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In the retina of trichromatic primates, chromatic information is encoded in an opponent
fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel
pathways. Chromatic selectivities of neurons in the LGN form two separate clusters,
corresponding to two classes of cone opponency. In the visual cortex, however, the
chromatic selectivities are more distributed, which is in accordance with a population
code for color. Previous studies of cone signals in natural scenes typically found opponent
codes with chromatic selectivities corresponding to two directions in color space. Here
we investigated how the non-linear spatio-chromatic filtering in the retina influences the
encoding of color signals. Cone signals were derived from hyper-spectral images of natural
scenes and preprocessed by center-surround filtering and rectification, resulting in parallel
ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded
a highly sparse code with basis functions that showed spatio-chromatic selectivities.
In contrast to previous analyses of linear transformations of cone signals, chromatic
selectivities were not restricted to two main chromatic axes, but were more continuously
distributed in color space, similar to the population code of color in the early visual
cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more
distributed and more efficient code for natural scenes.
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1. INTRODUCTION
In the retina of trichromatic primates, spatio-chromatic pro-
cessing of signals from long (L), medium (M), and short (S)
wavelength selective cones by ON and OFF bipolar and ganglion
cells with center-surround receptive fields leads to parallel path-
ways that carry both spatial and chromatic information to the
lateral geniculate nucleus (LGN) and visual cortex (Lee, 2011).
Chromatic signals are carried in pathways encoding differences
between S cone signals and the signals of L and M cones, or differ-
ences between L and M cone signals, respectively (Mollon, 1989;
Dacey, 2000; Solomon and Lennie, 2007; Lee et al., 2010). While
the first, phylogenetically older pathway has low spatial selectivity
and is thought to be specifically concerned with color informa-
tion, the second pathway carries both spatial and chromatic infor-
mation (Boycott and Wässle, 1999; Martin et al., 2011). Midget
retinal ganglion cells have spatially center-surround receptive
fields and in the fovea achieve their color opponency by antago-
nistic processing of signals from a single cone in the center and
several cones in the surround of their receptive field. There is
evidence for functional cone-type specificity beyond that arising
from a single-cone center, but different studies have arrived at dif-
ferent conclusions (Reid and Shapley, 1992, 2002; Lee et al., 1998;
Martin et al., 2001; Buzás et al., 2006; Field et al., 2010; Crook
et al., 2011; Martin et al., 2011; Lee et al., 2012), and the ques-
tion of the degree to which cone-type specific wiring contributes
to midget receptive fields remains open.

Corresponding to the parallel pathways in the retina, color
selectivities in the LGN cluster around the two cardinal axes of
cone opponency (Derrington et al., 1984). In visual cortex, how-
ever, the representation of color is different. Chromatic informa-
tion is encoded cortically by both opponent and non-opponent
neurons (Lennie et al., 1990; Wachtler et al., 2003). Moreover, the
preferences of cortical color-selective neurons are not restricted
to two main axes of opponency, but are more distributed (Lennie
et al., 1990), indicating a population code for color (Wachtler
et al., 2003). The transformation from coding along cone oppo-
nency axes to a distributed representation in the cortex is not
well understood, but according to the theory of efficient coding
(Barlow, 1961, 2001) one hypothesis would be that this code is in
some sense more efficient.

Previous studies investigating efficient codes for color in nat-
ural scenes have used independent component analysis (ICA), a
method for finding a linear transformation that makes the result-
ing outputs as statistically independent as possible (Jutten and
Herault, 1991; Bell and Sejnowski, 1997). Analyses of chromatic
natural images using ICA revealed that opponent codes are effi-
cient to encode natural color stimuli. Typically, in these studies
two main types of chromatic selectivity were found (Hoyer and
Hyvärinen, 2000; Wachtler et al., 2001; Doi et al., 2003), which
qualitatively resembled more the representation in retina and
LGN than the coding properties in the visual cortex. While the
discrepancies can be explained in part by the stimuli used in the
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experiments to determine color tuning in visual cortex (Caywood
et al., 2004), broadly distributed color selectivities have also been
found with other types of stimuli (Wachtler et al., 2003).

A reason for the lack of insights about the nature of the dis-
tributed cortical representation of color from previous studies
could be that the assumed model of a linear transformation of
cone signals was not appropriate. Comparison of efficient codes
found by methods like ICA with properties of neurons in the
visual system requires that visual processing can be approxi-
mated as a linear transformation of the cone signals. However,
the spatio-chromatic processing in the retina transforms the cone
signals in fundamentally nonlinear ways and a linear model may
not be adequate. Moreover, spatial center-surround filtering as
observed in retinal neurons removes much of the spatial correla-
tions between signals of neighboring cones (Wachtler et al., 2007),
which may enhance the relative contribution of chromatic varia-
tion. It is further conceivable, given the limited number of fibers
in the optic nerve as compared to both the number of recep-
tors in the retina and the number of neurons in primary visual
cortex, that retinal processing is subject to different constraints
and coding objectives than the representation in the visual cor-
tex (Lee et al., 2002). Under this assumption, retinal processing
could be considered as a preprocessing step separate from cor-
tical processing (Doi et al., 2003), and it would be appropriate
to perform the analyses not on the cone signals, but on the out-
put signals of the retina. Here we investigated the consequences
of nonlinear spatio-chromatic filtering in the retina for the effi-
cient coding of chromatic information in natural scenes. We
modeled the center-surround processing in the retina to obtain
estimates of the signals in the different parallel retinal pathways
carrying chromatic information and analyzed these signals by
performing ICA.

2. MATERIALS AND METHODS
2.1. IMAGE BASIS
As image basis for the main analysis we used eight images from
the hyper-spectral image database by Párraga et al. (1998) that
were previously used to study efficient codes for color (Wachtler
et al., 2001; Lee et al., 2002). We used the same set of images in
order to make our results directly comparable with these studies.

The images were recorded outdoors around Bristol, UK, under
stable weather and lighting conditions (Párraga et al., 1998). In
additional analyses, we used other images from the Párraga et al.
dataset as well as from other datasets (see below). Images were
256 × 256 pixels in size, with each pixel subtending 0.056 × 0.056
degree of visual angle. Pixels corresponded to radiance values in
31 wavebands between 400 nm and 700 nm. Radiance values were
derived from the raw data with the code provided by Párraga
et al. (1998). In all scenes a Kodak GrayCard reflectance standard
was present; the corresponding picture areas were ignored during
analysis.

To control for potential misalignment between the color planes
in the hyper-spectral images due to the relatively long acquisition
time (Párraga et al., 1998), we estimated the drift between image
planes by 2-d cross-correlation. In most cases, the misalignment
was zero, and non-zero misalignments appeared unsystematic,
with a maximum shift of 2 pixels. Repeating the analysis with
images where these shifts had been corrected did not alter the
findings. As an additional control we used the four images of
the hyper-spectral dataset of Foster and Nascimento (Nascimento
et al., 2002; Foster et al., 2006) that showed natural scenes.
The individual images were recorded within 15 s, which largely
excluded any misalignment of wavelength planes. The results of
this analysis, as well as those of an analysis with all the images in
this dataset that were larger than 600 × 600 pixels, did not change
any of the findings.

2.2. IMAGE FILTERING
To take into account the spatio-chromatic filtering by the retina,
three main processing steps were modeled: (a) transduction of
photons to neural signals by the photoreceptors, (b) center-
surround integration of cone signals, and (c) splitting of the
signals in ON and OFF pathways, mediated by bipolar cells with
center-surround receptive fields. Figure 1 provides an overview of
the entire filtering process.

To obtain cone excitations from natural scenes, for each of the
images we computed the dot products of the pixel spectra with the
vectors of cone sensitivities, resulting in a 256 × 256 × 3 matrix.
Human cone sensitivity estimates were taken from Stockman et al.
(1993). The center-surround integration stage was modeled by

FIGURE 1 | Illustration of the image filtering process. (1) Illustration of
hyper-spectral image. Each image consisted of 31 image planes
corresponding to radiance within wavebands between 400 nm and 700 nm
(2) S-, M-, and L- photoreceptor cone activation were derived via their specific

sensitivities. (3) S, M, and L center ON and OFF channels were obtained by
convolution of the cone activations with a Mexican hat-like spatial filter,
simulating the center-surround receptive fields of the retina, and splitting the
result into positive and negative parts.
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convolution of the image with a Mexican hat-like kernel. We used
an approximation of a Difference-of-Gaussian, consisting of a
3 × 3 pixel matrix with a value of 1 at the center, −0.15 at the cen-
ter pixel of each edge, and −0.1 at the corner pixels. This filtering
assumed that total weights of center and surround are balanced,
and that each pixel of each pixel plane represents a ganglion cell
with a single cone in the center. We assumed that the surround
consists of all three cones exerting an equal contribution at each
location (mixed L,M,S surround), but tested other configurations
as well. ON and OFF signal channels were generated by half-
wave rectification on the filter outputs and their sign-inverted
counterparts, respectively. After the rectification procedure we
log-transformed every channel to mimick a compressive response
function. Since the rectification step introduced zero values into
the data and the natural logarithm diverges at zero we added a
dynamic offset to the channel. The offset was chosen such that all
channels had the same dynamic range.

For the analysis, 7 × 7 patches were selected randomly from
the prefiltered data. ON and OFF pixel planes for all 3 cone classes
were interleaved at each pixel. The resulting dimensionality of a
single input data sample was thus 7 × 7 × 3 × 2 = 294.

2.3. ICA
ICA was proposed as a solution to the blind source separa-
tion problem and has been applied in various studies (Bell and
Sejnowski, 1997; Wachtler et al., 2001; Lewicki, 2002) to learn
efficient codes for visual stimuli. The ICA model assumes a lin-
ear mixture of statistically independent sources s (also often called
causes), which is observed via a number of sensors. If no additive
sensor noise is assumed, the problem can be written as:

x = A s (1)

Note that neither the sources s nor the mixing matrix A are
known. The goal of ICA is to recover the sources by adapting A
such that the resulting signals are as statistically independent as
possible.

Once A has been inferred, the source can simply be uncovered
by solving for s:

s = A−1 x = W x (2)

The columns of A are usually called the basis functions and the
rows of W are called the filters.

Here we used the approach by Lee and Lewicki (2000) with the
learning rule for A given by:

�A ∝ AAT ∂

∂A
log p(x | A) = −A(z(s)sT − I). (3)

The individual terms are the identity matrix I, the transpose of

the sources sT and z(s) = ∂ log p(s)
∂ s . The prior source distributions

were modeled using the exponential power distribution (also
known as the generalized Gaussian or generalized Laplacian). The
simple form is:

p(si) ∝ e− 1
2 |si|qi (4)

The kurtosis can be controlled by varying qi and thus platykurtic,
leptokurtic, and Gaussian distributions can be modeled. We used

qi = 2
1+βi

and estimated βi during learning. Therefore no addi-
tional assumption about the exact distribution of the sources were
made a priori. As βi becomes bigger, the distribution becomes
more leptokurtic and the resulting code more sparse, meaning
that the source coefficients are mostly close to zero.

The mixing matrix A was estimated in 100.000 iterations. It
was initialized with Gaussian distributed random values and all
priors were set to Gaussian densities. After every 400 iterations
new input data were sampled by drawing 5000 patches randomly
from each of the eight pictures and βi was re-estimated. All sam-
ples were centered and rescaled to have zero mean and unit
variance. The stepsize was adjusted at iteration points 1000, 5000,
10000, 30000, 70000, to 0.02, 0.01, 0.005, 0.002, 0.001 and 0.0001
respectively. In order to accelerate the learning process, the algo-
rithm was ported to the CUDA parallel computing architecture
and run on a NVIDIA Tesla M2090 graphics processor.

2.4. ANALYSIS OF THE RESULTS
2.4.1. Reverse correlation - activation triggered averages
After learning, the mixing matrix A and the unmixing matrix W
were adapted to the preprocessed data. Due to the non-invertible
nonlinear filtering, the result was not a simple linear unmixing of
LMS signals. Therefore, we used a reverse-correlation approach
to illustrate the resulting filters: Source activations for each post-
filtered patch were used as weights for the corresponding original
patch in LMS-color space. By averaging over all weighted original
patches we computed the activation triggered average (ATA), i.e.,
the average patch that would elicit the maximal response for a
single basis function. The details of this procedure are as follows:

When the individual filters wr (rows of W) are used to perform
the unmixing of the data, each individual source coefficient sr is
a direct measure of the response of the filter wr to a given data
sample xr . In our case the data samples were the preprocessed
patches at p(i), where the vector i = (x, y, e) specifies the patch
position (x, y) in the preprocessed image e. Using the transfor-
mation between the preprocessed patches pk(i) and the patches in
LMS space p̂(i), we can then calculate the average original patch
ATAr that the individual filters wr best respond to by using the
source coefficient derived from p(i) as a weight for p̂(i) and then
averaging over all available p̂(i).

We therefore generated all possible 7 × 7 patches from each of
the eight preprocessed images used for analysis (N = 8 ∗ 61504 =
492032). The source activations were then estimated using equa-
tion (2). To eliminate noisy contribution of source coefficients
with a very low absolute activation, i.e., source activations around
zero, we fitted the source activation with an exponential power
distribution. When the mean of the fit was close to zero and the
distribution was leptokurtic we used the cumulative distribution
function F(x) to discard 95% of all the source activation around
the peak (see Figure 2). Thus for each basis function and each
patch in every image we computed a weight αr(i):

αr(i) =
{

0 if F(x) > 0.25 ∧ F(x) < 0.975

sr(i) otherwise
(5)

To calculate the patch in LMS-space that each basis function
would maximally respond to (the ATA), we weighted each original
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FIGURE 2 | Illustration of the contribution of a single basis function

(number 116) to an image together with the exponential power

distribution fit of the corresponding source activations. (A) Activation
triggered average of basis function 116. (B) Histogram of the source
coefficient values showing a typical leptokurtic distribution with a peak
around zero and heavy tails. The fit of the exponential power distribution to
the data (β: 1.312, μ: 0.001, σ: 0.753) is shown in red and the cumulative
distribution function F(x) is plotted in blue. (C) RGB rendering of the
original image. (D) Contributions to the image, red indicates high positive,
blue high negative and white no contributions of basis function 116.

patch p̂(i) with the corresponding weight αr(i) that was calculated
earlier and averaged over the result:

ATAr = 1

N

N∑
k = 1

αr(k) p̂(k) (6)

We verified the plausibility of this approach by comparing the
ATAr with the basis functions for the analysis of LMS input with-
out preprocessing as in Lee et al. (2002). ATAs tended to be slightly
less saturated than the corresponding basis functions but other-
wise they resembled each other in color preference and spatial
structure almost completely.

2.4.2. Plotting of the results
We displayed the ATAr as shown in Figure 3 with the method
used by Ruderman et al. (1998). The L, M, and S components of
each pixel of the patches were first normalized to values between
0 and 1 and then plotted as red (R), green (G) and blue (B)
values. This gives a pseudo-color representation of relative cone
excitations that is qualitatively similar to a true-color rendering.
Therefore spatial as well as chromatic structure can be observed.
To further illustrate the chromatic properties, each pixel was plot-
ted as a point in a cone-opponent color space (Wachtler et al.,

2001), where x values were computed as x = L − M, y values y =
S − (L + M)/2 and the z values as z = L + M. When x, y, z val-
ues are converted to a spherical representation r, θ,φ, the azimuth
angle φ is a direct measure of the hue of a given point while the
radial distance r indicates its chroma and the elevation θ specifies
the luminance. For plotting points we used a projection of the z-
axis onto an isoluminant plane. Luminance information can still
be inferred from the brightness of the individual points.

2.4.3. Directions in color space
Once transferred to the cone-opponent color space, the chromatic
characteristics of each patch could be quantitatively studied. To
quantify the degree of opponency of individual patches, i.e.,
whether the pixel selectivities were roughly aligned in color space,
we performed principal component analysis on the color space
coordinates of all the pixels in each patch. The highest eigenvalue
was used as an estimate of the strength of opponency, and the
eigenvectors were used to estimate the directions of opponency.
Additionally, the average color preference for a given patch was
calculated by the center of mass of all points.

To quantify how uniformly a set of directions O were spread
out in color space we calculated the Kullback-Leibler-Divergence
(DKL) from a uniform distribution U with the same number of
directions as O: DU(O) = DKL(U ‖ O) = ∑

i ln(
U(i)
O(i) )U(i). The

higher the value of this measure, the higher the divergence from
uniformity. This measure can then be used to compare different
sets of directions On derived from different ATAs.

2.5. SPARSENESS CHARACTERIZATION
To quantify the sparseness of the resulting code and thus its effi-
ciency, we used the criteria proposed by Willmore and Tolhurst
(2001): The mean lifetime kurtosis KL, the population kurtosis
KP and the dispersal of the learned code. Both kurtosis values
were computed via the standard kurtosis measure. The lifetime
kurtosis KL of the response, i.e the source activation of a single
component is a measure of how active this component is across
all stimuli. The population kurtosis KP quantifies how many fil-
ters are active to encode a single stimulus. A high average KP-value
means that only a small number of available filters are active for
any given input. The dispersal of the code is a measure of the con-
tribution of each filter to the encoding of the data. It is based on
measuring the variance of the response of a filter to the image
data. For a given code the standard deviation of all filters is esti-
mated for each image and then normalized to the highest value
and sorted according to their normalized standard deviation. In
a compact code only a few filters encode the majority of the total
variance of the data so the relative standard deviation of only a few
filters will be high (close to one) and close to zero for all others.
In a more dispersed code where individual filters have all higher
contributions to the data, the relative standard deviation will be
higher for all filters.

3. RESULTS
3.1. SPATIO-CHROMATIC STRUCTURE
ATAs for all 294 basis functions are shown in Figure 3. ATAs
are sorted according to the L2 norm of the corresponding basis
functions (see also Figure 4). The L2 norm can be used as a
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FIGURE 3 | Spatio-chromatic structure of the activation triggered averages for all 294 learned ICA basis functions. R, G, and B pixel values for each 7x7
patch correspond to L, M, and S cone excitations that were derived from individual basis functions using a reverse correlation based approach.

FIGURE 4 | Statistics for learned ICA basis functions. (A) Histogram of L2 norms for every individual basis function after sorting. (B) Lifetime kurtosis of the
source coefficients for each basis function (sorted as in A). (C) Lifetime kurtosis vs. the L2 norm.

measure of the relative contribution of each basis function to
the data. The chromaticities of the individual pixels of each ATA
plotted in the cone-opponent color space are shown in Figure 5.
Visual inspection of Figures 3, 5 suggests that almost all ATAs can
be divided in three major categories: homogeneous chromatic,
color-opponent, and achromatic. Homogeneous chromatic ATAs
have a large L2 norm, no defined spatial structure, and are
highly selective for one color. Most non-homogeneous but chro-
matic ATAs were color-opponent, i.e., the pixel chromaticities,
when plotted in color space, were all clustered along a line and
most often also crossed into opposing quadrants. Their spatial
structure was both localized and oriented, i.e., they encoded
chromatic edges (cf. Wachtler et al., 2001). A small number of

non-homogenous chromatic ATAs were less strongly opponent
with their pixel values more scattered in color space. There was no
substantial correlation between the L2 norm of the basis function
and the degree of opponency (r = 0.1). The achromatic ATAs,
encoding luminance edges, had mid- to low-range contributions.
This is a notable difference to previous findings (Wachtler et al.,
2001; Lee et al., 2002), where many achromatic basis functions
with high L2 norm were found (see below).

3.2. DISTRIBUTION OF COLOR PREFERENCES
To illustrate the overall color preferences of ATAs, we computed
the center of mass of all pixels for a single ATA. The resulting
positions are plotted in Figure 6A. Additionally, the direction of
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FIGURE 5 | Chromaticities of activation triggered averages: each pixel of every individual patch is projected onto an isoluminant plane in a

cone-opponent color space. The horizontal axis is defined as L − M and the vertical axis as S − (L + M)/2. Luminance values correspond to brightness of pixels.

FIGURE 6 | Coverage of color space by basis functions. The thickness of
the each dot (A) or line (B) is scaled with the L2 norm of the basis function,
the length of the line corresponds to the eigenvalue obtained from the PCA
of the pixels chromaticities (cf. Figure 5). The position of the dots and the
midpoint of the line indicate the center of gravity. Solid line: daylight axis;
Dotted line: direction of first principal component of center of mass
distribution.

largest variation around the center of mass position is shown in
Figure 6B. The center of mass positions were all densely clus-
tered around the origin, indicating relatively weakly pronounced
selectivities, with the exception of the homogeneous ATAs, which

were more eccentric. All points together formed a distribution
that was strongly elongated along a certain direction in color
space. This direction, as estimated by the first principal compo-
nent of the distribution, had an angle of 101.6 degrees in this
color space. This matches closely the perceptual “yellow”-“blue”
line, approximated by the line between the loci of monochromatic
blue light of 476 nm and monochromatic yellow light of 576 nm
(Mollon, 2006), which also lies close to the line of natural daylight
variation and has an angle of 98.5 degrees in this color space.

Figure 7 shows the distribution of color preferences across
directions in color space. In contrast to previous results obtained
without spatio-chromatic preprocessing (Wachtler et al., 2001;
Lee et al., 2002), color preferences were spread around the entire
color space. However, the distribution was not uniform but
showed several regions of higher density. One of these regions
was around 90 degrees, with pixel chromaticities varying between
light-blue and dark-yellow. This corresponds to a modulation
of values along a plane defined by S-cone and luminance varia-
tion. Many ATAs with this chromatic signature had localized and
oriented spatial features that qualitatively resembled the struc-
ture of the basis functions found for natural gray-scale images
(Olshausen and Field, 1996; Bell and Sejnowski, 1997) and the
achromatic basis functions for L-,M-, and S-cone activations
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FIGURE 7 | Distributions of opponency directions in color space. Each
line in the polar and linear plot indicates the direction of the opponency axis
for a single ATA or basis function. The lengths of the lines indicate the spread

of pixels along the opponency axis. Since most of the color-opponency axes
passed through a region very close to the origin into the opposing quadrant,
we only show the range between 0 and 180 degrees in the linear plot.

(Wachtler et al., 2001; Lee et al., 2002). The second region with
higher density was around 130 degrees, which corresponds to
an opponency axis between orange and teal. These regions cor-
respond to the two opponency axes found in previous studies
(Wachtler et al., 2001; Lee et al., 2002). Another more densely cov-
ered region appeared in the first quadrant around 65–80 degrees,
and the region around 10–30 degrees, was the least densely cov-
ered area. Apart from these modulations in density, the directions
of color-opponent axes were widely distributed in color space
with a divergence from uniformity DU(O) of 16.65, compared to
the code obtained from pure LMS cone activation (Wachtler et al.,
2001; Lee et al., 2002) which had a DU(O) value of 25.58.

To further analyze the chromatic properties we determined for
each ATA the color tuning of the pixel with the maximal absolute
value. This is comparable to estimating the color preference for
small colored spots. By using this measure the directions of color
preference were even more uniformly distributed in color space,
with a DU(O) of 2.59 for the filtered data as compared to 21.7 for
LMS data.

3.3. CODING EFFICIENCY
Coding efficiency was originally understood in terms of redun-
dancy reduction. Under this assumption a code is efficient if
it reduces the mutual information between components, i.e.,
the information encoded among a group of neurons would be
reduced as much as possible. Another measure of coding effi-
ciency especially when dealing with a large number of encoding
neurons, such as in the cortex, is the sparseness of the code, i.e.,
how many neurons of all that are available are used to encode a
specific stimulus.

A quantitative study of redundancy reduction efficacies of
different linear filtering algorithms was done extensively by
Eichhorn et al. (2009). Multi-information reduction, Average
Log-Loss and rate-distortion curves were used as evaluation cri-
teria for various algorithms like ICA and Principal Component
Analysis (PCA), which were all compared to a random decorre-
lation method that served as baseline. We used the source code
provided with the paper and adapted it to process our prefiltered

and rectified cone signal data. Even though we kept the changes
to a minimum in order to stay as close to the original analysis,
it was not possible to use the NPL entropy estimator for the fil-
tered data due to numerical instabilities. The reason for this most
likely is that the distribution of the data after our preprocessing
does not fit with the model assumptions of the NPL entropy esti-
mator. Therefore, we used the Gaussian upper entropy bound
(Bethge, 2006). Our results are thus not directly comparable
to those in Eichhorn et al. (2009). Nevertheless the absolute
multi-information reduction with respect to the random decor-
relation transform (RND) was one order of magnitude better
for ICA than for PCA, namely −0.4640 ± 0.0058 bits/component
(ICA) and −0.0460 ± 0.0013 bits/component (PCA). The relative
reduction in multi-information (cf. Table 1. in Eichhorn et al.,
2009) compared to RND was 0.42 ± 0.01 percent for ICA, and
0.04 ± 0.00 percent for PCA. The Average Log-Loss (ALL), as
a measure of how well the density model of the specific trans-
formation matches the actual data and differences correspond to
coding cost (Eichhorn et al., 2009). The difference for PCA-RND
was −0.0481 ± 0.001 bits/component, for SSD-RND (spherically
symmetric density) it was −0.2429 ± 0.0001 bits/component,
and for ICA it was −0.4206 ± 0.0036 bits/component. Thus, in
our case ICA performed best, i.e., it had the smallest ALL value.

To estimate the sparseness of the learned representation
we computed the lifetime kurtosis KL of individual units and
the population kurtosis KP (cf. Willmore and Tolhurst, 2001).
Figure 8 shows histograms for source coefficients together with
their estimated lifetime kurtosis. All source densities are highly
sparse (i.e., leptokurtic), with a pronounced acute peak at zero
and heavy tails. The mean lifetime kurtosis KL over all units was
10.29, which means individual units were silent for almost all
inputs but very strongly activated for specific input features. The
mean population kurtosis over all inputs was 12.67, i.e., only a
small subset of available neurons were active for any given input.
In addition to lifeline and population kurtosis, the dispersal is an
important measurement for the sparseness of the code. This mea-
sure, based on the standard deviation of the responses, quantifies
the relative coding contribution of each filter (derived from the
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FIGURE 8 | Histograms of the source coefficient values for the first 25 basis functions and the standard kurtosis derived from the source coefficients.

basis function) to the image data. Figure 9 shows the dispersal
for ICA, and as a comparison for PCA, which is an example of a
compact code. PCA was done on the same preprocessed cone acti-
vation data. For ICA the decrease in coding contribution is close
to linear, while for PCA it is exponential. This confirms that PCA
is a much more compact code, i.e., only a few filters are used to
encode the majority of the data, while in the ICA case most of the
filters have a high contribution. Overall, these results show that, in
accordance with previous studies (Lee et al., 2002), the obtained
representation for the preprocessed images was a highly disperse
and sparse, i.e., statistically efficient, code, although sparseness
itself was not an enforced constraint during learning.

4. DISCUSSION
We investigated the consequences of nonlinear spatio-chromatic
filtering similar to the processing in the retina, including the
splitting into parallel ON and OFF color-opponent channels, for
the learning of efficient codes from responses to natural scenes.
Compared to the results of previous studies where ICA was used
to learn efficient codes directly from LMS cone activations of nat-
ural images (Wachtler et al., 2001; Lee et al., 2002), chromatic
preferences obtained from opponent signals were more broadly
distributed in color space. A continuous distribution is in better
accordance with experimental data (Lennie et al., 1990; Wachtler
et al., 2003) than the strong clustering into three chromatic types
observed previously. Additionally, it is also in closer correspon-
dence with precortical encoding of color. The filtering we applied
mimicks the effect of center-surround receptive fields of retinal
bipolar and ganglion cells, which removes redundancy both in

FIGURE 9 | Dispersal of different codes: ICA on preprocessed data

(blue), PCA on preprocessed data (red) and ICA on LMS images

(green). For each code, the mean of the per image response standard
deviation normalized to the largest value is plotted for each basis function.
Note that for unfiltered LMS images the dimensionality of the data is lower,
yielding only 147 basis functions.

the spatial and the spectral domain. In previous studies, whiten-
ing had been applied in a linear preprocessing stage before ICA.
However, to estimate the results, this pre-filtering had to be taken
into account by adding a corresponding linear transformation.
In our analysis, such a direct compensation would not have
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been possible because the preprocessing stage was a nonlinear
transformation. To represent the resulting components, we there-
fore used a reverse correlation technique to obtain a single-stage
linear transformation representing the effective linear compo-
nent of the multi-stage nonlinear filtering. A further effect of
the preprocessing was the representation of the signals in the
higher-dimensional space of six rectified opponent channels. This
representation may have facilitated the distinction of features
(Schölkopf and Smola, 2002). Similarly, the parallel channels in
the retina and LGN provide such a high-dimensional representa-
tion, which might be exploited by cortical learning mechanisms.

The set of natural images was chosen to be the same as in
Wachtler et al. (2001); Lee et al. (2002) to enable direct com-
parison of the results. These images were initially chosen to
include a variety of scenes recorded outdoors and under dif-
ferent illuminations. To exclude that our results were an arti-
fact of the specific choice of images, we repeated the analysis
including all outdoor images contained in the Párraga et al.
(1998) dataset. The result was again a broad distribution of
chromatic preferences with a divergence from uniformity of
15.91, compared to a value of 28.64 obtained for these images
without pre-filtering. In addition, we ran an analysis using a
larger patch size of 10×10 pixel. This resulted in a spread
of selectivities that was even more broad, with a divergence
from uniformity of 11.09 compared to 24.27 obtained without
pre-filtering.

For the center-surround spatio-chromatic filtering we used
filters with a surround composed of equal contributions of all
cone types. Often, the center-surround processing in the retina
is likened to a whitening stage that removes second-order depen-
dencies (Doi et al., 2003). Whitening filters for LMS images
typically have also a cone-type specific center-surround structure.
We repeated the analysis using whitening filters for the prepro-
cessing. The color preferences of the resulting ICA ATAs were
strongly clustered around a single region in color space, which

is not in line with the observed color preferences in the visual
system.

Our spatio-chromatic prefiltering mimicked the opponency
of small bistratified ganglion cells and of midget cells under the
assumption of a cone-type unspecific wiring of the surround.
However, the exact composition of the surround of retinal recep-
tive fields is unclear (Reid and Shapley, 1992, 2002; Lee et al.,
1998, 2012; Martin et al., 2001; Buzás et al., 2006; Field et al.,
2010; Crook et al., 2011; Martin et al., 2011). We determined how
different surround compositions affect the distributions of chro-
matic preferences and the sparseness of the coding. We repeated
the analysis with the same parameters but with different surround
structures in the filtering stage. Besides the unspecific, mixed
LMS surround we also used an unspecific mixed LM surround, a
cone-type specific surround, and intermediate (mixed but biased)
models for the surround (cf. Table 1). In addition we also used
spatio-chromatic decorrelation via Zero-phase Whitening (Bell
and Sejnowski, 1997). Compared to whitening, plausible retinal
filtering led to more uniform distributions. Among the con-
sidered variants of retinal filtering, an equally balanced mixed
surround with contributions from all cone types resulted in the
smallest deviation from uniformity, but the other surround struc-
tures yielded similar values (cf. Table 1). Our results therefore do
not provide a strong indication in favor of any specific surround
organization. This suggests that in the real visual system there
might be a high variation in the surround composition, which
could explain why experimental evidence on the specificity of the
surround has so far not been conclusive.

In addition to having more distributed preferences, the learned
code for preprocessed data had all attributes one would expect
from a sparse code in the cortex. The lifetime sparseness of
individual components was high, but lower than in the case of
unfiltered LMS data (10.29 vs. 21.40). On the other hand, the
population kurtosis was drastically increased (12.67 vs. 4.86),
meaning that only a small subset of all available units were active

Table 1 | Kullback-Leibler-Divergence from uniformity, mean lifetime kurtosis KL and mean population kurtosis KP for different surround

configurations and preprocessing methods.

Surround organization Surround for center cone of type Du(O) K L K P

L-center M-center S-center

Mixed LMS 1
3 (L + M + S) 16.65 10.29 12.67

Mixed LM 1
2 (L + M) 16.81 9.09 10.35

Specific M L 1
2 (M + S) 17.70 9.25 10.80

Biased LM 1
2 ( 1

2 (L + M) + L) 1
2 ( 1

2 (L + M) + M) 1
2 ( 1

2 (L + M) + S) 20.23 8.86 10.04

Biased LMS 1
2 ( 1

3 (L + M + S) + L) 1
2 ( 1

3 (L + M + S) + M) 1
2 ( 1

3 (L + M + S) + S) 21.27 9.40 10.37

Whitening Spatio-chromatic whitening via ZCA 32.11 9.40 4.86

None No pre-filtering and rectification (pure L,M,S signals) 25.58 21.40 4.84

Rows 1–5 show results when surround configurations were altered while holding all other parameters constant. Additionally the results are shown for when spatio-

chromatic filtering via zero-phase whitening (Bell and Sejnowski, 1997) was performed instead of center-surround filtering (row six). The last row shows the results

obtained from non-preprocessed pure LMS signals as in Lee et al. (2002).
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at the same time. This fits very well with the vast increase in num-
ber of neurons from LGN to visual cortex, which is paralleled in
our study by the increase in dimensionality. Moreover, the code
revealed by our analysis was also highly disperse, i.e., for different
stimuli different subsets of units were active. This is in contrast to
a compact code like PCA, where also only a few components are
active all the time, but it is always the same components that take
part in the coding. Such an unequal distribution of activity would
seem biologically implausible because a majority of the neurons
would be there without making substantial contributions to the
encoding of the stimuli.

A substantial amount of ATAs (14.3%) had chromatic selectiv-
ities that corresponded to variation between light-blue and dark-
yellow. Moreover, the overall distribution of color preferences also
varied along one main direction in color space. Both of these axes
of variation were very close to the perceptual blue-yellow axis and
the line of variation of natural daylight illuminations (Mollon,

2006), which constitutes the main chromatic variation of natu-
ral scenes (Webster and Mollon, 1997) and was found in previous
ICA analyses (Wachtler et al., 2001). It it also reflected in the peak
of the distribution of color preferences in primary visual cortex
(Wachtler et al., 2003). Our results support the conclusion that
the statistics of natural scenes are an important factor in shaping
the processing mechanisms of the visual system.
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