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Although the memory impairment is a hallmark of Alzheimer’s disease (AD), AD has also
been characterized by spatial disorientation, which is present from its early stages. Spatial
disorientation in AD manifests itself in getting lost in familiar and unfamiliar places and have
been characterized more specifically using spatial navigation tests in both real space and
virtual environments as an impairment in multiple spatial abilities, including allocentric and
egocentric navigation strategies, visuo-spatial perception, or selection of relevant informa-
tion for successful navigation. Patients suffering mild cognitive impairment (MCI), who are
at a high risk of development of dementia, show impairment in a subset of these abilities,
mainly connected with allocentric and egocentric processing. While spatial disorientation
in typical AD patients probably reflects neurodegenerative changes in medial and posterior
temporal, parietal, and frontal lobes, and retrosplenial cortex, the impairment of spatial
navigation in MCI seem to be connected mainly with the medial temporal and also parietal
brain changes. In this review, we will summarize the signs of brain disease in most MCI
and AD patients showing in various tasks of spatial memory and navigation.
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INTRODUCTION
Spatial disorientation is one of the early manifestations of
Alzheimer’s disease (AD), besides the clinically mostly used mem-
ory impairment. The research in spatial deficits in this neurode-
generative disease has grown rapidly in last years and decline in
spatial navigation abilities may become another diagnostic mark
for AD in the near future. Spatial navigation is however not a
unitary function. This ability to determine and maintain a route
from one place to another (Gallistel, 1990) utilizes multiple spatial
strategies recruiting distinct brain regions.

This review aims to describe spatial disorientation in AD and
mild cognitive impairment (MCI) as a multi-factorial deficit con-
nected with changes in several brain regions. Various described
manifestations of these changes in spatial cognitive tasks are the
focus of this article. Selected for the review were only studies
describing impairment in AD or MCI patients in real or virtual
space, in spatial navigation, or associated abilities like perspective
taking or object location memory.

CURRENT VIEW ON SPATIAL DEFICITS IN AD AND MCI
A number of studies focusing on visuo-spatial deficits in AD and
MCI appeared during last two decades. The main published view
on these deficits is broadly dual: one series of studies documented
visuo-perceptual nature of the disorientation, its association with
optic flow perception, and visuo-spatial attention (e.g., Tetewsky
and Duffy, 1999; Cherrier et al., 2001; Mapstone et al., 2003; Kavcic
et al., 2006). Another series of investigations stressed, however, the
cognitive mapping deficits in these patients, specifically in using
the allocentric navigation (Kalova et al., 2005; Hort et al., 2007;

Weniger et al., 2011; Nedelska et al., 2012). According to some
other reports, the spatial disorientation in AD and MCI patients
seem to be associated with both medial temporal and parietal lobe
function (Henderson et al., 1989; deIpolyi et al., 2007). Several
reviews on this theme published recently support either the latter
allocentric view (Iachini et al., 2009) or combination of both cog-
nitive mapping and visuo-perceptual factors (Vlcek, 2011; Gazova
et al., 2012) or suggest a multifocal theory of disease developing
from temporal to parietal and lateral to frontal brain and midbrain
and associated cognitive deficits (Lithfous et al., 2013). One other
review proposes the translation between egocentric and allocentric
frames, supported by retrosplenial cortex (RSC), being the basis
of spatial disorientation deficits in MCI and AD (Serino and Riva,
2013).

BRAIN CHANGES IN MCI AND AD
The anterior medial temporal lobe structures are the first affected
by AD pathology. Histopathological changes initially occur in the
entorhinal cortex and the hippocampus, further spread through-
out parahippocampal gyrus to the temporal pole and inferior and
middle temporal gyri in MCI and preclinical AD, and subsequently
spread throughout the temporal, parietal, and frontal neocortex by
the time of dementia due to AD (Braak and Braak, 1995; Petersen
et al., 2006). In agreement with this neuropathological staging, the
highest rate of atrophy in the MCI and initial stages of AD has been
found in the entorhinal and perirhinal cortices and the hippocam-
pus (Pennanen et al., 2004; Schmidt-Wilcke et al., 2009; Risacher
et al., 2010), which also showed accelerated volume loss over the
time (Schuff et al., 2012) and hypometabolism (Karow et al., 2010).
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The anteromedial temporal atrophy was described even in cogni-
tively normal individuals later converting to MCI (Smith et al.,
2007). The posterior part of the gyrus, the parahippocampal cor-
tex, is affected later in the course of AD (Karow et al., 2010; Spulber
et al., 2012), followed by atrophy of the fusiform gyrus (McDonald
et al., 2009).

A number of neuroimaging studies have also shown structural
and metabolic changes in the parietal lobe, early in the course of
AD. Cortical atrophy (Fennema-Notestine et al., 2009) in the pre-
cuneus and the inferior parietal lobule were reduced in the early
MCI stages (McDonald et al., 2009) and volume reduction of these
areas is the most consistent finding among the MCI to AD con-
verters (Karas et al., 2008; Whitwell et al., 2008) and was described
even in normal individuals later converting to MCI and AD (Smith
et al., 2007; Jacobs et al., 2011). Hypometabolism was also found
in superior parietal lobules (Li et al., 2008; Nobili et al., 2008)
and even more in the inferior parietal lobule (Nobili et al., 2009)
in MCI patients, especially those converting later to AD (Drzezga
et al., 2003; Hirao et al., 2005).

Within the cingulate gyrus, the posterior cingulate and RSC
are affected early in the course of AD. Atrophy of these areas
was demonstrated in mild AD patients (Scahill et al., 2002) and
patients with early stages of MCI (Chetelat et al., 2002; Fennema-
Notestine et al., 2009), especially in those later progressing to
AD (Hamalainen et al., 2007; Whitwell et al., 2008; Julkunen
et al., 2009; Pengas et al., 2010a). Severe posterior cingulate cor-
tex hypometabolism is a feature of incipient AD (Nestor et al.,
2003a,b) and is present already in the MCI patients (Huang et al.,
2002; Ishiwata et al., 2006; Johnson et al., 2007; Pappata et al.,
2010).

Neuropathological changes occur in the frontal cortex later in
the course of AD (Braak and Braak, 1995; Petersen et al., 2006).
Frontal lobe atrophy and hypometabolism is not present earlier
than at the later stages of MCI and mainly in the prefrontal cortex
(Fennema-Notestine et al., 2009; Langbaum et al., 2009; McDon-
ald et al., 2009) but is more pronounced in those MCI patients
who later converted to AD (Drzezga et al., 2003; Whitwell et al.,
2008).

Although the described the brain changes prevails in AD and
MCI patients, in a significant portion of AD patients the under-
lying neuropathological process follows alternative distribution,
representing at least two other clinicopathological subtypes of
AD and contrasting with the typical AD (Murray et al., 2011). In
the hippocampal sparing AD subtype, found in 11% of patients,
the neuronal degeneration results in lower gray matter volumes
of lateral parietal, lateral temporal, and lateral frontal cortex,
compared to typical AD (Whitwell et al., 2012). In the limbic-
predominant AD subtype, found in 14–19% patients, the areas
affected more than in the typical AD are the hippocampus and
amygdala, with lower gray matter volumes. These differences
are associated with distinct cognitive profiles in memory and
other cognitive domains and necessarily also in spatial naviga-
tion, as well as with the different course of cognitive changes
over time. However, the AD subtypes have not been consid-
ered in the studies reviewed below and the described deficits
in spatial memory applies probably only to the predominating
typical AD.

SPATIAL NAVIGATION DEFICITS IN MCI AND AD
ALLOCENTRIC NAVIGATION, OBJECT LOCATION MEMORY, AND SCENE
PROCESSING
Allocentric memory enables us to locate a goal in relation to sur-
rounding objects and global landmarks, a function localized to
medial temporal lobe, and hippocampus specifically (O’Keefe and
Nadel, 1978; Maguire et al., 1998; Astur et al., 2002; Feigenbaum
and Morris, 2004; Parslow et al., 2004). Hippocampal role in spa-
tial deficits in AD and MCI have been documented by a series
of allocentric navigation studies: AD patients were impaired in a
real space analog of Morris water maze, termed blue velvet arena
(BVA): only in allocentric trials when the cues on the wall could
be used for orientation, but not in trials without cues, when only
the start position could be used (Kalova et al., 2005). In the same
apparatus, a more strictly defined AD group had problems nav-
igating using both start position and cues on the walls, but an
amnestic MCI single-domain group was impaired only in the allo-
centric trials (Hort et al., 2007), suggesting specific hippocampal
impairment. This was supported later in a follow-up study where
hippocampal amnestic MCI patients showed no learning in the
allocentric trials (Laczo et al., 2009). Virtual analogy was also used
in a recent study (Hort et al., 2014), where BVA was termed Urania.
Amnestic MCI were also impaired in another allocentric naviga-
tion test to find shortest way to hidden targets in a virtual park
(Weniger et al., 2011). A connection of allocentric navigation to
hippocampal function was supported also in a study correlating
real space Morris water maze analogy navigation successfulness
with right hippocampal volume (Nedelska et al., 2012).

Successfulness in other spatial tasks is probably also connected
to hippocampal function. Memory for temporal sequence of three
body turns in a Starmaze was documented to activate left hip-
pocampus (Igloi et al., 2010) and later shown to distinguish well
between mild AD patients and controls (Bellassen et al., 2012).
Memory for location of objects in space was several time consis-
tently shown to be dependent on hippocampal function (Milner
et al., 1997; Kessels et al., 2004; Stepankova et al., 2004) and
reported to be deficient in patients suffering AD (Bucks and Willi-
son, 1997; Brandt et al., 2005) and also in MCI patients, although to
a lesser degree than in AD (Kessels et al., 2010). In contrast, mem-
ory for several positions without objects seem to be preserved even
in mild AD (Adelstein et al., 1992; Kalova et al., 2005).

Processing of viewpoint independent spatial representation of
a scene during scene matching seem also to be associated with
hippocampal function after very short delays and with parahip-
pocampal cortex function even in the presence of the sample scene
(Hartley et al., 2007). In the same test, groups of six AD patients
and seven amnestic MCI patients were impaired after short delays
but not in direct scene matching (Bird et al., 2010), while a larger
group of AD patients was impaired even in matching of simulta-
neously visible scenes (Pengas et al., 2010b). In a similar test, scene
discrimination across different views was worsened in a selective
hippocampal damage group (Lee et al., 2005) and also in a group
of mild AD patients (Lee et al., 2006).

REFERENCE FRAME TRANSLATION
Retrosplenial cortex, a part of the posterior cingulate cortex, is
strongly involved in spatial processing, specifically in translation
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between egocentric and allocentric representations (Byrne et al.,
2007). Its damage shows as heading disorientation, an inability
to derive directional information from scenes or to estimate spa-
tial relationship between two locations (Aguirre and D’Esposito,
1999). Impairment of head orientation was also documented in
AD but not MCI patients, reaching lower score in head orienta-
tion test, requiring to indicate directions after a test of navigation
within a virtual city (Pengas et al., 2010b). Navigation score in
this test correlated with gray matter density and glucose metab-
olism in RSC, but also hippocampus (Pengas et al., 2012). In
another study on virtual as well as real navigation in a hospital
lobby, AD patients, but again not MCI patients, were impaired
in a test of self-orientation, requiring to indicate directions to
scenes from the route (Cushman et al., 2008). The AD patients
were also impaired in navigation in a virtual-reality maze using
its map, which required translation of allocentric representation
in the map to the egocentric direction in the maze (Morganti
et al., 2013). Location of scenes on a map could possibly be
also regarded as a behavioral measure of RSC function, requir-
ing egocentric to allocentric translation. This ability was impaired
in MCI patients in two studies focused on route learning and
follow-up set of spatial tests (deIpolyi et al., 2007; Cushman et al.,
2008).

EGOCENTRIC NAVIGATION
Egocentric memory enables us to remember positions in space in
relation to one’s own position and heading in space. The brain
localization of the navigational strategy using egocentric refer-
ence frame seems to be diverse and possibly reflects multiplicity of
strategies concealed under the usage of a single egocentric refer-
ence frame. The superior and inferior parietal lobe structures have
been activated during various egocentric tasks in Morris water
maze analogy (Parslow et al., 2004), virtual city (Maguire et al.,
1998; Wolbers et al., 2004) as well as in landmark-free environ-
ment (Wolbers et al., 2008). The activity in caudated nucleus was
associated with a response strategy in a virtual analogy of a radial
maze (Iaria et al., 2003) and following a well-learned route in a
virtual city (Hartley et al., 2003).

Egocentric navigation was documented to be impaired in AD
and also MCI patients in two types of experiments. In a both
real space and computer analogy of Morris water maze, amnes-
tic MCI patients with associated non-memory impairment scored
similarly to AD patients in finding of hidden goal position using
only their starting position (Hort et al., 2007). In landmark-free
virtual-reality maze, requiring the subjects to use only the sequence
of egocentric turns during navigation, the amnestic MCI subjects
were unable to learn a route to a hidden reward (Weniger et al.,
2011). In addition, the number of errors in this maze correlated
negatively with precuneus volume, supporting the assumption of
egocentric strategy use.

VISUAL PERCEPTION
A wealth of reports document the role of visual perception func-
tions in navigational impairment: either perception of optic flow,
visuo-spatial attention, or visual perceptual analysis. The optic
flow perception is supported by the visual area V5/MT at the junc-
tion of occipital, temporal, and parietal lobes (Morrone et al.,

2000). Connection of optic flow perception thresholds with navi-
gation impairment in AD patients was described in studies using
route learning in a hospital lobby (Tetewsky and Duffy, 1999) or
indirectly using left–right orientation in table-top Money Road
Map test (MRMT) and sustained driving in On-the-Road Driving
test (O’Brien et al., 2001). Similar correlation between MRMT
scores and optic flow perception was found also in MCI patients
(Mapstone et al., 2003). Even better prediction of the navigation
score in a hospital lobby was found in a combined regression model
containing contrast sensitivity score and amplitude of the visual
ERP N200 responses (Kavcic et al., 2006). This association of nav-
igation score to visual perception could however be confined only
to men patients (Cushman and Duffy, 2007), while in women
patients the navigation score seem to be better predicted by verbal
fluency and figural memory.

The perceptual nature of disorientation could be inferred also
from other studies on AD patients. These patients were impaired
in recognition of incidental landmarks not mentioned during the
walk in a hospital lobby in contrast to correct recognition of the
mentioned landmarks (Cherrier et al., 2001). In another study,
also using route learning in a hospital lobby, the impairment of
AD patients was predicted by MRMT and Line orientation test
but not by mostly low memory scores (Monacelli et al., 2003).
The impairment of AD patients in all angle categories of turns
in MRMT, in combination with their normal left–right discrim-
ination, have also been explained by visual perceptual deficits
(Rainville et al., 2002). Similarly, visuoconstructive test scores
together with results from a memory test predicted spatial disori-
entation sub-score from Memory and Behavior Problems Check-
list questionnaire (Henderson et al., 1989), supporting the dual
roots of AD disorientation.

PLANNING AND PROBLEM SOLVING
Deficits in frontal problem solving functions were documented in
a unique experiment (Passini et al., 1995), requiring AD subjects to
guide the experimenter to the dental clinic in an unknown hospital
and to express verbally everything that went through their mind.
To minimize the effect of memory and attentional deficit, the sub-
jects were repeatedly reminded about their task. Their behavior
was seemingly more driven by external stimuli than by the goal of
the way-finding task, suggesting difficulties to distinguish relevant
from irrelevant information and to structure their decision plan.

LANDMARK RECOGNITION
Individual recognition of landmarks, salient features of environ-
ment useful for navigation, is an isolated cognitive ability, impaired
in landmark agnosia (Aguirre and D’Esposito, 1999) and depen-
dent on the function of the anterior end of the right lingual gyrus
(Aguirre et al., 1998; Mendez and Cherrier,2003). Three real-world
navigation studies report different successfulness in AD and MCI
patients: in a series of tests after a walk in a hospital lobby, MCI and
mild AD patients were similar to controls in landmarks recognition
(deIpolyi et al., 2007), but were impaired in a more recent study
(Benke et al., 2013). The relationship of this impairment to visuo-
spatial attention are suggesting the results of an earlier study, where
recognition of landmarks mentioned by experimenter during the
walk was least impaired in AD patients, in contrast to their large
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impairment in recognition of landmarks not mentioned during
the walk (Cherrier et al., 2001).

In contrast, in a free recall of landmarks along a route, the AD
patients were found to be impaired (Monacelli et al., 2003) and
this measure even distinguished reliably between MCI and healthy
old subjects (Cushman et al., 2008).

CONCLUSION
Findings of this survey are mainly consistent with the described
brain changes during spreading of the disease and suggest its prop-
agation from the anterior medial temporal lobe to posterior tem-
poral and parietal areas in MCI and to frontal and parieto-occipital
areas later in AD patients. MCI patients seem to be impaired first in
the allocentric navigation and later in the multi-domain stage also
in egocentric navigation. Consistently with this double impair-
ment, suggesting their medial temporal as well as posterior parietal
damage, they have been found to be impaired also in route learning
in both real and virtual environments. Short-term scene memory,
visuo-spatial attention, and optic flow perception may also affect
their navigational successfulness.

The broad cognitive impairment of even mild AD patients
interferes also with other abilities essential for successful navi-
gation, as optic flow perception, reference frame translation, scene
matching, spatial planning, visual perceptual analyses, and pos-
sibly landmark recognition. Their navigation difficulties seem
therefore to be connected with their more wide spread brain dam-
age in other areas of parietal lobes and temporal cortex, RSC, as
well as frontal lobes.
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