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Brain dopamine receptors have been preferred targets for numerous pharmacological
compounds developed for the treatment of various neuropsychiatric disorders. Recent
discovery that D2 dopamine receptors, in addition to cAMP pathways, can engage also in
Akt/GSK3 signaling cascade provided a new framework to understand intracellular sig-
naling mechanisms involved in dopamine-related behaviors and pathologies. Here we
review a recent progress in understanding the role of Akt, GSK3, and related signaling
molecules in dopamine receptor signaling and functions. Particularly, we focus on the mol-
ecular mechanisms involved, interacting partners, role of these signaling events in the
action of antipsychotics, psychostimulants, and antidepressants as well as involvement in
pathophysiology of schizophrenia, bipolar disorder, and Parkinson’s disease. Further under-
standing of the role of Akt/GSK3 signaling in dopamine receptor functions could provide
novel targets for pharmacological interventions in dopamine-related disorders.
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INTRODUCTION
Dopamine is a catecholamine neurotransmitter involved in the
regulation of multiple functions in the CNS and periphery, includ-
ing locomotion, cognition, emotional behaviors, and endocrine
regulation (Carlsson, 1993; Beaulieu and Gainetdinov, 2011).
Consequently, abnormal dopamine signaling could play a role in
many neuropsychiatric disorders such as schizophrenia, bipolar
disorder, depression, Parkinson’s disease, attention deficit hyper-
activity disorder (ADHD), Tourette syndrome, and drug abuse.
Dopamine exerts its biological functions by activation and signal-
ing through two different groups of G protein-coupled receptors
(GPCRs). The first category, the D1 family, comprises the D1- and
D5-receptors (D1R and D5R). The second family, named D2-class
receptors, is formed by the D3R, D4R along with the short and
long splice variants of the D2R (Missale et al., 1998; Beaulieu and
Gainetdinov, 2011).

Historically, it was believed that dopamine receptors signal
exclusively through G protein-dependent cellular processes. D1R
is mostly coupled to Gαs/olf proteins and stimulate the activity
of adenylate cyclase and the production of the second messen-
ger cAMP. In contrast, D2R is associated to Gαi/o protein to
inhibit the production of cAMP (Spano et al., 1978; Kebabian and
Calne, 1979). However, more recent investigations have revealed
that dopamine receptors can exert some of their biological effects

through alternative signaling pathways which may or may not
involve cAMP (Beaulieu et al., 2004, 2005; Hasbi et al., 2009). For
instance, there are indications that both D1R and D2R can trans-
activate the brain derived neurotrophic factor (BDNF) receptor in
neurons (Swift et al., 2011). These two dopamine receptors have
also been shown to regulate the internalization of calcium chan-
nels through direct protein:protein interaction in vivo (Kisilevsky
and Zamponi, 2008; Kisilevsky et al., 2008). Finally, there is strong
evidence that dopamine receptors can signal in vivo by activating
cAMP-independent mechanisms involving the multifunctional
adaptor protein beta-arrestin 2 (βArr2; Beaulieu et al., 2004, 2005).
This protein is generally recruited to activated/phosphorylated
GPCRs and plays a central role in receptor desensitization through
receptor-G protein uncoupling and clathrin-dependent internal-
ization (Lohse et al., 1990; Ferguson et al., 1996). In addition to
this well established role, βArr2 can act as a scaffold for kinases
and phosphatases by forming a signaling complex that leads to the
activation of various G protein-independent intracellular signal-
ing cascades (Figure 1) including the Akt/GSK3 pathway (Luttrell
et al., 1999; Beaulieu et al., 2004, 2005; Luttrell and Gesty-Palmer,
2010).

The serine/threonine kinase Akt is known to be regulated
by phosphoinositide 3-kinase (PI3K) signaling via the activa-
tory phosphorylation of Akt at its threonine (Thr 308) and its
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FIGURE 1 | Dual role of beta-arrestin 2 in D2R desensitization and

Akt/GSK3 signaling. (A) GPCR activation/desensitization cycle. Following
the activation of dopamine receptors (DAR), the receptor is
phosphorylated by G protein receptor kinases (GRK), which leads to the
recruitment of beta-arrestins. The recruitment of beta-arrestins to the
receptors results in clatrin-mediated endocytosis that is followed either by
receptor degradation of cell surface recycling. (B) G protein-dependent

and G protein-independent beta-arrestin-mediated signaling of D2R.
Receptor activation leads to both classical G protein mediated signaling
and to the formation of complexes of signaling molecules that are
associated together by beta-arrestins. In the specific case of striatal D2R
beta-arrestin 2 has been shown to enhance the interaction between Akt
and protein phosphatase 2A (PP2A) therefore resulting in Akt inactivation
and increased activation of GSK3.

serine (Ser 473) residues by two phosphatidyl-dependant kinases,
PDK1 and PDK2/rictor-mTOR, respectively (Scheid and Wood-
gett, 2001; Jacinto et al., 2006). Once activated, Akt in turn phos-
phorylates GSK3 isoforms at the single regulatory serine residues
serine 21 (GSK3α) and serine 9 (GSK3β) that are located in the
N-terminal domains of both GSK3α and GSK3β (Stambolic and
Woodgett, 1994; Frame and Cohen, 2001) and thereby causing
their inactivation. Over the last 7 years, several independent lines
of evidence have demonstrated that dopamine receptors can exert
at least some of their biological functions by regulating the activity
of Akt and GSK3 isoforms.

Here we provide an overview of the molecular mechanisms by
which dopamine receptors can regulate the activity of brain Akt
and GSK3. In addition, we evaluate the role played by these kinases
in the regulation of various behaviors by dopamine, the role of
Akt/GSK3 signaling cascade in the action of psychoactive drugs
and potential relevance of the abnormalities found in this path-
way for the development of dopamine-related neuropsychiatric
diseases.

THE REGULATION OF Akt AND GSK3 BY D2 DOPAMINE
RECEPTORS
Several lines of evidence have suggested that dopamine may play
a role in the regulation of Akt and GSK3 signaling in vivo. For
instance, as early as in 1971, behavioral observations in rodents
have shown that lithium, which is now known to inhibit GSK3,
can antagonize locomotor activity induced by drugs elevating
dopaminergic tone or by the direct injection of dopamine in
the nucleus accumbens (Cox et al., 1971; Barnes et al., 1986;
Aylmer et al., 1987). However, these studies were all conducted
before the discovery of the effect of lithium on GSK3 (Klein and
Melton, 1996; Stambolic et al., 1996), and the actions of lithium
in these experimental systems were generally attributed to other
mechanisms including changes in dopamine release or dopamine
receptor blockade. More recently, independent lines of research
have shown that several antipsychotic drugs, known to share a
D2R antagonist action, can activate Akt and increase the inhibitory
phosphorylation of GSK3 in the rodent brain (Beaulieu et al.,
2004; Emamian et al., 2004; Li et al., 2007). However, since these
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drugs also have other molecular targets and alternative mecha-
nisms such as an action on serotonin receptors (Beaulieu, 2007; Li
et al., 2007; Beaulieu et al., 2008b), these additional mechanisms
could also contribute to the effect of these drugs on Akt/GSK3
signaling.

Characterization of cell signaling abnormalities in mice lack-
ing the dopamine transporter (DAT–KO) have provided the first
direct in vivo evidence for a role of dopamine in the regulation of
Akt/GSK3 signaling in the mouse striatum (Beaulieu et al., 2004).
The absence of dopamine reuptake by presynaptic dopamine neu-
rons in these mice lead to about fivefold increase in extracellular
dopamine concentration in the striatum (Gainetdinov et al., 1999).
This persistent hyperdopaminergia results in reduced phosphory-
lation of Akt on its regulatory threonine 308 residue leading to
a reduction of Akt activity and a concomitant activation of both
GSK3α and GSK3β due to a reduction in the phosphorylation of
their N-terminal domain by Akt (Beaulieu et al., 2004). A sim-
ilar effect on Akt and GSK3 has been observed following the
administration of indirect dopamine agonist amphetamine, that
exerts its effects by elevating extracellular dopamine concentra-
tions (Beaulieu et al., 2004; Polter et al., 2010). Furthermore,
the non-selective D1R/D2R agonist apomorphine has also been
reported to inhibit Akt phosphorylation in the mouse striatum
(Beaulieu et al., 2005, 2007b).

A direct contribution of dopamine to the regulation of Akt
and GSK3 was established by inhibiting dopamine synthesis in
DAT–KO mice using the irreversible tyrosine hydroxylase inhibitor
α-methyl-para-tyrosine (Beaulieu et al., 2004). It is important to
note, that since these mice cannot reuptake and recycle dopamine
to presynaptic terminal, inhibition of dopamine synthesis in DAT–
KO mice leads to a virtual absence of striatal dopamine within
minutes following drug administration (Beaulieu et al., 2004; Sot-
nikova et al., 2005). Two hours after this treatment, DAT–KO
mice showed a restoration of Akt activity and enhanced inhibitory
N-terminal phosphorylation of GSK3α and GSK3β.

THE ROLE OF D2-CLASS RECEPTORS
Pharmacological characterization of the receptor involved in the
inhibition of Akt and activation of GSK3 by dopamine in DAT–KO
mice showed that Akt and GSK3 phosphorylation can be restored
in DAT–KO mice by the administration of raclopride, a D2-class
receptor antagonist (Beaulieu et al., 2004). A contribution of this
family of receptors has later been confirmed by an investigation
of dopamine-dependent regulation of Akt and GSK3 phosphory-
lation in mice lacking different subtypes of dopamine receptors.
This study showed that D2R is essential for the inhibition of striatal
Akt by amphetamine and apomorphine, while the effect of these
drugs remained intact in D1R–KO mice. Interestingly, mice lacking
the dopamine D3R showed a reduced sensitivity of Akt-mediated
signaling to dopaminergic drugs but retained the action of these
drugs on Akt at high dose regimens, suggesting that D3R also par-
ticipates in the regulation of Akt/GSK3 signaling, potentially by
enhancing D2R responses (Beaulieu et al., 2007b).

Since these initial characterizations were performed (Beaulieu
et al., 2004), several independent studies using different pharmaco-
logical approaches have shown that a regulation of Akt and GSK3
by D2R end D3R is not restricted only to the mouse striatum.

Indeed, prolonged elevation of dopaminergic tone (Li et al., 2009)
or subchronic treatment with the D2R agonist quinpirole have
been reported to inactivate Akt and activate GSK3 in the rat frontal
cortex (Sutton and Rushlow, 2011). In contrast, administration of
the D2R antagonist raclopride or D3R antagonist nafadotride has
the opposite effect on Akt activity in different regions of the rat
brain (Sutton and Rushlow, 2011). Finally, a recent report has
convincingly shown the inactivation of Akt in response to D2R
stimulation in the developing zebrafish brain (Souza et al., 2011),
thus demonstrating that regulation of Akt and GSK3 is a shared
functional property of D2R across several species of vertebrates.

cAMP-INDEPENDENT DOPAMINE RECEPTOR SIGNALING
Dopamine D2-class receptors are coupled to Gαi/o G protein
and therefore inhibit adenylate cyclase and the production of
cAMP and the activity of protein kinase A (PKA). Importantly,
modulation of cAMP levels does not affect Akt and GSK3 activity
in the mouse striatum, therefore indicating that D2R regulate this
signaling cascade via a different type of mechanism (Beaulieu et al.,
2004). Characterization of cell signaling responses in mice lacking
βArr2 has shown that this molecule is essential for the inhibition of
Akt and concomitant activation of GSK3 by D2R (Beaulieu et al.,
2005; Figure 1). Furthermore, the inactivation of Akt by dopamine
can also be prevented by inhibiting the serine/threonine protein
phosphatase 2A (PP2A), which is known to play a role in mediat-
ing Akt inactivation in different biological systems (Ugi et al., 2004;
Beaulieu et al., 2005). Further characterizations of the mechanisms
through which D2R triggers the inactivation of Akt have shown
that dopamine promotes the formation of a signaling complex
(Figure 2) composed at least of Akt1, βArr2, and PP2A, thereby
facilitating the inactivation of Akt by the phosphatase (Beaulieu
et al., 2005, 2008a).

It is noteworthy, that the formation of the Akt:βArr2:PP2A
signaling complex in response to D2R activation represents a
mechanism through which an intercellular messenger molecule
(i.e., dopamine) can trigger the inactivation of PI3K/Akt signaling
in a regulated fashion. Importantly, the Akt:βArr2:PP2A signal-
ing complex can be dissociated in response to lithium (Figure 2),
thus providing a likely explanation for early behavioral observa-
tions of an antagonistic effect of lithium on dopamine-mediated
behaviors as well as a plausible mechanism for the activation of
Akt by lithium (Beaulieu et al., 2008a; O’Brien et al., 2011; Pan
et al., 2011). The details of the mechanism(s) by which lithium
triggers this dissociation are not yet fully understood. Present evi-
dence suggests that lithium may affect the stability of this complex
by acting on several of its components, possibly in a synergis-
tic fashion. First, lithium can interfere with the interaction of
Akt1 and βArr2 (Beaulieu et al., 2008a). Indeed in vitro experi-
ments conducted on recombinant proteins have shown that this
interaction is dependent upon the presence of magnesium ions
and that addition of an excess of magnesium can prevent the
dissociation of Akt and βArr2 by lithium at therapeutic concen-
trations (1 mM). Second, GSK3β has also been shown to interact
with βArr2. Recent evidence obtained from transgenic mice over-
expressing frog GSK3β in neurons indicate that activated GSK3
can act as a feed forward mechanism for its own activation by
stabilizing the Akt:βArr2:PP2A signaling complex (O’Brien et al.,
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FIGURE 2 | Regulation of dopamine and D2R-dependent

Akt:βArr2:PP2A signaling complex by lithium and GSK3. (A) Under
basal condition, the activation of D2R stimulates the formation of a
signaling complex composed by beta-arrestin 2, PP2A, and Akt. The
formation of this complex results in increased inactivation of Akt by PP2A.
Furthermore enhanced activation of GSK3 that results from Akt inhibition
would act as a positive feedback loop that further stabilizes the signaling
complex. Finally, the formation of this complex also appears to be
dependent on Mg2+ to allow the interaction of Akt and beta-arrestin 2. (B)

Following treatment with lithium, the formation of this signaling complex
can be destabilized by two overlapping mechanisms. First a competition
between Li+ and Mg2+ ions can disrupt the complex directly by preventing
the interaction of Akt and beta-arrestin 2. Second direct inhibition of GSK3
by lithium prevents the stabilization of the complex by activated GSK3.

2011). According to this model, a direct inhibition of GSK3 by
lithium would thus constitute an additional mechanism that can
promote the disassembly of the Akt:βArr2:PP2A in response to
lithium.

OTHER REGULATION MODES OF Akt AND GSK3 BY
DOPAMINE
While there are several reports that Akt is inhibited following
the activation of D2-class receptors, there are also some in vitro
and indirect in vivo observations of Akt activation and subse-
quent inhibition of GSK3 following dopamine receptor stimu-
lation (Brami-Cherrier et al., 2002; Svenningsson et al., 2003;
Mannoury La Cour et al., 2011; Rau et al., 2011). Indeed, acti-
vation of both D1R and D2R in primary cultures of embryonic
striatal neurons has been shown to increase the phosphoryla-
tion/activation of Akt in the nucleus (Brami-Cherrier et al., 2002).
Similarly, a recent report has shown that transfection of the long
splice variants of human D2R or D3R in Chinese hamster ovary
(CHO) cells can activate Akt and inhibit GSK3 by increasing their
phosphorylation (Mannoury La Cour et al., 2011). In vivo, activa-
tion of Akt by cocaine (Brami-Cherrier et al., 2002) and inhibition
of GSK3 by amphetamine (Svenningsson et al., 2003) in the mouse
striatum, as well as activation of Akt following methampheta-
mine in a rat model stroke (Rau et al., 2011) have also been
reported.

One major difference between these observations and research
showing an inactivation of Akt by D2-class receptors resides
in the intrinsic temporal dynamics of these signaling mecha-
nisms. In general, increased Akt and/or GSK3 phosphorylation
have been reported to occur at short intervals (1–15 min) after
receptor activation (Brami-Cherrier et al., 2002; Svenningsson
et al., 2003; Mannoury La Cour et al., 2011). In contrast, βArr2-
mediated signaling resulting in reduced phosphorylation of Akt
and GSK3 occurs at later time periods (30 min or more) fol-
lowing receptor activation (Beaulieu et al., 2004, 2005; Emamian
et al., 2004; Li et al., 2009). These variations in response time
are important since G protein- and arrestin-mediated signaling
(Figure 3) are characterized by different temporal dynamics (Ahn
et al., 2004; Shenoy et al., 2006; Beaulieu et al., 2007a). Mecha-
nisms that are mediated by G proteins have a fast onset and a
short duration as a result of GPCR desensitization in both cul-
tured cells and in vivo. In contrast, arrestin-mediated signaling
is characterized by much slower and progressive onset and does
not have a known desensitization mechanism therefore allowing
for prolonged signaling responses lasting from several minutes to
hours.

It is thus possible that in addition of the βArr2-mediated sig-
naling that results in the inhibition of Akt and the activation of
GSK3, dopamine receptors may also have an opposite effect by
activating Akt and inactivating GSK3 via G protein-dependent
mechanisms. However, the exact nature of such mechanisms
remains mostly unexplained as changes in cAMP production,
the hallmark of dopamine receptor G protein-mediated signal-
ing, does not affect the phosphorylation of Akt and GSK3 in the
mouse striatum, at least at later time points (Beaulieu et al., 2004).
One possibility is that activation of Akt by dopamine under cer-
tain conditions may result from alternative G protein signaling
mechanisms. Among such potential mechanisms, Gβγ G protein
subunits can activate PI3K and therefore result in increased Akt
activation, as has been shown following the activation of several
different GPCRs (Brock et al., 2003). In addition to this possi-
bility, recent reports also indicate that dopamine receptors may
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FIGURE 3 | Putative signaling pathways downstream of dopamine

receptors with different potential outcomes on Akt/GSK3 signaling.
Dopamine receptors can regulate Akt and GSK3 signaling by acting through
at least two signaling mechanisms that have an opposite effect on the
activity of these two kinases. Activation of D2R leads to a regulated
deactivation of Akt by PP2A that is mediated by beta-arrestin 2. In contrast
activation of either D1R or D2R can also activate Akt via receptor tyrosine
kinase (RTK) transactivation leading to enhancement of Pi3K signaling.

activate Akt by transactivating receptor tyrosine kinase (RTK).
For instance, the activation of Akt by D2R and D3R in CHO
cells appears to involved the transactivation of the insulin like
growth factor 1 receptor (Mannoury La Cour et al., 2011). In a
similar way, the development of a new image analysis method
to quantify protein dimerization in single cells – spatial inten-
sity distribution analysis (SpIDA) – has shown that stimulation of
either transfected D1R or D2R in CHO cells provoques a dose-
dependent dimerization and activation of the epidermal growth
factor receptor as early as 5 min following dopamine receptor
stimulation with apomorphine (Swift et al., 2011). Closer to a
naturally occurring situation, SpIDA also revealed that endoge-
nous D1R and D2R can activate endogenous BDNF TrkB receptor
within a similar time frame in response to apomorphine in pri-
mary neuron cultures obtained from new born mice striatum
(Swift et al., 2011). Intriguingly also, a decreased mRNA lev-
els for BDNF and its high affinity receptor TrkB was found in
the frontal cortex of hyperdopaminergic DAT-KO mice (Fuma-
galli et al., 2003). Taken together, these observations indicate that
D1R or D2R have the ability to transactivate or interact with at
least 3 different types of RTKs and that such a signaling mecha-
nism is compatible with the normal expression of these different
receptors in neurons (Figure 3). Despite the interesting possi-
bilities raised by this mechanism, further studies will be needed
to evaluate the relative contribution of RTK transactivation by
GPCRs in the biological functions of dopamine receptors in in vivo
settings.

INVOLVEMENT OF Akt AND GSK3 IN THE REGULATION OF
BEHAVIOR BY DOPAMINE
Importance of Akt/GSK3 signaling for dopamine-related behav-
iors was evident from the pioneering observations uncovering
the role of this pathway in dopamine receptor signaling. Phar-
macological and genetic manipulations that increased or reduced
dopaminergic activity and caused profound effects on locomo-
tor activity in mice, induced also significant alterations in the
phosphorylation of Akt and GSK3 (Beaulieu et al., 2004). At
the same time, pharmacological or genetic suppression of GSK3
activity inhibited locomotor hyperactivity related to excessive
dopaminergic tone in DAT–KO or amphetamine-treated mice
(Beaulieu et al., 2004; Gould et al., 2007). Similarly, several GSK3
inhibitors blocked amphetamine-induced hyperactivity in nor-
mal animals (Gould et al., 2007; Kalinichev and Dawson, 2011).
In contrast, mice over-expressing GSK3β showed pronounced
locomotor hyperactivity (Prickaerts et al., 2006) and transgenic
mice that express a GSK3β mutant (lacking an inhibitory phos-
phorylation site and thus have constitutively active GSK3β),
demonstrate increased novelty-driven and amphetamine-induced
hyperactivity (Polter et al., 2010).

Mice lacking Akt1 demonstrate enhanced sensitivity to amphet-
amine as regard to disruption of sensorimotor gating in pre-pulse
inhibition (PPI) test, which is classically used to model psychosis in
rodents (Emamian et al., 2004). As described above, Akt1 is inhib-
ited following the stimulation of D2R, thus the increased behav-
ioral effect of amphetamine in Akt1–KO mice likely results from
the involvement of Akt in dopamine-related behavioral responses.

There are several lines of evidence highlighting the role of
βArr2-dependent signaling complex in the actions of dopamine.
It has been observed, that βArr2–KO mice display spontaneous
locomotor hypoactivity, reduced apomorphine-induced climbing
and amphetamine-induced hyperlocomotion (Gainetdinov et al.,
2004; Beaulieu et al., 2005). These mutants also have a reduced
responsiveness to the dopamine-dependent locomotor effects of
morphine (Bohn et al., 2003). In addition, novelty-driven locomo-
tor hyperactivity phenotype typical of hyperdopaminergic DAT–
KO mice is less pronounced in mice lacking both βArr2 and DAT
(Beaulieu et al., 2005). Finally, the antimanic drug lithium that dis-
rupts βArr2/Akt/PP2A signaling complex and can directly inhibit
GSK3, exerts multiple actions on behaviors including suppression
of spontaneous locomotor activity in DAT–KO and normal mice,
but not in βArr2–KO mice (Beaulieu et al., 2004, 2005).

Interestingly, a recent publication (Miller et al., 2010) also
points toward a possible involvement of GSK3 in regulation loco-
motor responses do D1R stimulation. In this article, the authors
report that pharmacological inhibition of GSK3 using SB 216763
leads to reduced behavioral responses to the selective D1R agonist
SKF-82958. However, this has to be interpreted with caution since
SB216763 is also an inhibitor of cyclin dependent kinases (Meijer
et al., 2004), and kinases from this family, namely cyclin depen-
dent kinase 5 (CDK5), are known to contribute to D1R signaling
responses (Bibb et al., 1999; Cyr et al., 2003). Furthermore, the
expression of a full locomotor response to dopamine agonists is
known to depend upon a synergism of D1R and D2R stimulation.
Under normal conditions the locomotor effects of a D1R ago-
nist results from an exacerbated stimulation of D1R in a context
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where both D1R and D2R are stimulated by dopamine already
present in the brain. Since GSK3 is regulated by D2R, it is there-
fore possible that the results reported by Miller et al., may be
explained by an effect of GSK3 inhibitors on locomotion down-
stream of D2R. In line with this, it is of interest that the full effects
of D1R stimulation on locomotion are significantly curtailed in
D2R knockout mice where D1R/D2R synergism is abolished (Kelly
et al., 1998).

Given the involvement of dopamine in multiple behavioral
manifestations beyond locomotor activity, it is imperative to
understand the role of AKT/GSK3 signaling cascade in these
behaviors. For example, recent publications have suggested that
GSK3 is important for psychostimulant-induced sensitization
(Chen et al., 2007b; Miller et al., 2009), a process generally related
to intermittent dopaminergic stimulation. Certainly, more studies
in various behavioral paradigms could be expected in future on
this issue.

MOLECULAR TARGETS OF DOPAMINE, REGULATED BY βArr2,
Akt, AND GSK3
With growing appreciation of a role for Akt and GSK3 in dopamine
receptor signaling, understanding of the nature of the molecular
targets of these kinases has become a priority. Akt and GSK3 are
known to have multiple substrates, many of them being involved in
critical cellular processes such as cytoskeleton organization, traf-
ficking, cell survival, apoptosis, and DNA transcription (Frame
and Cohen, 2001; Woodgett, 2001). Here, we overview the major
targets of GSK3 that have shown a direct role in dopamine recep-
tor signaling and that could be involved in the pathogenesis of
neuropsychiatric disorders. These targets include, but are not lim-
ited to, the direct GSK3 targets β-catenin, ionotropic glutamate
receptors and clock genes involved in the regulation of circadian
rhythms.

β-CATENIN
β-catenin is a common component of the Wnt and Akt/GSK3
signaling pathway. This protein that has multiple roles in the reg-
ulation of various aspects of cell cycle (Freyberg et al., 2010).
Among other functions, β-catenin can act as a transcription factor
and as a scaffolding protein that anchors the actin cytoskeleton
to organize adherent junctions. Generally, in the absence of Wnt
stimulation, β-catenin predominantly engages in Akt/GSK3 path-
way by forming a complex with GSK3 and several other proteins.
In this complex, β-catenin is phosphorylated by GSK3, which
results in ubiquitination and proteasomal degradation of this pro-
tein (Doble and Woodgett, 2003). At the same time, activation of
the Wnt receptor Frizzled causes disruption of this complex via
involvement of Disheveled (Dvl) protein. Freed β-catenin then
translocates to the nucleus and affects gene expression (Fukumoto
et al., 2001). Several reports indicate that the action of dopamine
and psychotropic drugs on the gene expression and neuronal mor-
phology can involve the Wnt pathway and the Akt/GSK3 signaling
cascade-mediated alterations in β-catenin activity. For example,
the antipsychotic drugs haloperidol and clozapine may cause an
enhancement of Dvl-3 isoform activity in the striatum which in
turn may interact with D2R (Sutton et al., 2007) to modulate
Akt, GSK3, and β-catenin activities (Sutton and Rushlow, 2011).

Furthermore, antipsychotics haloperidol, risperidone, and cloza-
pine can alter GSK3 and β-catenin expression not only in the
striatum but also in the prefrontal cortex (Alimohamad et al.,
2005b) and ventral midbrain (Alimohamad et al., 2005c). In
contrast, direct and indirect dopamine receptor agonists quinpi-
role and amphetamine, respectively, induce the opposite response
(Alimohamad et al., 2005c; Sutton and Rushlow, 2011). Impor-
tantly, chronic treatment of mice with the mood stabilizer lithium
results in increased β-catenin expression in the amygdala, hypo-
thalamus, and hippocampus (O’Brien et al., 2004; Beaulieu et al.,
2008a). Furthermore, mice over-expressing β-catenin recapitu-
late the behavioral effects of the GSK3 inhibition by lithium in
dopamine-dependent tests such as locomotor hyperactivity and in
tests used to evaluate antidepressant and anxiolytic actions (Gould
et al., 2008). It is likely, that these effects are mediated by β-catenin
in the striatum, since the β-catenin forebrain-specific conditional
mutant mice demonstrate only minimal behavioral abnormali-
ties (Gould et al., 2008). Certainly, future studies are necessary to
fully understand the role of β-catenin in actions of dopamine and
psychotropic drugs.

IONOTROPIC GLUTAMATE RECEPTORS
The regulation of Akt/GSK3 signaling cascade by dopamine recep-
tors has important modulatory influences on some specific func-
tions of NMDA ionotropic glutamate receptors and related synap-
tic plasticity (Chen et al., 2007a). For example, alterations in GSK3
activity modulate the development of both long-term potentiation
(LTP) and long-term depression (LTD) in rat hippocampal slices,
the synaptic processes known to be regulated by ionotropic glu-
tamate receptors (Peineau et al., 2007, 2008; Zhu et al., 2007).
Intriguingly, D2R-mediated Akt/GSK3 signaling seems to be pri-
marily responsible for the regulation of NMDA receptor functions
in response to excessive levels of dopamine in the rat frontal cor-
tex (Li et al., 2009). It has been reported that high concentrations
of dopamine cause a reduction of NMDA currents and internal-
ization of the NMDA receptor subunit NR2B. These effects of
excessive dopaminergic stimulations on NMDA receptor functions
are dependent of D2R, GSK3, and PP2A and can not be affected by
inhibition of G proteins, thus indirectly suggesting an involvement
of G protein-independent βArr2-mediated D2R signaling (Li et al.,
2009). However, the postulated contribution of βArr2 to the reg-
ulation of NMDA receptor function by dopamine has not been
validated yet in direct investigations involving βArr2–KO mice.
Furthermore, it would be important to determine if similar type
of regulation occurs in the striatum and in other brain areas or if
it is restricted only to cortical neurons.

REGULATION OF CLOCK GENE SIGNALING
Several psychiatric disorders such as bipolar disorder and par-
ticularly seasonal affective disorder could be related, at least in
part, to the dysregulation of circadian rhythms (Benedetti et al.,
2004; Mansour et al., 2006). Original observations associating
GSK3 activity to the regulation of circadian rhythms performed
in Drosophila melanogaster (Yuan et al., 2005) revealed that the
fly GSK3 ortholog, Shaggy, potently modulates the circadian
cycle in response to serotonin. Consequently, several other stud-
ies in mammals have demonstrated the regulation of circadian
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rhythms and clock genes by GSK3 (Iitaka et al., 2005; Lam-
ont et al., 2007). For example, it has been found that lithium
affects the transcription of the clock gene Bmal1 presumably via
GSK3 inhibition (Lamont et al., 2007). Furthermore, regulation
of mammalian circadian protein functions by GSK3β was shown
in vitro (Iitaka et al., 2005). Intriguingly, it has been reported
that D2R can influence circadian rhythm-regulated gene expres-
sion and related behaviors (Doi et al., 2006; Yujnovsky et al.,
2006). Also, it is well known that D2R is expressed at high levels
in the retina and thus can play an important role in adapta-
tion to light (Doi et al., 2006). Finally, activation of D2R causes
stimulation CLOCK:BMAL1 functions potentially via regulation
of circadian gene expression through βArr2/Akt/GSK3 signaling
cascade (Sahar et al., 2010). Taken together, these observations
indicate a putative mechanism connecting circadian rhythm to
D2R functions.

Akt AND GSK3 IN THE ACTION OF ANTIPSYCHOTICS
All clinically effective antipsychotics share the ability to antago-
nize D2R (Snyder, 1976). Several antipsychotics have been shown
to be able to activate Akt and inhibit GSK3 further supporting the
role of the βArr2/Akt/GSK3 pathway in D2R signaling (Emamian
et al., 2004; Alimohamad et al., 2005b; Li et al., 2007; Beaulieu
et al., 2009). For example, the typical antipsychotic haloperidol
increases phosphorylation of Akt and GSK3 thereby antagoniz-
ing action of dopamine (Beaulieu et al., 2004; Emamian et al.,
2004). Furthermore, it has been shown that atypical antipsychotics
clozapine, olanzapine, quetiapine, risperidone, and ziprasidone
can either activate Akt or mimic its activity by increasing phos-
phorylation of GSK3α and GSK3β (Alimohamad et al., 2005b; Li
et al., 2007). While the role of βArr2 in the actions of antipsy-
chotics has not been validated yet in in vivo studies involving
mutant mice, in vitro studies in cells have indicated that both typi-
cal and atypical antipsychotics are highly effective in antagonizing
the recruitment of βArr2 to the D2R long isoform in comparison
to their action on cAMP signaling (Masri et al., 2008). Partic-
ularly, three different patterns of activity of a panel of antipsy-
chotics on cAMP mediated signaling and βArr2 recruitment were
observed. Certain antipsychotics, including haloperidol, demon-
strated potent antagonism of both the regulation of cAMP and
the recruitment of βArr2 to the D2LR with approximately sim-
ilar efficacy. Other antipsychotics, such as clozapine showed a
stronger antagonist activity on βArr2 recruitment than on the
cAMP regulation. Finally, a representative of a third group of
antipsychotics, aripiprazole, acted as a partial agonist as regard
to cAMP signaling while potently inhibiting βArr2 recruitment to
D2R.

In summary, these results indicate that antipsychotics may
vary in their ability to antagonize cAMP production but share
a common antagonistic action as regard to D2R/βArr2-mediated
signaling at least in vitro. Future in vivo studies are thus nec-
essary to compare the physiological action of each of these
drugs with regard to their action on D2R/βArr2/Akt/GSK3 sig-
naling cascade. However, it is noteworthy that several atypical
antipsychotics such as clozapine are not only D2R antagonists
but are also able to affect brain 5-HT neurotransmission via
action on 5-HT2A receptors (Kapur and Remington, 2001). Since

drugs acting on 5-HT neurotransmission or decreasing 5-HT
synthesis are known to affect GSK3 activity in vivo (Li et al.,
2007; Beaulieu et al., 2008b), it is likely that atypical antipsy-
chotics can affect GSK3 activity through both dopaminergic and
serotonergic mechanisms. Further studies are therefore neces-
sary to delineate the relative contribution of dopamine- and
5-HT-related processes in the modulation of Akt/GSK3 signal-
ing cascade by antipsychotic drugs and thus to define the roles
that these mechanisms may play in the treatment of psychotic
disorders.

GENETIC ASSOCIATIONS BETWEEN REGULATORS OF
Akt/GSK3 SIGNALING AND PSYCHIATRIC DISORDERS
A role for D2R/βArr2/Akt/GSK3 signaling in the action of mood
stabilizers and antipsychotics is also supported by clinical studies
of genetic risk factors for schizophrenia and bipolar disorders.
Psychiatric disorders are multifactorial conditions that involve
various combinations of genetic, epigenetic, and environmental
factors (Karayiorgou and Gogos, 1997). Several recently published
meta-analysis studies have examined the results of ≥1000 genetic
association studies attempting to identify candidate genes for
schizophrenia (Allen et al., 2008; Jia et al., 2010). Interestingly, in
some cases the same allelic polymorphisms have been associated
with different neuropsychiatric pathologies such as schizophrenia,
bipolar disorder, unipolar depression, and autism. To better under-
stand the mechanisms of such possible common etiology, several
genetically altered animal models have been created with the focus
on genes known to be altered in these mental illnesses (Gottesman
and Gould, 2003). Numerous risk genes for these diseases affect
or are being affected by Akt and GSK3. Here, we review genetic
associations between psychiatric disorders and the products of
three of such genes (DISC1, NRG1, and AKT1) that are known
to be involved directly or indirectly in the Akt/GSK3 signaling
pathways.

Akt1
Accumulating evidence points to an important role for Akt and
related signaling molecules in schizophrenia pathogenesis. In the
pioneering study, a reduced levels of Akt1, one of the three Akt
isoforms, in the hippocampus and frontal cortex of schizophrenia
patients was found (Emamian et al., 2004). A major association
of Akt1 haplotype with schizophrenia has been reported follow-
ing transmission-disequilibrium tests in several other cohorts of
patients (Ikeda et al., 2004). Supportive of these associations of
AKT1 with schizophrenia, another group has reported a coding
variation in AKT1 that affects protein expression in lymphoblasts
and which can modulate prefrontal cortical structure and func-
tion was associated with risk for schizophrenia (Tan et al., 2008).
Importantly, the behavioral outcomes of reduced Akt1 expres-
sion both in mice and humans can be affected by alterations in
D2R functions. In Akt1–KO mice, amphetamine-induced disrup-
tion of sensory–motor gating in the PPI test is enhanced but can
be reversed by the D2R antagonist haloperidol (Emamian et al.,
2004). In humans, interaction between polymorphisms in the D2R
(DRD2 rs1076560) and AKT1 (AKT1 rs1130233) genes was asso-
ciated with deficient attentional processing in normal individuals
and response to olanzapine treatment in schizophrenia patients
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(Blasi et al., 2011). Furthermore, it has been reported that Akt1
levels and Akt-dependent phosphorylation of GSK3α and GSK3β

isoforms is reduced in the frontal cortex of schizophrenia patients
(Emamian et al., 2004). Because Akt activity is affected by D2R
and this kinase seems to be important for certain functions of
prefrontal cortex such as cognitive performance (working mem-
ory; Lai et al., 2006), it is reasonable to consider this kinase as
an important mediator in dopamine-related processes involved in
etiology and treatment of schizophrenia. Importantly, Akt activity
and functions can be also affected by the products of two other
genes reported to be associated with schizophrenia: neuregulin 1
(NRG1) and disrupted in schizophrenia 1 (DISC1; Kanakry et al.,
2007).

NEUREGULINS
A member of growth factors family, NRG, by acting on ErbB
(EGF RTK) signaling pathway influences numerous processes
that could be involved in the neuropsychiatric disorders, such
as cell migration, myelination, NMDA receptor- dependent neu-
ronal plasticity and even expression of monoamine receptors and
transporters (Mei and Xiong, 2008; Pitcher et al., 2011). It has
been reported, that in patients with schizophrenia, NRG signal-
ing is increased in the hippocampus causing an up-regulation
of Erb receptors and concomitant PI3K activation that results in
increased phosphorylation of Akt (Law et al., 2007; Jaaro-Peled
et al., 2009). Mice heterozygous for NRG1 or ErbB4 receptor dele-
tion demonstrate some “schizophrenia-related” behavioral abnor-
malities such as hyperactivity, deficient social behaviors, anxiety,
memory deficits, and impaired responses in PPI (Chen et al.,
2008; Desbonnet et al., 2009). While the mechanisms involved
in these pathologies are still poorly understood, several lines of
evidence suggest involvement of NRG1-dependent modulation
of the striatal dopaminergic system via Akt (Tosato et al., 2005).
In fact, NRG1 mutant mice show a similar phenotype to hyper-
dopaminergic DAT mutant mice. In addition, Akt is involved in
NRG1-associated processes such as myelination (Flores et al., 2000;
Li et al., 2001) and Akt1 phosphorylation is stimulated by NRG1
(Keri et al., 2009). Further studies are necessary to explore this
hypothesis.

DISC1
DISC1 is a gene locus originally identified as disrupted in Scot-
tish family members suffering from schizophrenia, but also from
bipolar disorder and major depression (Chubb et al., 2008).
Alterations of DISC1 in cell culture and mice induce abnor-
mal processes that may occur in schizophrenia such as impaired
neurite outgrowth, abnormal cortical development and incor-
rect neuronal migration (Kamiya et al., 2005). Recently, DISC1
has been found to be a direct GSK3β regulator thereby pro-
viding further support for a role for this kinase in neuropsy-
chiatric disorders (Mao et al., 2009). Genetic suppression of
DISC1 in the dentate gyrus of adult mice increased GSK3 activ-
ity and caused abnormal behaviors that might have relevance
for depression and schizophrenia (Mao et al., 2009). DISC1
mutant mice have also demonstrated deficits in working mem-
ory and these behavioral abnormalities could be corrected by
an administration of a direct inhibitor of GSK3 (SB216763;

Kvajo et al., 2008). In another study, dominant-negative mutant
DISC1 influenced the neurobehavioral and molecular effects of
methamphetamine in mice likely via interaction with Akt/GSK3
signaling cascade (Pogorelov et al., 2011). Furthermore, DISC1
can be also involved in modulation of Akt and related signal-
ing in newly generated neurons through its interaction with
the potential DISC1-interacting partner KIAA1212, known as
a direct activator of Akt (Camargo et al., 2007; Kim et al.,
2009). In this model, binding of DISC1 to KIAA1212 prevents
its action on Akt function. Importantly, both Akt overexpres-
sion and DISC1 suppression result in similar developmental
abnormalities of newborn neurons. Taken together, these obser-
vations suggest a role of DISC1 interaction with Akt/GSK3
signaling in neurogenesis processes that could be important
for both neurotransmission- and neurodevelopment-associated
neuropsychiatric abnormalities.

In summary, while behavioral abnormalities observed in mice
deficient in NRG1 or DISC1 expression suggest a role of these mol-
ecules in modulation of dopaminergic transmission, little evidence
still exist supporting this association in clinical genetic studies.
Nevertheless, it seems likely that monoamine-related processes
involved in the etiology of mental disorders or therapeutic actions
of drugs may engage in functional and selective crosstalks with
others cellular signaling mechanisms such as those involved in
apoptosis, neurogenesis, and plasticity and that are also could be
affected by genetic and/or environmental factors in patients with
these disorders.

STRIATAL Akt AND GSK3 IN PARKINSON DISEASE
Striatal Akt/GSK3 signaling and related processes may also con-
tribute to mechanisms leading to neurodegeneration or neuro-
protection. In fact, recent studies have indicated association of
Akt signaling with neurodegenerative disorders such as Parkin-
son disease. Two neurotoxins,6-hydroxydopamine (6-OHDA) and
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), induce a
massive loss of nigral tyrosine hydroxylase-expressing cells and
striatal dopamine depletion. Consequently, these two drugs are
routinely used to generate pharmacological animal models of
Parkinson’s disease (Lane and Dunnett, 2008). Interestingly, both
MPTP and 6-OHDA induced neurodegeneration is associated
with alterations in striatal Akt/GSK3 signaling cascade (Quesada
et al., 2008; Aleyasin et al., 2010). It has been reported also, that
chronic treatment with l-DOPA but not DAR agonist pergolide
strongly increases the activity of Akt and inhibits GSK3 in the
dopamine-depleted striatum of 6-OHDA-lesioned rats suggest-
ing that Akt pathway may be involved in cronic l-DOPA-induced
dyskinesia (Bychkov et al., 2007). Indeed, in monkeys, which
show dopamine depletion after MPTP administration, chronic
l-DOPA treatment with or without two types of antidyskinetic
drugs induced a prolonged changes in Akt and GSK3 phosphory-
lation levels (Morissette et al., 2010). While it is unclear at present
if these effects caused by G protein-mediated or βArr2-mediated
dopaminergic signaling mechanisms, other neurotransmitter sys-
tems like glutamate may also contribute to l-DOPA-induced dysk-
inesia (Ouattara et al., 2010) by directly regulating Akt/GSK3 or
D1 dopamine receptor mediated signaling may be also involved
(Santini et al., 2009).
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In summary, these results suggest that Akt/GSK3 signal-
ing may contribute to the development and manifestations of
neurodegenerative disorders such as Parkinson’s disease. Thus,
it would seem relevant to investigate alterations in activity
and molecular targets of these kinases as possible biomark-
ers of underlying pathology or treatment complications of this
disorder. Understanding these mechanisms may provide bet-
ter understanding of pathological processes and potentially new
therapeutic strategy for the treatment of neurodegenerative
disorders.

CONCLUSION AND PERSPECTIVES
Since the first reports published about 7 years ago on the role
Akt/GSK3 signaling cascade in the dopamine receptor functions
and behavior, this field showed quite remarkable developments.
One reason for such noticeable progress is the growing appre-
ciation of the involvement of Akt, GSK3, and related signaling
processes in the pathophysiology of various psychiatric and neu-
rological disorders. The role of this pathway in dopamine sig-
naling has also received considerable attention due to multiple

lines of evidence for its physiological significance in vivo. Numer-
ous studies have convincingly shown significant alterations in
dopamine-related functions and behaviors caused by manipu-
lations affecting Akt/GSK3 pathway. Conversely, several genetic
or pharmacological manipulation of dopamine receptors or their
signaling intermediates have been shown to affect Akt/GSK3
signaling (Table 1). Certainly, many outstanding questions still
remain unresolved and require further detailed investigations both
in vitro and particularly at the level of whole organism. Most
noticeable among them: understanding mechanisms of forma-
tion of arrestin-dependent signaling complexes in response to
dopamine, identification of critical downstream targets of Akt
and GSK3, clarification of cross-talk mechanisms between this
and other signaling pathways, further understanding of the role
of this signaling mode in pathological manifestations and effects
of therapeutic treatments. It might be predicted that this line
of research will continue to develop in very exciting ways and
will eventually bring new molecules and pathways under atten-
tion as potential novel targets for treatment of neuropsychiatric
disorders.

Table 1 | Effect of pharmacological and genetic manipulation of dopamine receptor activation on Akt and GSK3 activity in vivo.

Type of intervention Akt activity GSK3 activity Reference

GENE KNOCKOUT

D1R – – Beaulieu et al. (2007b)

D2R ↑ ↓ Beaulieu et al. (2007b)

D3R ↑ ↓ Beaulieu et al. (2007b)

βarrestin2 ↑ ↓ Beaulieu et al. (2008a)

DAT ↓ ↑ Beaulieu et al. (2004)

PHARMACOLOGICAL

Miscellaneous 8-Br-cAMP (ICV) – – Beaulieu et al. (2004)

αMPT (dopamine synthesis

inhibitor)

↑ ↓ Beaulieu et al. (2004)

Dopamine (zebrafish) ↓ ↑ Souza et al. (2011)

Increase dopamine release Amphetamine (90 min) ↓ ↑ Beaulieu et al. (2004, 2005),

Polter et al. (2010), Ghisi et al.

(2009)

Amphetamine (15 min) N.D. ↓ Svenningsson et al. (2003)

Non-selective DAR agonist Apomorphine ↑ N.D. Beaulieu et al. (2005, 2007b)

D1R antagonist SCH23390 (30 min) – – Beaulieu et al. (2004)

SCH23390 (subchronic, rat) – – Sutton and Rushlow (2011)

SCH23390 (zebrafish) – – Souza et al. (2011)

D4R antagonist L745870 – – Beaulieu et al. (2007b)

D3R antagonist Nafadotride (subchronic, rat) ↑ ↓ Sutton and Rushlow (2011)

D2R agonist Quinpirole (subchronic, rat) ↓ ↑ Sutton and Rushlow (2011)

Quinpirole (zebrafish) ↓ ↑ Souza et al. (2011)

D2R antagonist Eticlopride (DA treated

zebrafish)

↑ (compared

to DA treated)

↓ (compared to

DA treated)

Souza et al. (2011)

Raclopride (subchronic rat) ↑ ↓ Sutton and Rushlow (2011)

Raclopride (30 min) ↑ ↓ Beaulieu et al. (2004)

Haloperidol (subchronic) ↑ ↓ Emamian et al. (2004)

↑ Increased, ↓ decreased, – not changed, N.D., no data available. Data obtained in mice except if otherwise indicated.
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