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Cardiorespiratory fitness has been shown to protect and enhance cognitive and brain
functions, but little is known about the cortical mechanisms that underlie these changes
in older adults. In this study, functional near infrared spectroscopy (fNIRS) was used
to investigate variations in oxyhemoglobin [HbO2] and in deoxyhemoglobin [HHb] in the
dorsolateral prefrontal cortex (DLPFC) during the performance of an executive control task
in older women with different levels of cardiorespiratory fitness (VO2max). Thirty-four
women aged 60–77 years were classified as high-fit and low-fit based on VO2max
measures. They all performed a control counting (CNT) task and the Random Number
Generation (RNG) task at two different paces (1 number/1 s and 1 number/1.5 s), allowing
to manipulate task difficulty, while hemodynamic responses in the bilateral DLPFCs were
recorded using continuous-wave NIRS. The behavioral data revealed that the high-fit
women showed significantly better performance on the RNG tasks compared with the
low-fit women. The high-fit women showed significant increases in [HbO2] responses
in both left and right DLPFCs during the RNG task, while the low-fit women showed
significantly less activation in the right DLPFC compared with the right DLPFC of the
high-fit women and compared with their own left DLPFC. At the level of the whole sample,
increases in the [HbO2] responses in the right DLPFC were found to mediate in part
the relationship between VO2max level and executive performance during the RNG task
at 1.5 s but not at 1 s. These results provide support for the cardiorespiratory fitness
hypothesis and suggest that higher levels of aerobic fitness in older women are related to
increased cerebral oxygen supply to the DLPFC, sustaining better cognitive performance.

Keywords: prefrontal cortex, functional near-infrared spectroscopy (fNIRS), executive functions, aerobic fitness,
aging

INTRODUCTION
Executive functions refer to a set of higher-order cognitive
processes whose principal function is to facilitate behavioral adap-
tation to new or complex situations, specifically when routines
are inappropriate. They encompass the formulation of a goal and
the implementation of a strategy, planning, action sequencing
and monitoring, mental flexibility, inhibition, and updating of
working memory (see Anderson et al., 2008). Executive functions
are critical for the activities of daily living and autonomy, but
are among the most altered cognitive functions due to normal
aging (West, 1996; Albinet et al., 2012). Neuroimaging and neu-
ropsychological studies have shown that important substrates for
executive functions are the frontal and parietal lobes, which are
the cerebral structures that are the most vulnerable to the effects
of aging (see West, 1996; Cabeza et al., 2005; Raz and Rodrigue,
2006). Cross-sectional and longitudinal studies have reported
important linear age-related declines in the prefrontal volume

(Raz et al., 2004, 2005) and decreased regional cerebral blood
flow (rCBF) in the prefrontal cortex (PFC; Kwee and Nakada,
2003; Kalpouzos et al., 2009). These declines, however, may be
modulated by lifestyle and health-related factors, such as regular
physical exercise.

In the past decade, a growing body of evidence has
documented the beneficial effects of physical exercise and/or car-
diorespiratory fitness level on the cognitive and brain functions
in older adults (for reviews see Etnier et al., 2006; Hillman et al.,
2008; Voelcker-Rehage and Niemann, 2013). Aerobic exercise and
cardiorespiratory fitness level, indexed by maximal oxygen uptake
(VO2max), have been shown to be positively related to cognitive
performance in older adults, particularly when executive control
processes that involve the PFC are critical for task success (Kramer
et al., 1999; Colcombe and Kramer, 2003; Prakash et al., 2011).
The process of inhibition, a core executive function defined
as the capacity to suppress irrelevant information or prepotent
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responses, appears particularly sensitive to the aerobic fitness level
(see Smiley-Oyen et al., 2008; Colcombe et al., 2004; Boucard
et al., 2012). Moreover, brain imaging studies have recently shown
that greater aerobic fitness is associated with an increased volume
in the frontal and parietal lobes, as well as in the hippocampus
(Colcombe et al., 2003, 2006; Erickson et al., 2011), and with
greater or more efficient neural activity in the prefrontal and
parietal regions involved in executive functions (Colcombe et al.,
2004; Prakash et al., 2011; see Voelcker-Rehage and Niemann,
2013 for a review). Indeed, using functional Magnetic Resonance
Imaging (fMRI) during the performance of an executive task that
involves behavioral conflict, Colcombe et al. (2004) showed that
increased cardiorespiratory fitness level after a 6-month aerobic
training program was associated with higher brain activations
in the prefrontal and parietal cortices and significantly lower
activity in the anterior cingulate cortex. Similarly, Prakash et al.
(2011) reported that cardiorespiratory fitness was associated with
higher activation of the prefrontal and parietal cortices, but not
the posterior regions, in an inhibition task with high cognitive
loads. Although the neurobiological mechanisms responsible for
these benefits are not yet fully understood, converging evidence
from animal and human research suggests that the release of
neurotrophic factors that facilitate neurogenesis, angiogenesis,
and neurovasculature may play an important role (see Cotman
et al., 2007; Voss et al., 2013).

Some authors have argued that aerobic exercise and associated
gains in cardiorespiratory fitness are important for cognitive and
cerebral benefits to occur (see Dustman et al., 1984; Colcombe
and Kramer, 2003; Colcombe et al., 2004). In this framework, the
so-called cardiorespiratory fitness hypothesis states that increased
level of aerobic fitness (high VO2max level) would increase rCBF
(see Ainslie et al., 2008; Brown et al., 2010), thus allowing better
cerebral oxygen supply to the brain, particularly in the prefrontal
regions where the age-related deficit in rCBF is the most signifi-
cant (Cabeza et al., 2005), and would translate into an improved
executive performance. Although, as stated above, evidence sug-
gests that increased cardiorespiratory fitness may affect brain
plasticity, at a behavioral level, the direct link between cardiorespi-
ratory fitness level and cognitive performance in older adults has
not been always consistently demonstrated (see Etnier et al., 2006;
Smiley-Oyen et al., 2008), deserving additional investigation.

At a neurophysiological level, the cardiorespiratory fitness
hypothesis has received very little evidence. Previous studies
have indirectly investigated this question by measuring rCBF or
local concentration changes in paramagnetic deoxyhemoglobin
[HHb] measured by the BOLD response using fMRI, but
not cerebral oxygenation per se. Functional near infrared
spectroscopy (fNIRS), which measures the hemodynamic
correlates of neural activity, may help to further investigate
the relationships between prefrontal oxygenation, executive
performance and cardiorespiratory fitness. Functional NIRS
measures changes in oxygenated and deoxygenated hemoglobin
([HbO2] and [HHb], respectively) from the cortical surface.
The principles of fNIRS have been extensively described and
appear suitable to assess the relationship between cortical
activation and hemodynamic response with a high sampling
rate (for reviews see Obrig and Villringer, 2003; Perrey, 2008;

Ferrari and Quaresima, 2012). Recent studies have examined
the advantages of fNIRS compared with fMRI in cognitive tasks
(Cui et al., 2011) and have validated this technique for the study
of neurovascular coupling or cognitive performance in normal
aging (Vermeij et al., 2012; Fabiani et al., 2014). For example,
Fabiani et al. (2014) used different brain imaging techniques
during passive visual stimulation and revealed significant
correlations between the [HbO2] response and the VO2max level,
but not between the [HHb] or BOLD responses and VO2max.
Moreover, these authors concluded that evaluating the functional
impact of reduced neurovascular coupling in older low-fit adults
requires the manipulation of the cognitive load, for example, by
increasing the task difficulty in a behavioral paradigm. To the
best of our knowledge, no study to date has directly tested the
cardiorespiratory fitness hypothesis by measuring the changes in
the blood volume and oxygenation in the brain with fNIRS during
cognitive tasks in older humans. As a contribution towards a
better understanding of the effects of cortical oxygenation changes
in the relationship between cardiorespiratory fitness and executive
performance, the present study investigated the behavioral and
brain responses during cognitive tasks that challenge executive
functions with different levels of difficulty in older adults.

In the present study, we evaluated the differences in executive
control performance between aerobically fit older women (high
VO2max) and aerobically unfit older women (low VO2max) using
the Random Number Generation (RNG) task. This experimental
task consists of producing random sequences of numbers at
specified rates and involves executive functioning, particularly the
inhibition of overlearned schemas (i.e., counting, Miyake et al.,
2000; Albinet et al., 2012). Previous studies have shown that
normal aging significantly impairs the behavioral performance on
the RNG task (Albinet et al., 2006, 2012), while aerobic exercise
or cardiorespiratory fitness improves the behavioral performance
in older adults (Abou-Dest et al., 2012; Boucard et al., 2012).
Different neuroimaging studies have shown that good perfor-
mance on this task requires a distributed neural network in the
prefrontal and parietal cortices, with a strong involvement in par-
ticular areas. The dorsolateral prefrontal cortex (DLPFC) shows
a significant and systematic left-sided activation (Jahanshahi and
Dirnberger, 1998; Jahanshahi et al., 1998, 2000; Joppich et al.,
2004) and sometimes bilateral activation (Daniels et al., 2003;
Hoshi et al., 2003; Koike et al., 2011) in normal adults. These
findings oriented us to particularly examine this cortical area and
to measure the changes in [HbO2] and [HHb] as a function of the
task demands in the bilateral DLPFC (BAs 9/46). In the present
study, we hypothesized that the older aerobically fit women would
demonstrate better executive performance on the RNG task com-
pared with their unfit counterparts. According to the cardiores-
piratory fitness hypothesis, we expected that the older fit women
would exhibit greater bilateral prefrontal activity as a function of
the task being made more difficult to sustain their better executive
performance compared with the unfit older women.

MATERIALS AND METHODS
PARTICIPANTS
Forty community-dwelling women aged 60–77 years were
recruited from public meetings aimed at promoting physical
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activity in postmenopausal women. We focused on women
because gender and hormone status have been previously shown
to be potential important moderators in the relationship between
fitness level and cognition and brain health (Colcombe and
Kramer, 2003; Erickson et al., 2007). Thus, our sample was
quite homogenous with respect to these important parameters.
Women were eligible and enrolled in the study if they met the
following criteria: (i) not diagnosed with any of the following
conditions: rheumatoid arthritis, osteoarthritis, ischemic heart
disease, severe hypertension, previous joint replacement surgery
or cerebrovascular disease affecting the lower limb and cognitive
functions, or a malignant tumor; (ii) no pain or medication
known to alter physical and cognitive performance; and (iii) a
Mini Mental State Examination (MMSE) > 26 with a memory
score > 1 (Hébert et al., 1992). In order to maximize the
likelihood to have an heterogeneous sample according to aerobic
fitness level, all the women during the recruitment phase
responded to a short validated physical activity questionnaire to
indirectly estimate VO2max level; the 7-point Physical Activity-
Rating scale from Jackson et al. (1990). Most of the low-fit women
were classified as sedentary to low physically active (less than 1 h
of physical activity per week). Most of the high-fit women were
classified as physically active to regular exercisers (at least 150
min of moderate to vigorous physical activity per week). Before
entering the study, the women were asked to provide a medical
certificate ensuring there was no contraindication to performing
the cardiorespiratory fitness testing. This study was approved by
the local ethics Committee (CPP Sud-Méditerranée III, Number:
n◦ 2011-A01336-35) and complied with the Declaration of
Helsinki for human experimentation. All study participants
provided written informed consent. Of the 40 recruited subjects,
four participants did not complete the entire protocol, and two
participants were discarded from the analyses due to abnormal
behavioral or hemodynamics data, resulting in a total of 34
participants. All participants were right-handed according to the
Edinburgh inventory (Oldfield, 1971).

ASSESSMENT OF COGNITIVE, PSYCHIATRIC AND PSYCHOLOGICAL
STATUS
A minimal cognitive, psychiatric and psychological assessment
was assessed in all participants. The French Version of the MMSE
(Hébert et al., 1992) was used to assess global cognitive function-
ing. The Digit Symbol-Substitution Test (DSST) from the WAIS
III (Wechsler, 2000), which involves processing speed, working
memory, visuomanual coordination and executive functions, was
included as a descriptor of fluid intelligence. The French Ver-
sion of the Mill–Hill Vocabulary Test (Part B; Deltour, 1993),
which was used to assess semantic memory, is a descriptor of
crystallized intelligence. Depressive symptoms were assessed using
the French version of the Geriatric Depression Scale (Bourque
et al., 1990), and motivation level was assessed using the French
version of the Self-Motivation Inventory (André and Dishman,
2012).

CARDIORESPIRATORY FITNESS EVALUATION
All participants performed a maximal graded exercise test
(GXT) on an electrically braked cycloergometer (Ergoselect 200P,

Ergolyne, Bitz, Germany) to determine VO2max according to the
international standards (American Thoracic Society/American
College of Chest Physicians, 2003). During the exercise test,
VO2 was measured and calculated by a breath-by-breath analysis
(Ergocard®, MediSoft, Sorinnes, Belgium) as previously described
(Gouzi et al., 2013).

CONSTITUTION OF THE LOW-FIT AND THE HIGH-FIT GROUPS
The Low-fit (n = 17) and High-fit (n = 17) groups were created
using the median split of the VO2max level. The Low-fit group
had a mean VO2max of 20 ± 2.7 ml kg−1 min−1, which is con-
sidered a low to poor aerobic fitness level according to published
norms (Shvartz and Reibold, 1990). The High-fit group had a
mean VO2max of 29.8 ± 6.5 ml kg−1 min−1, which is considered
a good to excellent aerobic fitness level according to the same
published norms.

EVALUATION OF EXECUTIVE PERFORMANCE
Executive performance was evaluated using the auditory RNG
task developed by Albinet et al. (2006). Briefly, the participants
had to say a number from one to nine aloud each time they
heard a computer-generated tone, such that they generated a
string of numbers as random as possible. Two paces were used
to manipulate task difficulty: one tone every 1 s (fast pace) or
one tone every 1.5 s (slow pace). The concept of randomness was
clearly explained to the participants using the analogy of picking
numbers out of a hat, and the importance of maintaining a
consistent response time was emphasized. After a training period,
two trials of 100 responses were recorded at each pace (thus,
during 100 s for the fast pace and during 150 s for the slow
pace) and then analyzed using Towse and Neil’s (1998) RgCalc
software. The dependent measure, which reflects the inhibition
performance for this task, was the average adjacency score from
the two trials at each pace. Adjacency (A) describes the distri-
bution of the adjacent digits (in ascending or descending series)
from the ordinal sequence of alternatives (i.e., 1–2; or 8–7–6) and
is expressed as a percentage score. The adjacency scores ranged
between 0% (no neighboring pair) and 100% (only neighboring
pairs); thus, the greater the score, the poorer the executive per-
formance. This score was chosen because it is a reliable measure
of the capacity to actively inhibit the natural strong tendency
to count as a function of temporal constrains (Towse and Neil,
1998; Miyake et al., 2000), and because it is sensitive both to
aging and fitness effects (Abou-Dest et al., 2012; Albinet et al.,
2012; Boucard et al., 2012). As the control task, the participants
were asked to repeatedly count out in order from one to nine at
the same two paces and during the same period (count (CNT)
task).

fNIRS DATA COLLECTION AND PROCESSING
A spatially resolved continuous wave spectrophotometer
(NIRO-200, Hamamatsu Photonics K.K., Japan) was used
to measure the time course of the relative changes in the
concentrations of [HbO2] and [HHb]. The sampling rate
was set at 6 Hz. Two pairs of optodes with an inter-optode
distance of 40 mm were bilaterally placed according to the
international EEG 10–20 system over the right and left DLPFCs
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(BAs 9/46). To reduce artifacts (motion and physiological), the
participants were asked to minimize head and body movements,
were given instructions to breathe gently and regularly, and
were instructed to rest quietly. Pre-processing and processing
of NIRS signals were performed off-line using a customized
code implemented in Matlab 7.0 software (The Mathworks
Inc., MA, USA). The typical hemodynamic response shows an
increase for [HbO2] with neural activity while [HHb] signal
typically behaves opposite. This hemodynamic response is often
used in the feature extraction. The raw NIRS data were filtered
using a first-order Butterworth low-pass filter zero-lag (cut-off
frequency of 0.7 Hz) to remove the heart rate signal (Huppert
et al., 2009). No detrending method was applied on the raw
NIRS signals based on no important low frequency signal drift
for each individual time series. From the resulting individual
signals, changes (∆) in [HbO2] and [HHb] were calculated for
each condition with two processing methods. First, we used
the slope method (see more details in Mandrick et al., 2013a)
in 100-s stimulation windows as a simple, but effective feature
to detect both the global hemodynamic response amplitude
and the time to reach plateau level during sustained activation.
The relationship between neural activity and the hemodynamic
responses is often approximated to that of a linear system (Friston
et al., 1994), meaning that integrated neural firing rate was
assumed to be a rectangular function corresponding to the
constant stimulus over time. For each experimental condition,
the two trials were averaged; the dependent measures included
the slope coefficients for ∆[HbO2] and ∆[HHb] in µM.cm/s.
As suggested by Mandrick et al. (2013a) the slope coefficient of
a straight line fitted to the data in a windows as feature, indicates
the magnitude and the direction of the oxygenation responses
over the stimulation period for each condition. Even if the issue
of modeling and determining the shape of the hemodynamic
responses is beyond the scope of this study, our results show
that evoked fNIRS-derived cerebral hemodynamic response to
sustained cognitive tasks was translated by the slope coefficient
with enough sensitivity (see Mandrick et al., 2013a; present
study). Second, the oxygenation response amplitude was also
analyzed as it is regularly done in the field by subtracting the
level obtained at the resting state (last 10 s of the rest period)
from the activation period (last 10 s of the task) after reaching
a plateau for each trial (Holper et al., 2009). In case of a long
stimulus period (≥1 min), the [HbO2] signal reaches a plateau
that is maintained until the cessation of the stimulus (Heekeren
et al., 1997), as we observed in the present study (see Figure 3).
Overall, the results were concordant between the two methods
(correlated at r = 0.9), but the slope method appeared to be more
sensitive to discriminating the fNIRS signal changes as a function
of the cognitive load and the VO2max level. Accordingly, we
only report in the present study the data concerning the slope
method.

PROCEDURE
After careful screening for the inclusion and exclusion criteria, the
participants were first evaluated for global cognitive, psychiatric
and psychological status. On the second day, their cardiorespira-
tory fitness was measured with the GXT, which was performed at

the Department of Clinical Physiology of the University Hospital.
On the third assessment day, each participant was tested indi-
vidually in a quiet partially obscured experimental room for
the RNG performance with fNIRS recording. This session lasted
approximately 50 min. After the NIRS apparatus was installed
over the two DLPFCs and its functions were broadly explained,
the participant was comfortably seated in an armchair. The par-
ticipant performed orally the RNG task, while an experimenter
visually controlled the online evolution of the hemodynamic
parameters on a computer screen. After a training period to
ensure familiarization with the material and the tasks, each partic-
ipant performed two RNG trials at each pace alternating with rest
periods and count trials in an ABBA vs. BAAB counterbalanced
order across the participants (see bottom of Figure 1). The order
of the paces was also counterbalanced across the participants;
half of the participants started with the slow pace condition, and
the other half started with the fast pace condition (see upper
of Figure 1). Rest periods, which lasted the same time as the
activation periods, were visually controlled for each participant to
ensure that the hemodynamics variables returned to their baseline
level.

STATISTICAL ANALYSES
The statistical analyses were performed using STATISTICA soft-
ware version 7.1 (StatSoft, France). The assumption of data
normality and homogeneity was assessed using Kolmogorov-
Smirnov and Levene tests, respectively. Behavioral performance
on the RNG task (Adjacency score) was analyzed with a 2 (group:
high-fit vs. low-fit) × 2 (pace: fast vs. slow) ANOVA with group
as a between-subject factor and pace as a within-subject factor
with repeated measures. For each of the hemodynamic measures,
∆[HbO2] and ∆[HHb], separate 2 (group: high-fit vs. low-fit)
× 2 (task: RNG task vs. CNT task) × 2 (hemisphere: right vs.
left) × 2 (pace: fast vs. slow) ANOVAs were performed, with
group as a between-subject factor and task, hemisphere, and pace
as within-subject factors with repeated measures. Mean compar-
isons were performed using Tukey’s HSD corrections for mul-
tiple comparisons. Finally, the relationships between executive
performance, VO2max level and hemodynamic measures were
examined using partial correlation analyses. All data are expressed
as the mean ± SD. The level of significance was set at p < 0.05.
Partial estimated effect sizes (η2

p) were reported for significant
results.

RESULTS
Table 1 displays the characteristics of the 34 participants of the
study, that were not significantly different between the High-fit
and Low-fit groups.

BEHAVIORAL DATA
The ANOVA revealed a significant main effect of pace
(F(1,32) = 48.3; p < 0.0001; η2

p = 0.60), with higher Adjacency
scores for the fast pace (31.5 ± 9.1%) compared with the slow
pace (24.1 ± 7.8%). The ANOVA also revealed a significant
main effect of group (F(1,32) = 5.5; p < 0.05; η2

p = 0.15). As
shown in Figure 2, whatever the pace, the high-fit group showed
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FIGURE 1 | Experimental protocol. Upper: schema of the entire session.
After the familiarization period, the participants alternated blocks of RNG
tasks and count (CNT) tasks at the slow or fast pace in a counterbalanced
order. [HbO2] and [HHb] concentrations were continuously monitored during

the entire protocol using functional near-infrared spectroscopy (fNIRS). Lower:
illustration of the fast pace condition. The participants performed two RNG
trials alternating with rest periods and count trials in an ABBA vs. BAAB
(A = RNG; B = CNT) counterbalanced order across the participants.

Table 1 | Characteristics of the participants.

High-fit group Low-fit group p value for
(N = 17) (N = 17) t-test

Age (years) 67.32 (4.48) 68.88 (3.87) p = 0.30
Education (years) 14.24 (3.68) 13.35 (2.45) p = 0.42
BMI (kg/m2) 22.25 (2.51) 24.04 (2.79) p = 0.06
MMSE (max. = 30) 29.18 (0.88) 29.12 (1.22) p = 0.87
DSST (number) 63.41 (9.35) 61.41 (12.81) p = 0.61
Mill-Hill score 37.56 (4.62) 36.41 (3.83) p = 0.44
(max. = 44)
GDS score 5.76 (4.47) 4.41 (3.34) p = 0.32
SMI score 37.24 (7.12) 37.47 (4.21) p = 0.91
Systolic BP (mmHg) 129 (17) 131 (18) p = 0.73
Diastolic BP (mmHg) 78 (21) 75 (24) p = 0.66

Values are means (SD). Note: Education = number of years of formal education;

BMI = Body Mass Index; MMSE = Mini Mental State Examination; DSST = Digit

Symbol Substitution Test; GDS = Geriatric Depression Scale; SMI = Self-

Motivation Inventory; BP = Blood Pressure.

consistently lower Adjacency scores compared with the low-fit
group, which indicated better inhibition performance.

fNIRS DATA
After analyzing all NIRS signals during the RNG task, we observed
that 92.3% of the activation patterns were characterized by a typi-
cal increase in ∆[HbO2] and a concomitant decrease in ∆[HHb].
The remaining patterns were an inverse response (0.7%) or no
change (7%). During the control CNT task, we observed that

FIGURE 2 | Mean Adjacency score (in %) as a function of group and
pace. Bars represent standard-errors. *p < 0.05.

67.3% of the NIRS signals were characterized by activation pat-
terns, 18.3% by inverse responses and 14.3% by no significant
pattern detection. All those NIRS signals were included in the
analyses. Figure 3 shows an illustration of typical cortical acti-
vation patterns observed in one participant as a function of trials
and conditions in both right and left DLPFCs.

The DLPFC activation during the RNG task was signifi-
cantly higher compared with the control CNT task (∆[HbO2]:
F(1,32) = 58.2; p < 0.0001; η2

p = 0.65; ∆[HHb]: F(1,32) = 34.3;

p < 0.0001; η2
p = 0.52. This was evidenced by a greater ∆[HbO2]
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FIGURE 3 | Illustration of typical cortical activation patterns for one
subject as a function of task (CNT task, upper side vs. RNG task, lower
side), trial and pace (slow vs. fast) for both hemispheres (right DLPFC,

left panel and left DLPFC, right panel). Each curve represents one trial with
[HbO2] in red and [HHb] in blue. CNT = Count task; RNG = Random Number
Generation task.

Table 2 | Mean (SD) ∆[HbO2] and ∆[HHb] slope coefficients in
µM.cm/s as a function of task and pace.

RNG task CNT task

1.5 s 1 s 1.5 s 1 s

∆[HbO2] 0.046 (0.036) 0.061 (0.048)∗ 0.016 (0.023) 0.017 (0.028)
∆[HHb] −0.014 (0.021)−0.022 (0.021)∗ −0.004 (0.016)−0.003 (0.019)

* Significantly (p < 0.05) different from 1.5 s pace.

slope coefficient for the RNG task (0.054 ± 0.037 µM.cm/s)
compared with the CNT task (0.017 ± 0.022 µM.cm/s) and
by a greater negative ∆[HHb] slope coefficient for the RNG
task (−0.018 ± 0.020 µM.cm/s) compared with the CNT task
(−0.004 ± 0.017 µM.cm/s). The DLPFC activation increased
as a function of pace for the RNG task, but not for the CNT
task (∆[HbO2]: F(1,32) = 4.3; p < 0.05; η2

p = 0.12; ∆[HHb]:

F(1,32) = 10.2; p < 0.005; η2
p = 0.24; see Table 2). For the CNT

task, the ∆[HbO2] and ∆[HHb] slope coefficients were similar
for both the right and left DLPFCs and for both the high-fit and
low-fit groups (ps > 0.3; see Figure 4A). Therefore, the following
results focused on the RNG task (see Table 3).

With regards to the RNG task, although there was no main
effect of group or hemisphere on both ∆[HbO2] and ∆[HHb],
the analysis yielded a significant group × hemisphere interaction
on the ∆[HbO2] slope coefficients (F(1,32) = 4.3; p < 0.05;
η2

p = 0.12). As shown in Figure 4B, the high-fit group showed

Table 3 | Mean (SD) of ∆[HbO2] and ∆[HHb] slope coefficients in
µM.cm/s as a function of task, pace, and hemisphere for the high-fit
and low-fit groups.

High-fit group Low-fit group

RNG task at 1.5 s
∆[HbO2]-Right 0.052 (0.048) 0.031 (0.023)
∆[HbO2]-Left 0.054 (0.042) 0.047 (0.031)
∆[HHb]-Right −0.015 (0.022) −0.015 (0.022)
∆[HHb]-Left −0.014 (0.026) −0.013 (0.020)
RNG task at 1 s
∆[HbO2]-Right 0.070 (0.063) 0.054 (0.033)
∆[HbO2]-Left 0.061 (0.053) 0.059 (0.041)
∆[HHb]-Right −0.022 (0.016) −0.021 (0.025)
∆[HHb]-Left −0.023 (0.025) −0.024 (0.024)
CNT task at 1.5 s
∆[HbO2]-Right 0.013 (0.021) 0.017 (0.023)
∆[HbO2]-Left 0.017 (0.020) 0.018 (0.031)
∆[HHb]-Right −0.001 (0.017) −0.005 (0.018)
∆[HHb]-Left −0.007 (0.017) −0.005 (0.017)
CNT task at 1 s
∆[HbO2]-Right 0.013 (0.028) 0.020 (0.029)
∆[HbO2]-Left 0.014 (0.029) 0.023 (0.030)
∆[HHb]-Right −0.001 (0.013) −0.003 (0.021)
∆[HHb]-Left −0.002 (0.024) −0.005 (0.023)

similar ∆[HbO2] slope coefficients for both the right and left
DLPFCs (p > 0.05), whereas participants in the low-fit group
showed a significantly lower ∆[HbO2] slope coefficient for the
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FIGURE 4 | Mean ∆[HbO2] slope coefficients (in red) and mean ∆[HHb]
slope coefficients (in blue) in µM.cm/s during the CNT task (A) and the
RNG task (B) for the Low-fit group and the High-fit group in the Left
DLPFC (left panel) and in the Right DLPFC (right panel). Bars represent
standard-errors. *p < 0.05.

right DLPFC compared with the right DLPFC of the high-fit
participants and compared with their own left DLPFC (p <

0.05). This interaction was not significant for ∆[HHb] (p >
0.8). As shown in Figure 4B, the ∆[HHb] slope coefficients
were similar for both the right and left DLPFCs and for both
the high-fit and low-fit groups. Finally, the analysis yielded a
significant hemisphere × speed interaction (F(1,32) = 11.3; p <
0.005; η2

p = 0.26). Post hoc analyses showed that the ∆[HbO2]
slope coefficient was significantly greater in the left DLPFC (0.051
± 0.037 µM.cm/s) compared with the right DLPFC (0.042 ±

0.037 µM.cm/s; p < 0.05) at the slow pace (1.5 s). At the fast
pace (1 s), the ∆[HbO2] slope coefficients were greater than
the slow pace, but they did not significantly differ between the
left (0.060 ± 0.047 µM.cm/s) and the right (0.062 ± 0.050
µM.cm/s) DLPFCs (p > 0.05). However, this last pattern of
results was similar for both the high-fit and low-fit groups, as
the group × hemisphere × pace interaction was not significant
(F < 1).

RELATIONSHIPS BETWEEN EXECUTIVE PERFORMANCE, VO2MAX
LEVEL AND CEREBRAL OXYGENATION
Table 4 presents the matrix of correlations between the Adjacency
scores, the ∆[HbO2] parameters, the VO2max level, and potential
confounders. The VO2max level was significantly correlated with
the executive performance at the pace of 1.5 s (r = 0.38; p< 0.05)
and at the pace of 1 s (r = 0.42; p < 0.05). These correlations
remained significant even after controlling for age and BMI
(rp = 0.37; p < 0.05 and rp =0.40; p < 0.05, respectively). Only
VO2max, 1.5HbO2-Right and Adjacency-1.5 were significantly
correlated each other, highlighting their functional significance.
Figure 5 depicts the relationships between these three variables.
The significant relationship between the VO2max level and the
Adjacency score at the 1.5 s pace condition (r = −0.38; p < 0.05)
no longer remained significant after controlling for ∆[HbO2]
(rp = 0.24; p> 0.1). Finally, as stated above, there was a significant
correlation between the VO2max level and the Adjacency score at
1 s, but these variables were not significantly correlated with the
∆[HbO2] parameters at pace 1 s in the right or left DLPFC (all
ps> 0.4; see Table 4).

DISCUSSION
The aim of the present study was to examine whether cardiores-
piratory fitness is related to better executive performance in
older women and whether these cognitive benefits are related
to increased prefrontal oxygenation response. In this study, we
compared the functional brain activation patterns in the right
and left DLPFCs in high-fit and low-fit older women during
the performance of an executive controlled task, namely, the
RNG task, using fNIRS. The main findings showed consistent
increasing cortical activations as a function of task difficulty (i.e.,
the CNT vs. the RNG at a slow pace vs. the RNG at a fast pace),
with significant increases in ∆[HbO2] and significant decreases
in ∆[HHb]. Moreover, during the RNG task, the high-fit group
performed better and showed greater increases in ∆[HbO2] bilat-
erally in the right and left DLPFCs, whereas the low-fit women
showed significantly less activation in the right DLPFC compared
with the right DLPFC of the high-fit women and compared with
their own left DLPFC, which may explain, in part, their lower
executive performance.

The behavioral results show that the older high-fit women
demonstrated a consistently better executive performance during
the RNG task at both difficulty levels (one response per 1 s
and one response per 1.5 s) compared with the unfit older
women. This finding confirms previous results that showed older
adults who participated in regular physical activity (Abou-Dest
et al., 2012) or with higher levels of aerobic fitness (Boucard
et al., 2012) outperformed their sedentary or less fit counter-
parts on the RNG task at one response per 1 s. The present
study extends these results for a less demanding condition (one
response per 1.5 s) and adds to the literature on the benefi-
cial effects of cardiorespiratory fitness on executive performance
in older adults, particularly concerning inhibition (Colcombe
and Kramer, 2003; Colcombe et al., 2004; Smiley-Oyen et al.,
2008). Furthermore, when comparing the behavioral results of
the present study with other studies using the same task, one
must note that our participants’ performances were high (overall
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Table 4 | Correlation matrix between the measures of executive performance, the hemodynamic data and the characteristics of the
participants.

Age VO2max Education BMI Adjacency-1.5 Adjacency-1 1.5HbO2 1HbO2 1.5HbO2 1HbO2
-Right -Right -Left -Left

Age –
VO2max –0.37* –
Education −0.32 0.17 –
BMI 0.12 −0.59*** −0.28 –
Adjacency-1.5 0.02 −0.38* −0.02 0.18 –
Adjacency-1 0.16 −0.42* −0.25 0.15 0.75*** –
1.5HbO2-Right −0.26 0.41* −0.17 −0.10 −0.42* −0.38* –
1HbO2-Right 0.01 0.13 −0.28 0.12 −0.18 0.05 0.60*** –
1.5HbO2-Left −0.19 0.19 −0.26 −0.01 −0.44* −0.31 0.82*** 0.49* –
1HbO2-Left 0.22 −0.06 −0.35* 0.24 −0.10 0.09 0.47* 0.89*** 0.51* –

Note: BMI = Body Mass Index; Right = right dorsolateral prefrontal cortex; Left = left dorsolateral prefrontal cortex; 1.5 = RNG task at the pace of 1 number per

1.5 s; 1 = RNG task at the pace of 1 number per 1 s. *p < 0.05; **p < 0.001; ***p < 0.0001.

FIGURE 5 | Relationships between the VO2max level, the ∆[HbO2] slope coefficient in the right DLPFC during the 1.5 s RNG task and the Adjacency
score at 1.5 s. rp : partial correlation after controlling for the 1.5 ∆[HbO2] slope coefficient in the right DLPFC.

low Adjacency score); this finding suggests that our sample,
regardless of the fitness level, was composed of older women
with high cognitive functioning. This suggests that the posi-
tive relationship between cardiorespiratory fitness and executive
functioning can be expected even in this cognitively and physically
healthy population.

Consistent with previous studies, we found that the changes
in [HbO2] were more important compared with the changes in
[HHb] and that the [HbO2] response was more sensitive to the
experimental conditions, thus most likely reflecting more direct
cortical activation (Hoshi et al., 2003; Koike et al., 2011; Vermeij
et al., 2012). Similar to Fabiani et al. (2014) during simple visual
stimulation, we found that the VO2max level only correlated with
the amplitude of the [HbO2] response, but not with the amplitude
of the [HHb] response, thereby highlighting the importance of
dissociating these two components of the neurovascular response.
Functional NIRS results also revealed that the DLPFC activation
increased with rising cognitive load for both the high-fit and low-
fit participants, with minimal activation for the control CNT task
(at both paces) and maximal activation for the RNG task at one

response per 1 s (see Table 3). This result is in agreement with
other neuroimaging studies that manipulated the cognitive load
in young (Hoshi et al., 2003; Mandrick et al., 2013b) and older
adults (Vermeij et al., 2012) using fNIRS.

The high-fit older women in this study showed more over-
all activation in the right DLPFC compared with their unfit
counterparts during the RNG task. Importantly, there was no
group difference in the hemodynamic response during the control
CNT task, regardless of the pace, which suggests that the group
difference in the hemodynamic response during the RNG task is
likely not attributable to baseline differences or to difficulty in
the speed elocution. Our results tend to support the hypothesis
that the high-fit older women were able to recruit additional
contralateral prefrontal areas to cope with task demands and
that this overactivation may have contributed, in part, to their
better executive performance. This explanation is in agreement
with recent neuroimaging models of cognitive aging that show a
possible overactivation of the prefrontal cortices and the evidence
of reduced hemispheric asymmetry (HAROLD model) in some
older adults (see Cabeza, 2002; Reuter-Lorenz and Lustig, 2005;
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Davis et al., 2008; Reuter-Lorenz and Park, 2010). According to
the compensation hypothesis, this contralateral recruitment in
some older adults might correspond to a form of compensatory
mechanism that counteracts age-related neurocognitive deficits
because it is generally associated with better cognitive perfor-
mance (see Cabeza et al., 2002; Reuter-Lorenz and Cappell, 2008).
Indeed, many studies have shown strongly lateralized activity in
young adults and low-performing older adults, but bilateral acti-
vations in high-performing older individuals for a wide range of
processes, such as executive functions (Langenecker and Nielson,
2003; Langenecker et al., 2004; Tsujii et al., 2010) or episodic
memory (Cabeza et al., 2002; Gutchess et al., 2005; Angel et al.,
2011). Recently, Angel et al. (2011) found that the involvement of
both hemispheres in an episodic memory task increased memory
performance in older adults and that older adults’ individual
levels of executive functioning mediated age-related differences in
the degree of lateralization of brain activity. The same mechanism
may have operated in the present study for the high-fit women,
who were found to respond to the cognitive load of the RNG
task by recruiting the bilateral DLPFC regions. This reduced lat-
eralization was beneficial to their executive performance, thereby
supporting the compensation hypothesis. The depressed neu-
rovascular response observed in our older low-fit women, in turn,
may reflect a diminished ability of their vascular system to adapt
to a task that challenges their executive functions or a reduction of
their brain capillary bed (see Fabiani et al., 2014). On the whole,
this pattern of results suggests that higher levels of aerobic fitness
in older adults may be related to increased cerebral perfusion
and better cerebral oxygen supply to the PFC (Swain et al., 2003;
Ainslie et al., 2008; Brown et al., 2010). The fact that aerobic
fitness was positively correlated with only the [HbO2] response
in the present study is particularly consistent with this view.

Based on these results, we explored whether the increases in
the [HbO2] response observed during the RNG task had a func-
tional role in participant’s executive performance. The increase in
[HbO2] response in both the right and left DLPFCs was positively
related to the cognitive performance during the RNG task for
the low pace condition (1.5 s). In contrast, the link between the
cognitive performance and the DLPFC activation disappeared
for the most challenging condition (RNG at 1 s; see Table 4).
Taken together, these results may suggest a relationship between
DLPFC activation and cognitive performance until a certain level
of task difficulty and a ceiling effect for more challenging tasks.
The use of a more parametric experimental design with at least
three levels of difficulty would help to resolve this issue. Another
possibility is that the activation of other brain regions during the
most difficult condition of the RNG task may have modulated
task performance. This possibility cannot be completely ruled out
because the present study focused on the hemodynamic activity
of the DLPFC. Nonetheless, in a PET study that used the same
RNG task with six different rates (from 0.5 to 3 s per response) in
six normal young adults, Jahanshahi et al. (2000) found that the
left DLPFC (BAs 9, 46) was the only brain region that showed
a significant increase in rCBF associated with better cognitive
performance. However, in disagreement with our results, these
authors found that rCBF in the DLPFC decreased with the faster
rates of the RNG with a decline in cognitive performance. In

our study, the increased DLPFC activation in the most difficult
condition may reflect that our participants remained engaged in
the task, as confirmed by their overall good performance. Clearly,
these discrepancies deserve future research in this area.

One important finding of the present study was that the
significant relationship between the VO2max level and the Adja-
cency score during the 1.5 s RNG task no longer remained
significant after controlling for the right DLPFC [HbO2] changes
(see Figure 5). This result indicates that the increase in the
right DLPFC [HbO2] response may mediate, at least in part, the
positive relationship between the VO2max level and the executive
performance. Although caution is needed in the interpretation
because association does not mean causality, this result provides
strong support for the cardiorespiratory fitness hypothesis and
has theoretical and practical implications. Indeed, it highlights
the functional significance of the prefrontal increased oxygena-
tion level in the high-fit women during a task that involves the
performance of executive functions, at least for the easy RNG task
condition.

The present study has some limitations that deserve further
investigation. First, the study was limited to older women aged
60–77 years old, for whom executive functions are essential to
prevent the decline of autonomy. As the hormone status and gen-
der may influence the relationship between fitness and executive
performance (Colcombe and Kramer, 2003; Erickson et al., 2007),
our results may not be generalized to older men. Second, because
we did not include a control group of younger adults, future
research is warranted with a more comprehensive manipulation
of the cognitive load to examine brain activation and cognitive
performance as a function of age and task difficulty. In particular,
it would be useful to validate in different age groups whether
our results are in line with the neuroimaging models of cognitive
aging we referred to in the discussion (see Cabeza, 2002; Reuter-
Lorenz and Cappell, 2008). Third, the cross-sectional design of
our study precludes inferences about the causality in the rela-
tionship between the VO2max level, the DLPFC activation and
the cognitive performance. Although converging evidence from
longitudinal and animal studies provides support to the model
we tested, randomized-controlled trials are needed to determine
whether improving aerobic fitness through exercise training may
simultaneously improve prefrontal oxygenation and cognitive
performance. The present study is a necessary first step, which is
more cost-effective, before engaging in clinical trials. Finally, as
discussed above, we only recorded cerebral hemodynamics using
fNIRS in the bilateral DLPFCs, and thus, we have no information
on the activation patterns in other cortical and subcortical regions
involved in executive function performance. Another potential
issue in the current study was the lack of a control for the skin flow
contributions in our NIRS signals. Recent studies have indeed
raised the question of superficial—extra-cortical—contributions
in NIRS signals, specifically in the [HbO2] signal (Kirilina et al.,
2012). In our study, the differences across the cortical areas
investigated do not support the idea of a global systemic response
that biased the findings. Future investigations using methods to
definitively separate the cortical and extracortical signals in the
NIRS signals would help to identify the precise nature of the con-
tribution from the cortical layers in the optical signals obtained.
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These methods notably include the use of additional short source-
detector separation optodes as regressors (Gagnon et al., 2012)
and the analysis of the photon time-of-flight distribution in time-
domain NIRS (Aletti et al., 2012).

In conclusion, to our knowledge, the results of the present
study show for the first time that the relationship between aerobic
fitness and cognitive performance for a task that involves execu-
tive functions is, at least in part, mediated by the PFC oxygenation
measured by fNIRS. At both levels of task difficulty, the high-fit
women showed higher patterns of [HbO2] response in the right
DLPFC, which may explain, at least in part, their better cogni-
tive performance; however, there was a ceiling effect concerning
the relationship between the DLPFC activation and the behav-
ioral performance. Future interventional studies are needed to
examine whether physical training programs may simultaneously
improve aerobic fitness, PFC oxygenation and executive function
performance.
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