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Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is
commonly observed in patients with CKD and is accompanied by a decrease in plasma
high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxi-
dized lipids. The observation that statins may decrease albuminuria but do not stop the
progression of CKD indicates that pathways other than the cholesterol synthesis contribute
to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become
clear that increased lipid influx and impaired reverse cholesterol transport can promote
glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich mem-
brane domains with important functions in regulating membrane fluidity, membrane protein
trafficking, and in the assembly of signaling molecules. In podocytes, which are special-
ized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm
(SD) under physiological and pathological conditions. The discovery that podocyte-specific
proteins such as podocin can bind and recruit cholesterol contributing to the formation of
the SD underlines the importance of cholesterol homeostasis in podocytes and suggests
cholesterol as an important regulator in the development of proteinuric kidney disease.
Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is
an emerging concept in podocyte biology.This review will focus on the role of cellular cho-
lesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular
diseases.

Keywords: cholesterol, podocyte, renal disease, kidney disease, glomerular disease, ABCA1, reverse cholesterol
transport, apolipoprotein

The glomerulus is a highly specialized structure that ensures that
essential proteins are retained in the blood through the selective
ultrafiltration of plasma (1). Intensive research has outlined the
crucial role of podocytes and the slit diaphragm (SD) in the size-
selective filtration of proteins from plasma. Podocytes are visceral
glomerular epithelial cells consisting of a cell body, major and
minor foot processes. Numerous foot processes from neighboring
podocytes form a unique interdigitating pattern leaving filtration
slits between them, which are bridged by a 40-nm wide SD (2, 3).
The integrity of this filtration barrier is important to prevent the
loss of protein into the urine (proteinuria). Research of the past
two decades has revealed that the SD is a lipid raft-like structure
that contains multi-protein complexes, including ion channels,
receptors (transcient receptor potential cation channel 6, TRPC6),
transmembrane proteins (nephrin, NPHS1), integral membrane
proteins (podocin, NPHS2), structural proteins (alpha-actinin-4,
ACTN4), signaling adaptors (CD2 associated protein, CD2AP),
and other proteins involved in cell signaling, and that proper sig-
naling at the SD is essential for proper glomerular filtration. Thus,
mutations in genes coding for SD proteins were shown to cause
proteinuria-associated nephropathies (4–8). The observation that
the SD represents a lipid-raft like structure suggested that choles-
terol might play an important role in granting proper localization
of SD proteins and initiated recent research to investigate the role

of cellular cholesterol metabolism in proteinuric kidney disease.
It was shown that binding of SD proteins such as podocin to
cholesterol is necessary for the podocin-dependent activation of
TRPC6 (9, 10), further demonstrating the importance of choles-
terol in the proper function and localization of SD proteins. This
review will focus on the role of cellular cholesterol imbalance in
the pathogenesis of proteinuric glomerular diseases.

CELLULAR CHOLESTEROL HOMEOSTASIS
Cellular cholesterol homeostasis is regulated by de novo synthe-
sis, cholesterol influx, and efflux (11) and is crucial for proper
cell function (Figure 1). Cholesterol synthesis is tightly regu-
lated through the action of the sterol regulatory element bind-
ing proteins (SREBPs) that play a critical role in the regulation
of genes involved in cholesterol and fatty acid synthesis and of
the low-density lipoprotein receptor (LDLR) gene. Of the three
known isoforms of SREBP (SREBP-1a, SREBP-1c, and SREBP-
2), SREBP-2 preferentially activates genes involved in cholesterol
metabolism, whereas SREB-1c primarily acts on genes important
in fatty acid and triglyceride metabolism (12, 13). SREBPs reside
in the endoplasmatic reticulum (ER) membrane bound in com-
plexes with SREBP cleavage-activating protein (SCAP) (14–16).
When cellular cholesterol levels are low in the ER membrane, a
conformational change occurs in SCAP, allowing SREBPs to be
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FIGURE 1 | Intracellular cholesterol trafficking. The fine regulation of
cholesterol homeostasis is maintained via different mechanisms. De
novo synthesis (blue) of free cholesterol occurs via the rate-limiting
enzyme HMG-CoA reductase (HMGCR) at the endoplasmic reticulum
(ER). In the event of a cellular cholesterol deficit, cholesterol influx
(green) mediated through APOB-rich lipoproteins and triglyceride-rich
(TG-rich) lipoproteins occurs. LDLR/lipoprotein complexes are
internalized via endocytosis and transported to the lysosome for
degradation resulting in LDL and VLDL remnants, thus releasing free

cholesterol. As excess free cholesterol is toxic, it is transported to the
plasma membrane via NPC1/2 for efflux by an ABCA1-ApoAI/L1- or
ABCG1/8-HDL-mediated mechanism (purple), or it is converted to
cholesteryl esters via SOAT1 leading to the formation of cholesterol
enriched lipid droplets (red). Cholesteryl esters can be converted back to
unesterified (free) cholesterol via NCEH. Cholesterol pathways are
regulated on a transcriptional level (gray). During cholesterol deficits,
SREBP is transported to the Golgi apparatus and cleaved, allowing its
translocation to the nucleus to regulate expression of cholesterol genes.

transported to the Golgi apparatus where two sequential pro-
teolytic cleavages occur allowing for the release of the active
SREBP fragment that can transcriptionally regulate several sterol
response element genes including 3-hydroxy-3-methyl-glutaryl-
CoA reductase (HMG-CoA reductase, HMGCR), the rate-limiting
enzyme of cholesterol biosynthesis. When ER membrane choles-
terol levels are elevated, SCAP remains associated with SREBP and
prevents its transport and activation in the Golgi. This pathway
provides a feedback mechanism to prevent the over accumulation
of cellular cholesterol (Figure 1).

In the blood, cholesterol is transported by two major lipopro-
teins, low-density lipoprotein (LDL) and high-density lipopro-
tein (HDL). Circulating LDL is the major source for cholesterol
uptake into cells in a LDLR dependent manner (17). Binding of
cholesterol-containing LDL to its receptor is followed by endocy-
tosis and fusion of the LDL-containing vesicle with a lysosome.
Lysosomal enzymes digest the LDL, breaking down the proteins
to amino acids and liberating the free cholesterol. A concerted
action between Niemann–Pick C1 and C2 proteins (NPC1 and

NPC2) allows for the transport of unesterified (free) cholesterol
from the endosome/lysosome complex to the ER and then to the
plasma membrane (18, 19). The increase in cellular cholesterol
induces cellular cholesteryl ester formation through activation of
sterol-O-acyltransferase 1 (SOAT1 or acyl-Coenzyme A: choles-
terol acyltransferase, ACAT1) and reduces cholesterol synthesis
through inhibition of HMGCR and decreases LDLR synthesis (17).
Abnormal accumulation of free cholesterol leads to cell toxicity
underlining the importance of cholesterol esterification in main-
taining proper levels of free cholesterol needed for optimal cell
and cell membrane function (20–22). Enzymes involved in con-
version of free cholesterol to cholesteryl esters and vice versa at the
ER are SOAT1 and neutral cholesterol ester hydrolase 1 (NCEH)
(23). Cellular levels of cholesterol are also modulated through the
reverse cholesterol transport pathways that promote cholesterol
efflux to HDL (Figure 1).

Efflux of cellular cholesterol occurs through several distinct
pathways (24). Cholesterol efflux by aqueous diffusion is a bi-
directional, energy independent process and involves equilibrium
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of cholesterol molecules between cellular membranes and any
acceptor, including HDL. Scavenger receptor B-I (SR-BI) medi-
ates the selective uptake of HDL cholesteryl esters into cells,
and also facilitates the passive efflux of cholesterol from cells to
HDL. Third, efflux of phospholipids and cholesterol mediated by
the ATP-binding cassette transporter A1 (ABCA1) transporter is
an active, energy-requiring process that requires the presence of
extracellular lipid-poor apolipoproteins (APO proteins) includ-
ing APOAI and APOE. Another ATP-binding cassette transporter,
ABCG1, enhances efflux by increasing desorption of plasma mem-
brane cholesterol and enhancing removal by HDL (Figure 1). The
contribution of the various efflux pathways to reverse cholesterol
transport, especially in vivo, remains unknown and it is likely that
all pathways contribute to the overall extent of reverse choles-
terol transport. While the first step in reverse cholesterol trans-
port is removal of cellular cholesterol to HDL, several other key
steps in reverse cholesterol transport involve cholesterol esterifi-
cation by lecithin-cholesterol acyltransferase (LCAT) and transfer
of HDL-associated cholesteryl esters to APOB containing lipopro-
teins through the action of cholesteryl ester transferase protein
(CETP) and subsequent uptake of cholesterol by the liver for
excretion or redistribution.

Dyslipidemia is a common disorder observed in subjects with
chronic kidney disease (CKD). The most common lipid abnormal-
ities observed are elevated fasting triglyceride levels and reduced
HDL cholesterol, while total cholesterol and LDL cholesterol can
be elevated or in the normal range and is often below normal in
subjects with renal failure (25–27). In addition to the quantitative
changes in lipoprotein levels, there are a multitude of qualita-
tive changes in the lipoproteins of CKD patients that include
reduced clearance rates of triglyceride-rich lipoproteins resulting
in increased blood levels of atherogenic remnant particles (28),
increased levels of small dense LDL particles (29), increased levels
of oxidized LDL (30), altered HDL subfraction distribution with
reductions in larger HDL particles consistent with delayed matura-
tion of HDL (31), reduced LCAT activity (32), and decreased HDL
anti-oxidant and anti-inflammatory activity (27). Each of these
lipoprotein abnormalities can contribute to the increased risk of
cardiovascular disease observed in patients with CKD and likely
contribute to altered cellular cholesterol homeostasis in kidney
cells.

Defective cellular cholesterol trafficking was described in dis-
eases of genetic and non-genetic origin with and without renal
involvement (33–36). Hypercholesterolemia due to impaired
reverse cholesterol transport and abnormalities of lipid metab-
olism are common features observed in patients with end-stage
renal disease (ESRD), including patients on hemodialysis, patients
with diabetic kidney disease (DKD), nephrotic syndrome, and ure-
mia (37–40). In addition to hypercholesterolemia in the blood,
lipid accumulation in glomeruli of patients with kidney disease
was described. Although hyperlipidemia is a known risk factor
for the development of cardiovascular disease and atherosclero-
sis, the role of hyperlipidemia as a cause for the development of
renal diseases and the mechanisms leading to glomerular lipid
accumulation remain less understood (41–44).

Within the kidney, the glomerulus and proximal tubules express
various apolipoproteins and proteins important in lipid and

cholesterol metabolism. More than 30 years ago, apoA1 and apoB
were the first apolipoproteins shown to be synthesized in kid-
neys from chickens suggesting that the kidney might be a major
source for the synthesis of plasma lipoproteins (45,46). Later, it was
shown that both are secreted as constituents of lipoprotein parti-
cles from kidney cells (47). APOM, a lipoprotein associated with
HDL (48),APOE (49, 50),APOB (50), and APOL1 (51), was conse-
quently shown to be expressed in human kidneys, and we recently
demonstrated that human glomerular podocytes express ABCA1,
HMGCR, and LDL receptor (52). These observations indicate
the possibility of apolipoprotein-mediated cholesterol homeosta-
sis in kidney cells and may suggest that dysregulated cholesterol
homeostasis may represent a pathogenic mechanism in kidney
disease.

DEFECTIVE CELLULAR CHOLESTEROL TRAFFICKING IN
GLOMERULAR DISEASES OF GENETIC ORIGIN
APOE IN GLOMERULAR DISEASE
Within the glomerulus, podocytes are able to uptake LDL, APOB,
and APOE containing lipoproteins. Their capacity to uptake APOB
and APOE containing lipoproteins is increased when compared to
LDL, and this process is associated with the suppression of cellular
sterol synthesis and cholesteryl ester formation (50).

Lipoprotein glomerulopathy [LPG, Online Mendelian Inheri-
tance in Man (OMIM) #611771] is a rare genetic disorder mainly
affecting people of Japanese and Chinese origin that is caused
by a heterozygous mutation in the APOE gene on chromosome
19q13. Several mutations in APOE were identified resulting in the
expression of a dysfunctional APOE protein with impaired LDL
receptor binding (34, 53, 54). Patients with LPG have protein-
uria and nephrotic syndrome with elevated serum APOE levels,
abnormal lipoprotein deposition in glomerular capillaries in form
of laminated thrombi that contain APOB and APOE, a variable
degree of mesangial proliferation, and dysbetalipoproteinemia
(55, 56). Occasionally, a similar renal phenotype can be observed
in type III hyperlipoproteinemia, a disease that is characterized
by homozygous mutation in the ε2 allele of the APOE2 gene.
The kidney phenotype includes proteinuria, glomerulosclerosis
with mesangial and interstitial foam-cell accumulation, and the
presence of intraglomerular thrombi (57, 58). Genetic polymor-
phisms in APOE were shown to differentially affect LDLR binding.
Thus, the APOE2 variant binds poorly to LDLR, whereas the
APOE4 variant binds with high affinity (59). The APOE2 vari-
ant was associated with persistent proteinuria and renal failure in
patients with non-insulin-dependent diabetes mellitus (NIDDM)
(60) and may contribute to the severity of the renal pheno-
type in IgA nephropathy (61). Conversely, the polymorphism in
APOE4 is thought to constitute a protective factor in patients with
NIDDM (62).

Constitutive ApoE−/− mice generated through partial replace-
ment of exon 3 and part of intron 3 of the ApoE gene by a
neomycin cassette (63) are a model for experimental atheroscle-
rosis and develop a renal phenotype similar to that observed
in patients with type III hyperlipoproteinemia and LPG (64–
66). Kidneys from ApoE−/− mice showed glomerular macrophage
infiltration with foam-cell formation, deposition of extracellular
matrix, glomerular hyperplasia, mesangiolysis, and lipid deposits
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in glomerular capillaries at 24 weeks, which further progressed to
a LPG-like phenotype at 36 weeks (66). In a different study, in
which the APOE-Sendai mutation (Arg145Pro mutation found in
patients with LPG) was introduced into ApoE−/− mice showed
that, although similar, the LPG-like lesions observed in the APOE-
Sendai mice were different from the lesions in aged ApoE−/− mice
(65, 67) indicating that APOE variants may contribute to a differ-
ential phenotype in LPG. ApoE−/− mice, which were fed a high
fat diet developed a renal phenotype at 16 weeks of age with lipid
droplet and cholesterol crystal accumulation within the glomeru-
lus. This phenotype was associated with decreased basal plasma
renin concentrations and low mean arterial blood pressure, indi-
cating impaired renin-angiotensin system (RAS) function. After
renal artery constriction, these mice were unable to increase renin
secretion from the juxtaglomerular cells, demonstrating a lack of a
normal response to renal hypoperfusion (68). Similar glomerular
changes were observed in another study when male mice were fed a
high cholesterol diet for 20 weeks (69) indicating that high fat diet
accelerates the glomerular injury phenotype. Likewise, streptozo-
tocin (STZ) injected into ApoE−/− mice accelerated renal injury
when compared to non-diabetic mice and was attenuated when
advanced glycation end product (AGE) accumulation was pre-
vented by the use of an AGE formation inhibitor. Renal changes
observed in diabetic ApoE−/− mice included increased albumin-
uria and structural changes in glomeruli and tubulointerstitium
(70). Taken together, these studies suggest that ApoE deficiency
and mutations that affect ApoE binding to LDLR and the resulting
hyperlipidemia play a role in rendering renal cells more susceptible
to glomerular injury.

In further support of this hypothesis, mice with a com-
bined deficiency of inhibitor of differentiation 3 (Id3) and
ApoE−/− spontaneously develop glomerulonephritis character-
ized by lipid deposition specifically in glomeruli, the presence
of enlarged hypercellular glomeruli, mesangial expansion, and
increased extracellular matrix deposition (71). ApoE deficiency
also accelerates the renal phenotype in MRL-Faslpr mice, a mouse
model of human lupus (72). Further, decreased ApoE expression in
glomerular podocytes is observed in Tg26 (human immunodefi-
ciency virus, HIV) and Nef (negative regulatory factor) transgenic
mice, two models of HIV-associated nephropathy (HIVAN) (73),
whereas increased ApoE and ApoB expression was found in asso-
ciation with accumulation of oil red O positive lipid droplets
in glomerular visceral epithelial cells and mesangial cells in rats
with puromycin aminonucleoside or adriamycin induced nephro-
sis (74). Increased glomerular APOE expression was observed in
patients with idiopathic nephrotic syndrome but it is rather a rare
occurrence in focal segmental glomerulosclerosis (FSGS) (75).

APOM IN GLOMERULAR DISEASE
APOM is a 26-kDa apolipoprotein and is a member of the
lipocalin family expressed in the liver and in the kidney. In the
plasma, APOM is associated with HDL particles (48); in kidney
proximal tubular cells, APOM binds to megalin, thus prevent-
ing its excretion in the urine by megalin-mediated endocytosis
(76). Mutations, polymorphisms, or allelic variants of the APOM
gene have not been associated with any glomerular phenotype.
Although APOM is strongly expressed in kidney tubular epithelial

cells, it is not found in the urine of mice or human beings.
However, megalin knockout mice were shown to be character-
ized by urinary loss of low molecular weight proteins underlining
an important role of proximal tubules in resorption of proteins
(77). Megalin is expressed in glomerular podocytes where it can
bind to α-galactosidase A, suggesting a potential role in Fabry
disease, and it may act as a pathogenic antigen in membranous
glomerulonephritis (78, 79).

APOL1 IN GLOMERULAR DISEASE
APOL1 is a secreted HDL-associated protein that binds to APOA1
and promotes cholesterol efflux. It is coded by a gene on human
chromosome 22q12, and APOL1 mutations are associated with
increased susceptibility to FSGS (OMIM #612551), HIVAN, and
hypertensive nephropathy in patients of African ancestry (80–82).
Using immunofluorescence staining of normal human kidneys,
APOL1 was localized to podocytes of the glomerulus, the promixal
tubules, and the extraglomerular arterial endothelium. In kidney
biopsies from patients with FSGS and HIVAN, APOL1 expression
levels in podocytes were found decreased and de novo appearance
of APOL1 within cells of the arterial medial wall was observed (51).
The observation that normal human podocytes express APOL1
opens up the possibility that APOL1 may be contributing to
cellular cholesterol homeostasis under physiological conditions.
Likewise, it is possible that decreased podocyte APOL1 expres-
sion under disease conditions leads to decreased cholesterol efflux
from podocytes and cellular cholesterol accumulation, thus con-
tributing to the pathogenesis of glomerular diseases such as FSGS
and HIVAN. Future studies to investigate the role of the different
APOL1 variants and their role in podocyte cholesterol home-
ostasis under physiological and disease conditions are needed to
shed light on their contribution to the pathogenesis of glomerular
diseases.

LCAT IN GLOMERULAR DISEASE
Familial LCAT deficiency (OMIM #245900) is a rare genetic dis-
order caused by a mutation in the LCAT gene. LCAT is a HDL-
associated enzyme that converts cholesterol to cholesteryl esters
by transfer of the SN2 fatty acid from a phosphatidylcholines
(lecithins) with the formation of lyso-phosphatidylcholine on the
surface of HDLs. It, therefore, plays an important role in reverse
cholesterol transport from peripheral tissues to the liver. LCAT
deficiency leads to cholesterol accumulation in many tissues (83,
84). Patients with familial LCAT deficiency are characterized by
diffuse corneal opacities, target cell hemolytic anemia, and pro-
teinuria with chronic progressive glomerulopathy resulting in
renal failure. Massive lipid deposits in the glomerular basement
membrane (GBM) and in the mesangial region can be detected
(85, 86). The appearance of abnormal choleastic lipoprotein, LpX,
in the plasma of the patients was described (84, 87, 88).

Lecithin-cholesterol acyltransferase was originally shown to be
expressed only in liver (89) but later also in brain, testis, ileum,
kidney, spleen, and adrenal tissue (84, 90). More detailed analy-
sis of LCAT expression in kidneys from Mongolian gerbils by
immunohistochemistry showed expression mainly in the proximal
and distal convoluted tubules and in the collecting duct epithelial
cells (91).
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Lcat deficient mice are characterized by reduced total
cholesterol, HDL cholesterol, and APOA1 plasma levels (92, 93).
When fed a regular chow diet, Lcat deficient mice show no
glomerular phenotype. However, when fed a high fat diet, Lcat
deficient mice developed glomerular lesions including reduc-
tion of vascular space, mesangial expansion and sclerosis, and
increased extracellular matrix with accumulation of lipid droplets
and macrophages. Lipid droplets in glomeruli were composed
of free cholesterol and polar lipids as shown by filipin and oil
red O staining. Interestingly, the glomerular phenotype was only
observed in mice that simultaneously accumulated LpX (94). In
support of the observation that elevated plasma LpX levels are
necessary to mediate the glomerular phenotype, double mutant
mice with Lcat deficiency that constitutively overexpress a NH2-
terminus segment of SREBP-1a, which leads to accumulation
of predominantly LpX in plasma were shown to spontaneously
develop glomerular lesions with glomerular and tubulointerstitial
lipid deposits at 6 months (95).

NPC1 AND NPC2 IN GLOMERULAR DISEASE
Niemann–Pick disease type C (OMIM#607616) is a genetic, neu-
rogenerative disorder caused by mutations in the genes NPC1
on chromosome 18q11 in the vast majority of the cases, and
NPC2 on chromosome 14q24. Patients present with ataxia, ver-
tical supranuclear gaze palsy (VSGP), and dementia. Mutations
in this gene(s) lead to the inability to transport free cholesterol
between intracellular compartments. As a consequence, free cho-
lesterol and other lipids accumulate in late endosomes/lysosomes
in all organs including the kidney simultaneously causing a delayed
response in sterol-responsive pathways to exogenous cholesterol
(96, 97). NPC1 and NPC2 are expressed in the kidney (98, 99).
NPC2 expression was further localized to the distal and proxi-
mal convoluted tubules of the kidney (99). Although rather rare,
Niemann–Pick disease-associated renal pathology was described
in biopsies from patients and included foamy podocytes, vac-
uolated tubular epithelial cells, and collections of foam cells in
the interstitium (100). Association with a phenotype resembling
membranoproliferative glomerulonephritis type II was described
as well (101). These observations indicate that cholesterol accu-
mulation in glomerular or tubular cells contributes to the renal
pathogenesis observed in Niemann–Pick disease. In Npc1 deficient
mice, a single injection with hydroxy-propyl-beta cyclodextrin, a
cholesterol-depleting agent, was shown to increase the life span
and weekly injections normalized cholesterol metabolism in nearly
every organ (102–104).

ABCA1 IN GLOMERULAR DISEASE
Tangier disease (OMIM #205400) is an autosomal recessive and
familial hypoalphalipoproteinemia (FHA, OMIM #604091), an
autosomal dominant disorder caused by a mutation in the ABCA1
gene on chromosome 9q31 leading to accumulation of esterified
cholesterol in tissues due to impaired reverse cholesterol transport
resulting in reduced levels of plasma HDL (105–108). Patients
present with heterogeneous clinical symptoms including liver,
spleen, lymph node, and tonsil enlargement and peripheral neu-
ropathy in children and adolescents. Occasionally, cardiovascular
disease is observed in adults but the presence of a renal phenotype

in Tangier patients is extremely rare (109, 110). FHA is the more
common disease and is, like Tangier disease, characterized by low
plasma HDL but without the clinical manifestations of Tangier
disease. Abca1 deficient mice as a model for Tangier disease were
generated by partial (111) or complete (112) replacement of the
exons encoding the first ATP-binding cassette of Abca1. When fed
on a high fat diet, Abca1 deficient mice were characterized by sig-
nificantly decreased plasma HDL levels and lipid accumulation
in several tissues including the kidney. Phenotypical differences
were observed within the two models of Abca1 deficiency, pos-
sibly due to differences in the high fat diet composition or to
slight differences in the targeting strategies (111, 112). In the study
by Christiansen-Weber, a glomerular phenotype was observed,
which included the presence of a thickened and “split” GBM and
mesangial cell proliferation. Furthermore, immunoglobulin and
C3 complement complexes characteristic of menbranoprolifer-
ative glomerulonephritis were detected (111), whereas no renal
phenotype was described in the other study. The observation
that Abca1 deficient mice develop a glomerular phenotype on a
high fat diet deficiency may indicate that Abca1 deficiency leads to
increased susceptibility for the development of renal disease.

DEFECTIVE CELLULAR CHOLESTEROL TRAFFICKING IN
GLOMERULAR DISEASES OF NON-GENETIC ORIGIN
DEFECTIVE RENAL CHOLESTEROL HOMEOSTASIS IN DIABETIC KIDNEY
DISEASE
Lipid droplets in kidney biopsies from patients with DKD were first
identified by Kimmelstiel and Wilson (42) and were more recently
localized within podocyte foot processes of patients with DKD
(41). We recently demonstrated that glomerular ABCA1 expres-
sion is decreased in patients with type 2 diabetes (T2D) and early
DKD and in human podocytes treated with the sera from patients
with type 1 diabetes (T1D) and DKD in the absence of changes
in LDLR and HMGCR expression (52). These observations indi-
cate that lipid accumulation in podocytes due to defective cellular
cholesterol homeostasis may play an important role in glomerular
injury in DKD.

In support of these observations, lipid droplets in various
experimental models of DKD have been reported. In two mod-
els for DKD with type 1 diabetes, Akita, and OVE26 mice, renal
triglycerides and cholesterol accumulation was described and was
associated with increased renal cholesterol synthesis and decreased
efflux. This coincided with increased expression of SREBP-2 and
HMGCR and decreased expression of liver X receptor (LXR)-
α, LXR-β, and ABCA1 in kidneys of these mice (113). In dia-
betic STZ-injected DBA2/J mice, the DKD phenotype, which
includes albuminuria, mesangial expansion, fibrosis and lipid
accumulation in glomeruli, and tubulointerstitium is associated
with increased HMGCR expression in kidneys. Aliskiren (a renin
inhibitor) and valsartan (an angiotensin II receptor antagonist)
reduced albuminuria and glomerulosclerosis in these animals and
was associated with decreased HMGCR expression and decreased
lipid accumulation in glomeruli (114), suggesting a potential
crosstalk between the RAS and lipid metabolism in the kid-
ney. FvB-Leprdb/db mice, a model for DKD with type 2 diabetes,
spontaneously develop a renal DKD-like phenotype that includes
glomerulosclerosis, tubulointerstitial fibrosis, GBM thickening,
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and proteinuria. In addition, renal triglyceride and cholesterol
accumulation in glomeruli and tubules associated with increased
activity of SREBP-1 and -2 was observed (115). Likewise, renal
cholesterol accumulation in high fat/sucrose-fed (116) and STZ-
induced rats was associated with increased expression of SCAP,
SREBP-2, HMGCR, and LDLR. Atorvastatin, a lipid-lowering
agent with antioxidative and anti-inflammatory effects reduced
cholesterol synthesis in the kidneys improving renal function and
kidney morphology in these models (116).

It should be noted that STZ has also been shown to impair renal
function during the first week after injection in rodents affecting
not only proteinuria but also renal microcirculation and oxida-
tive pathways (117, 118). Studies to elucidate the contribution of
hyperglycemia after STZ treatment or STZ-induced renal toxicity
demonstrated that a majority of the renal damage was a result of
the diabetic condition and only early proteinuria was caused by
the nephrotoxic effects of STZ (119).

In the non-obese diabetic (NOD) mouse model of T1D,
ABCA1 protein expression was decreased in kidneys and cir-
culating macrophages, and associated with increased cholesterol
content indicating that impaired reverse cholesterol transport
may contribute to kidney phenotype observed in diabetic NOD
mice (120). Diabetes-induced reduction of kidney ABCA1 expres-
sion in association with cholesterol accumulation was observed in
cyclophosphamide-induced diabetic NOD and in LDLR-deficient-
GP (glycoprotein) lymphocytic choriomeningitis virus (LCMV)-
induced diabetic mice (121). In BTBR ob/ob mice, a type 2 diabetes
model of DKD, cholesterol accumulation occurs in kidneys, a
phenotype that can be prevented by cholesterol depletion with
cyclodextrin, underlining the causative role of cholesterol accu-
mulation in glomerular injury (52). Together these studies indicate
that cholesterol accumulation due to impaired reverse choles-
terol transport occurs in glomerular podocytes and contribute
to the pathogenesis of DKD. As statins, which decrease cholesterol
synthesis do not substantially affect the progression of kidney dis-
ease (122–124), other specific strategies that facilitate transport
of sequestered cholesterol such as targeting reverse cholesterol
transport are needed and may prove beneficial in treatment of
DKD.

DEFECTIVE RENAL CHOLESTEROL HOMEOSTASIS IN NON-DIABETIC
KIDNEY DISEASE
Chronic renal failure induced by 5/6 nephrectomy in rats is asso-
ciated with neutral lipid accumulation in the remnant renal tissue,
glomerulosclerosis and tubulointerstitial injury, and proteinuria.
In remnant kidneys, increased expression of LXR,ABCA1,ABCG1,
ACAT1, SR-B1, scavenger receptor A1 (SR-A1), lectin-type oxi-
dized LDL receptor (LOX-1), carbohydrate-responsive element
binding protein (ChREBP), fatty acid synthase (FAS), and acyl-
CoA carboxylase (ACC) was detected, whereas expression of
SREBP-1, SREBP-2, HMGCR, peroxisome proliferator-activated
receptor alpha (PPAR-α), fatty acid binding protein (L-FABP), and
carnitine palmitoyltransferase 1A (CPT1A) was decreased (125,
126). Cholesterol accumulation in proximal tubules is associated
with HMGCR activation in acute kidney injury (AKI) (127, 128).
The observation that cholesterol accumulation can result from
glomerular injury suggested that renal cholesterol accumulation

may represent a mechanism of stress response (129). In a model
of experimental glomerulonephritis with concomitant protein-
uria, cholesterol accumulation occurred in the renal cortex, i.e.,
the glomerulus and proximal tubular cells. While esterified cho-
lesterol accumulation was present in glomerular and tubular cells,
free cholesterol accumulation occurred in proximal tubular cells
and was associated with increased ABCA1 and decreased SR-B1
expression (130).

Hypoxia-induced dyslipidemia is a phenomenon that was first
described decades ago (131–133) and shown to play an important
role in foam-cell formation and cytokine secretion in athero-
sclerosis and in non-alcoholic steatohepatitis (NASH) (134–137).
Hypoxia is also a pathological feature observed in kidney disease
and hypoxia-inducible factors (HIFs), such as HIF-1 and HIF-2
are thought to play an important role in AKI. HIFs initiate the
transcription of a variety of genes involved in the regulation of
tissue oxygen levels, glucose metabolism, apoptosis, lipid metabo-
lism, and immune responses (138–143). HIF target genes include
hemeoxygenase-1, vascular endothelial growth factor, plasmino-
gen activator inhibitor-1, tissue-inhibitor of metalloproteinase-1,
and connective tissue growth factor (139, 142, 144), all of which
have been linked to the pathogenesis of a variety of glomeru-
lar diseases including DKD, FSGS, and HIVAN (145, 146). HIF-1
was shown to contribute to lipid accumulation by increasing lipid
influx and synthesis in hepatocytes through increased LDL and
very low-density lipoprotein (VLDL) uptake and increased lev-
els and activity of HMGCR, respectively (147). More recently,
it was demonstrated that activation of HIF-2 can also induce
changes in hepatic lipid metabolism leading to the develop-
ment of severe fatty liver disease in mice (148). Additionally,
hypoxia-inducible protein 2 (HIG2) was identified as a novel
lipid droplet protein and as a specific target gene of HIF-1
(149), further underlining a role for hypoxia in altered lipid
metabolism in disease. In the kidney, HIF-1 was localized to
the tubular epithelia, whereas HIF-2 was found predominantly
in glomerular (podocytes), endothelial, and interstitial cells (150,
151). The induction of HIFs or inhibition of HIF degradation
through hypoxia seems to have protective effects in AKI (152–
154). Chronic hypoxia may also contribute to the pathogenesis of
DKD (155) and genes induced by hypoxia can promote tubu-
lointerstitial injury and renal fibrosis. Thus, novel therapeutic
approaches targeting mechanisms of hypoxia-induced transcrip-
tion may prove beneficial in targeting dyslipidemia in a variety of
kidney diseases.

INFLAMMATION-INDUCED CELLULAR CHOLESTEROL ACCUMULATION
IN GLOMERULAR DISEASE
Inflammation, foam-cell formation, and lipid accumulation are
characteristic occurrences associated with glomerulosclerosis. In
non-alcoholic fatty liver disease (NAFLD), a two hit hypothesis
proposed that a first hit such as obesity, T2D, or the initial lipid
accumulation in the liver sensitizes it to a second hit such oxidative
stress and proinflammatory cytokines ultimately causing hepa-
tocellular injury and liver inflammation (156). In hepatocytes,
tumor necrosis factor alpha (TNFα) or interleukin-1 beta (IL-1β)
mediated inflammatory stress significantly reduced intracellular
cholesterol efflux by inhibiting PPAR, LXR, and ABCA1 expression
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and increased LDLR and SREBP-2 expression and suggesting that
inflammatory stress may exacerbates progression of fatty liver in
NAFLD (157). We recently described an important role of circulat-
ing factors in the pathogenesis of DKD and showed that treatment
of human podocytes with the sera from patients with DKD leads
to cholesterol accumulation (52). Therefore, it seems possible that
circulating inflammatory factors, such as TNFα or IL-1β, con-
tribute to the progression of DKD. In support of this observation,
TNFα is a major predictor of DKD progression in T1D and T2D
(158–160) and inflammatory cytokines, such as TNFα or IL-1β,
were shown to modify cholesterol-mediated LDL receptor regu-
lation in mesangial cells. These studies suggest that inflammatory
cytokines contribute to lipid-mediated renal damage (161, 162).
Furthermore, IL-1β was shown to promote intracellular choles-
terol accumulation in human mesangial cells via downregulation
of ABCA1 (163). Interestingly, IL-1β treatment of hepatic and
mesangial cells also interrupted LDLR feedback regulation, thus
causing statin resistance (164), which might explain why statins are
not effective in preventing the progression of DKD. More recently,
Nod-like receptor protein 3 (Nlrp3) knockout mice were shown to
be protected against obesity-induced renal fibrosis and microalbu-
minuria which, in wildtype mice, was associated with cholesterol
and lipid accumulation in kidneys and increased SREBP-2, LDLR,
and SREBP-1c expression (165). Whether cytokines contribute to
lipid accumulation observed in podocytes and the exact mech-
anisms that lead to cytokine-induced cholesterol accumulation
remain to be investigated.

CONCLUDING REMARKS
Emerging data strongly suggest a role of impaired cholesterol
homeostasis within glomerular cells as an important mediator
of CKD. This is supported by the observation that a variety of
glomerular diseases of genetic and non-genetic origin in humans
and targeted mutations in mice that affect lipid and lipoprotein
metabolism are associated with impaired glomerular structure.

Podocytes express genes and proteins that modulate cellular
cholesterol homeostasis, such as LDLR, ABC transporters, and
apolipoproteins involved in maintaining cellular cholesterol lev-
els. Recent studies demonstrated that the dysregulation of a single
gene involved in cholesterol homeostasis is usually not sufficient
to cause a glomerular phenotype per se but renders renal cells
more susceptible to glomerular injury. Based on these observa-
tions, we propose that in the kidney, similar to what was proposed
in NAFLD, a first insult such as obesity, T2D, or an initial lipid
accumulation occurs, which then sensitizes the kidney to a sec-
ond insult such as oxidative stress, proinflammatory cytokines, or
other stimuli ultimately leading to renal damage. Further research
is needed to determine what are the exact stimuli and mecha-
nisms that lead to glomerular cholesterol accumulation and ulti-
mately to impaired glomerular function. In addition, significant
advances in recent years have led to the identification of new
regulators of cellular cholesterol homeostasis. The observation
that circulating factors such as cytokines and hypoxia-induced
transcription factors, such as HIFs, can directly regulate genes
important for cholesterol homeostasis in hepatocytes opens new
avenues to investigate if they also contribute to lipid dysregu-
lation observed within glomerular cells. Such research will not

only increase our insights into the physiology of cellular choles-
terol homeostasis and trafficking in glomerular cells but it will
also help to identify new drug targets and strategies to treat a
variety of glomerular diseases, which are characterized by cellular
dyslipidemia.
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