weeks-old (Bjursell

et al., 2013), the hyperactive locomotor activity observed in the
current study might be in line with the increased energy expendi-

ture of the animals. Moreover, although in both OFT and EPMT

FXR KO mice showed less anxiety-related behaviors, it is not the

only possible interpretation since several factors other than emo-
tional behaviors such as locomotor activity, exploratory behavior,

and behavioral motivation for novelty may confound with the

anxiety-related behavior of mice (Bailey and Crawley, 2009).
To better understand the neural transmission underlying

the abnormal behavioral response resulting from FXR dele-

tion, the changes of seven common neurotransmitters in several

brain regions were examined. Disruption of the neurotransmitter

homeostasis in certain brain regions is known to cause serious

TABLE 1 | Comparisons of neurotransmitter concentrations in mouse hippocampus, cerebellum, and prefrontal cortex (mean ± S.E.M).

Neurotransmitters Hippocampus Cerebellum Prefrontal cortex

Wild-type FXR KO Wild-type FXR KO Wild-type FXR KO

GABA (µg/g) 168.845± 21.772 171.059± 31.045 16.452± 0.680 20.717±0.444*** 53.232± 7.960 51.664± 4.475

Glu (µg/g) 195.757± 27.440 156.079± 29.175 7.456± 0.530 7.821±0.421 56.118± 9.310 50.784± 6.171

DA (ng/g) 47.757± 3.438 45.840± 4.431 N.D. N.D. N.D. N.D.

NE (ng/g) 2216.645± 304.033 1791.320± 169.453 1542.997± 140.334 1911.069±25.808* 8935.464± 876.937 7894.620± 912.644

Epi (ng/g) 33.290± 2.606 32.543± 2.992 N.D. N.D. N.D. N.D.

5-HT (ng/g) 54.272± 7.440 55.936± 4.716 18.580± 3.684 21.735±0.960 319.803± 34.737 310.598± 41.824

5-HIAA (ng/g) 532.423± 45.891 561.231± 51.504 165.938± 20.185 240.796±7.137** 1158.452± 145.803 1269.219± 126.655

GABA/Glu 0.897± 0.057 1.149± 0.066** 2.135± 0.119 2.761±0.132** 0.993± 0.056 1.062± 0.065

5-HIAA/5-HT 10.638± 0.763 10.310± 0.654 9.316± 0.800 11.329±0.760 3.822± 0.460 4.477± 0.499

N = 12/group; *p < 0.05; **p < 0.01; ***p < 0.001.

N.D., not detected.
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FIGURE 6 | FXR KO down-regulated hippocampal GAD65 of the mice.

(A) Western blotting analysis of GAD65, GAT1, GABAARα5, and

GABAARβ2/3; (B) Gray intensity comparison. N = 8/group; *p < 0.05.

neurological dysfunction. For instance, excessively increased
excitatory Glu but reduced inhibitory GABA is closely associated
with pathophysiology of depression (Sanacora et al., 1999). Drugs
facilitating glutamatergic transmission may enhance memory
(Staubli et al., 1994). Similar effect can be obtained by antag-
onizing GABA transmission (Kim et al., 2014). Nevertheless, a
disrupted balance between excitatory and inhibitory neurotrans-
mitter systems is central to the pathogenesis of a variety of neu-
rological and psychiatric disorders (Chen et al., 2010; Cherlyn
et al., 2010; Niswender and Conn, 2010; Yuksel and Ongur, 2010;
Luscher et al., 2011).

In our experiments, several neurotransmitters in both hip-
pocampus and prefrontal cortex, regions implicated in mem-
ory and emotion, were examined. To our surprise, none of
the neurotransmitters analyzed showed significant alterations in
these two regions. However, the balance of GABA to Glu was
disturbed since it was remarkably elevated in the hippocam-
pus of the FXR deleted mice. This might partly explain the
enhanced anti-depressive and anxiolytic but impaired cogni-
tive behaviors of FXR deleted mice. The neurotransmitters in
the cerebellum of both FXR KO and their controls were also
examined, since cerebellum is the major brain area control-
ling locomotor activity as well as cognitive functions such as
attention (Wolf et al., 2009). In the cerebellum of FXR KO

FIGURE 7 | FXR KO increased cerebellar GAT1. (A) Western blotting

analysis of GAD65, GAT1, GABAARα5, GABAARβ2/3, 5-HT1A, and SLC6A2.

(B) Gray intensity comparison. N = 8/group; +p < 0.1.

mice, not only was the balance of GABA/Glu disturbed, but also
the concentrations of NE and 5-HIAA were greatly increased.
Decrease of cerebellar NE has been reported to be accompa-
nied by a concomitant increase of motor deficit (Bueno-Nava
et al., 2008; Yokota et al., 2013). 5-HIAA is a major metabolite
of 5-HT and its elevation reflects enhanced serotonergic activ-
ity. Abnormally increased cerebellar 5-HT has been indicated
in rats with motor deficit (Bueno-Nava et al., 2010). There-
fore, the abnormal motor performance of FXR KO mice might
be due to disturbed norepinephrinergic and serotonergic trans-
missions as well as the GABAergic and glutamaergic ones in
cerebellum.

As the equilibrium of GABA, NA, and 5-HT were disturbed
in the hippocampus and cerebellum of FXR KO mice, we fur-
ther investigated whether these alterations changed the expres-
sion of proteins involved in the synthesis, transport, and sig-
naling of these neurotransmitters. As shown in Figures 6,7,
most proteins examined, including GABAARα5, GABAARβ2/3,
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FIGURE 8 | FXR KO on BAs in serum. In comparison with wild-type

controls, FXR KO mice showed higher concentrations of THDCA, TCA,

TωMCA, and TαMCA in T-BAs in serum (A); higher concentrations of GCA,

HDCA, and DCA in U-BAs in serum (B). N = 16/group; *p < 0.05; **p < 0.01.

5-HT1A, and SLC6A2, were unchanged by FXR deletion. How-
ever, hippocampal GAD65 was decreased while cerebral GAT1
was increased. GAD65 is highly enriched in axon terminals
and is associated with synaptic vesicles. Its expression is mod-
ulated at the transcriptional level by a short-term mechanism.
GAD65 knockout mice display electrophysiological features
consistent with a reduced vesicular release of GABA (Asada
et al., 1996). GAT1, one of the GABA transporters exclu-
sively expressed in the brain, participates in regulating the
synaptic overspill of GABA and activation of GABA recep-
tors at extrasynaptic loci (Dalby, 2003). Therefore, FXR KO
mice showed interference in GABA transport and signaling in
both cerebellum and hippocampus, leading to alterations of
neurobehavior.

Interestingly, the FXR KO mice showed decreased atten-
tion, hyperactivity, and hyper-reactivity to stress, which partially
resembles the attention deficit hyperactivity disorder (ADHD)
in human. Furthermore, the increased NE in the cerebellum of
FXR KO mice was also found in an animal model of ADHD
(de Villiers et al., 1995). They therefore have good face validity
(hyperactivity and learning difficulties), but lack constructive and
predictive validity (van der Kooij and Glennon, 2007). All these
findings raise the possibility that FXR might be involved in the
pathophysiology of a subset of ADHD.

FIGURE 9 | FXR KO on BAs in brain. In comparison with wild-type controls,

FXR KO mice displayed higher concentrations of TCA, TCDCA, TωMCA, and

DCA (A) but lower concentrations of TβMCA and LCA in brain (B).

N = 7–10/group; *p < 0.05; +p < 0.1.

As discussed above, FXR actively participates in the modu-
lation of cholesterol metabolism (Sinal et al., 2000). Although
cholesterol itself does not cross the BBB, its oxygenated prod-
uct, 27-hydroxycholesterol, can be transported through the BBB
(Bjorkhem, 2006), thereby influencing neurotransmission and
neurobehavior. Moreover, circulating serum bile acids such as
DCA and CDCA, the derivatives of hepatic cholesterol, can
increase the permeability of BBB during obstructive cholestasis
via disruption of tight junctions (Quinn et al., 2014). In addi-
tion to signaling through FXR, bile acids such as LCA can activate
the preganane X receptor (PXR) and vitamin D receptor (VDR)
(Hylemon et al., 2009), both of which are expressed within the
CNS (Eyles et al., 2014; Jain et al., 2014). In our experiments,
FXR deletion caused significant elevation of circulating THDCA,
TCA, DCA, TαMCA, TωMCA, GCA, and HDCA accompanied
by alterations of several BAs in brain. It is reasonable to postulate
that the peripheral elevation of these BAs altered the homeosta-
sis of neurotransmission via regulation of BBB permeability and
activation PXR, VDR or certain unknown receptors in the CNS.
However, at the present state of knowledge, further investigation
is needed to corroborate this hypothesis.

Overall, FXR deletion altered BA concentrations in blood and
changed the compositions of BA in brain, partially related to
the interactions of BA’s with the BBB. This resulted in alter-
ations of neurotransmitters and changed motor activity, cogni-
tive function, and mood of the FXR KO mice. The neurobehav-
ioral changes of the FXR KO mice represent an unique case of
mild hepatic encephalopathy and the differential susceptibility of
different CNS functional domains.
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