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Peroxisome Proliferator Activated Receptor Gamma Co-activator-1 (PGC-1) is a
well-conserved protein among all chordates. Entire Drosophila species subgroup carries
a PGC-1 homolog in their genome called spargel/dPGC-1 showing very little divergence.
Recent studies have reported that significant functional similarities are shared between
vertebrate and invertebrate PGC-1’s based on their role in mitochondrial functions and
biogenesis, gluconeogenesis, and most likely in transcription and RNA processing. With
the help of genetic epistasis analysis, we established that Drosophila Spargel/dPGC-1
affects cell growth process as a terminal effector in the Insulin-TOR signaling pathway.
The association between Spargel/dPGC-1 and Insulin signaling could also explain its role
in the aging process. Here we provided a further comparison between Spargel/dPGC-1
and PGC-1 focusing on nuclear localization, oxidative stress resistance, and a possible role
of Spargel/dPGC-1 in oogenesis reminiscing the role of Spargel in reproductive aging like
many Insulin signaling partners. This led us to hypothesize that the discovery of newer
biological functions in Drosophila Spargel/dPGC-1 will pave the way to uncover novel
functional equivalents in mammals.

Keywords: Drosophila, PGC-1, mitochondria, oogenesis, RNA processing

Homeothermic mammals utilize the Peroxisome Proliferator
Activated Receptor Gamma Co-activator 1 (PGC-1) as a thermo-
genic regulator (maintains body temperature) to protect against
excessive cold or excess calorie intake (Puigserver et al., 1998).
Thus PGC-1 is expressed in tissues with high metabolic require-
ment and it is linked to multiple metabolic pathways such
as gluconeogenesis, adipogenesis, myogenesis, and mitogenesis
(Handschin and Spiegelman, 2006). Apart from metabolism,
PGC-1 might play a central role in maintaining oxidative home-
ostasis (Austin and St-Pierre, 2012). Homologs of PGC-1 were
found in all chordates including the fish genomes (Lin et al.,
2005) where body temperature regulation isn’t necessary (with
the exception of a few marine species). Among invertebrate mod-
els, only Drosophila carries a single PGC-1 homolog in its genome
(Gershman et al., 2007) whereas other invertebrate models such
as yeast and C. elegans do not carry any PGC-1 homologous
sequence (Lin et al., 2005). Drosophila PGC-1, designated as
spargel/dPGC-1 (Tiefenbock et al., 2010), is well conserved in dis-
tantly related Drosophila species subgroups with its C-terminal
RS and RRM domains (Figure 1A). Two notable differences
between PGC-1 and Spargel/dPGC-1 are: the C-terminal FDSLL
domain of PGC-1 is replaced with FEALL in all Drosophila species
(Gershman et al., 2007; Tiefenbock et al., 2010; Bugger et al.,
2011), and the larger size of Spargel/dPGC-1 protein as it car-
ries ∼300 more amino acids than PGC-1 (Figure 1A). Although
nuclear receptors are generally known to interact with the leucine
rich motifs (LXXLL) (Matsuda et al., 2004), the FEALLL variant

of this motif in Drosophila is able to interact with the nuclear
receptors as well (Wang et al., 2007). In light of the fact that
significant functional overlap exists between the three PGC-1
homologs in mice PGC-1α, PGC-1β and PRC, which makes it
difficult to tease apart their relative roles in vivo, we propose
that the presence of a single Drosophila PGC-1 homolog will
provide an enormous advantage to study the function of this
essential transcriptional coactivator in an alternate model. Within
the last few years, significant functional homologies have surfaced
between mammalian PGC-1 and Drosophila Spargel/dPGC-1,
which called for a discussion of this topic in greater detail.

ENERGY METABOLISM
As a transcriptional coactivator PGC-1 activates many nuclear
receptor, which in turn regulate the transcription activity of vari-
ety of nuclear genes (Puigserver and Spiegelman, 2003). Similarly,
Spargel/dPGC-1 regulates the expression of mitochondrial oxida-
tive phosphorylation (OXPHOS) genes through NRF1 (Nuclear
Respiratory Factor) homolog delg (Tiefenbock et al., 2010).
Spargel/dPGC-1 gain of function (overexpression) correlates with
an increased rate of mitochondrial oxygen consumption (Rera
et al., 2011) and ATP production (Mukherjee and Duttaroy,
2013), enhanced mitochondrial DNA content, increased enzyme
activity and protein production in the mitochondrial matrix
(Rera et al., 2011). These observations are reminiscent of the effect
of PGC-1α on mitochondrial biogenesis, functional capacity and
energy metabolism (Liu and Lin, 2011). Thus, regulation of
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FIGURE 1 | (A) Comparison of the Spargel/dPGC-1 protein structure in 3 widely
divergent subgroups of Drosophila melanogaster, D. ananassae, and
D. grimshawi (van der Linde and Houle, 2008). Vertebrate PGC-1 is about 300
amino acids shorter in length than the Spargel/dPGC-1. Filled boxes represent
regions of non-homology. (B) An authentic Nuclear Localization Signal (NLS)

has been found in mammalian PGC-1 with the help of NLS Predict Software. (C)

Nuclear localization of Spargel is documented in the gut tissue with a
Spargel-GFP protein (green). Following 48 h of starvation, the gut turns thinner
and Insulin signaling is reduced, but it imposes no effect on nuclear localization
of the Spargel-GFP protein (D). (E,F) DAPI staining of the same gut tissue.

mitochondrial function is truly an ancestral function for PGC-1
group of proteins.

INTRACELLULAR LOCALIZATION
Serine-Arginine (SR) repeats and RNA Recognition Motifs
(RRM) are classical hallmarks of “RNA processing domains.”
Furthermore, localization of PGC-1 in the nuclear compartment
where it is concentrated in nuclear speckles along with splicing
factor α-U1 and SR splicing factor SC-35 are irrefutable evidence
that PGC-1 is involved in the splicing complex (Monsalve et al.,
2000). We recently demonstrated that a Spargel-GFP fusion pro-
tein also localizes itself in the nucleus forming distinct punctate

structures (Mukherjee and Duttaroy, 2013). An authentic Nuclear
Localization Signal (NLS) was uncovered in Spargel/dPGC-1 with
the help of a NLS predict software (Mukherjee and Duttaroy,
2013) that most likely assists in Spargel/dPGC-1 localization into
the nucleus. With the help of the same software we now located
a NLS between the amino acids 311–334 in mammalian PGC-1
(score 0.93) (Figure 1B), which should also justify the presence of
PGC-1 protein in the nucleus (Monsalve et al., 2000).

An earlier study claimed that activation of Insulin sig-
naling is important for transport of Spargel/dPGC-1 pro-
tein from cytoplasm to the nucleus (Tiefenbock et al., 2010)
and Spargel/dPGC-1 is now established as a member of the
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Insulin-TOR signaling pathway (Mukherjee and Duttaroy, 2013).
Nutrient availability controls the Insulin/TOR signaling pathway
from TOR downstream (Takano et al., 2001) therefore, under
starvation condition, Insulin mediated signal transduction is
reduced. We rationalized that if Insulin signaling is essential for
nuclear localization of Spargel/dPGC-1 then reduction of this
signal should sequester the protein to the cytosol. To test this pre-
diction, gut malphigian tubule preparations were obtained from
flies following two days of starvation (only water given to pre-
vent dehydration) and analyzed for Spargel expression. Since the
localization of Spargel/dPGC-1 is still restricted to the nucleus
following starvation (Figures 1C–F) this supports that cellular
localization of Spargel/dPGC-1 occurs independent of Insulin
signaling.

Spargel/dPGC-1 DOESN’T INFLUENCE ANTIOXIDANT
ENZYMES
The apparent involvement of PGC-1 in oxidative metabolism has
been established from the following: PGC-1 activates Nuclear
Respiratory Factor1 (NRF1); muscle specific overexpression of
PGC-1α induces specific antioxidants like Sod2 and GpX tran-
scription activity (St-Pierre et al., 2006) whereas ablation of
PGC-1α in cultured cell cause down regulation of a whole panel
of antioxidants including SOD1, SOD2, GpX, UCP1, and UCP2,
resulting in hypersensitivity to hydrogen peroxide induced oxida-
tive stress (St-Pierre et al., 2006). Another interesting observation
is that cells from patients with Friedrich’s Ataxia show coordi-
nated suppression of PGC-1 and antioxidant enzymes (Coppola
et al., 2009). It was inferred from these observations that PGC-1
controls mitochondrial reactive oxygen species (ROS) by reg-
ulating the antioxidant defense system (Austin and St-Pierre,
2012).

We attempted to validate this prediction in a whole animals
model by utilizing the Drosophila spargel mutant hypomorph,
srl1 (Tiefenbock et al., 2010) and a spargel transgenic line that
is capable of overexpressing Spargel/dPGC-1 (Mukherjee and
Duttaroy, 2013). For systemic oxidative stress generation, we
used methyl violgen (commercially known as “paraquat”) that
is stable at room temperature. Male and female flies overex-
pressing Spargel were exposed to 20 mM paraquat and both
survived better than the control (Figures 2A,B). After 48 h of
paraquat treatment, Spargel/dPGC-1 overexpression helped 50%
males to remain viable, where as in control flies 50% survival
was attained within 24 h. Female flies appear slightly more sen-
sitive to paraquat treatment although a significant difference
still persists with respect to the control (Figures 2A,B). This
increased resistance to oxidative stress in Spargel/dPGC-1 overex-
pressing flies makes it tempting to conclude that Spargel/dPGC-
1 is also involved in oxidative stress resistance and imposes
the same effect on antioxidant defense enzymes like PGC-1.
However, this expectation may not be true since the expres-
sion of two front line antioxidant defense enzymes SOD2 and
SOD1 remain unchanged when Spargel/dPGC-1 is overexpressed
(gain of function) or reduced in srl1 hypomorphs (Figure 2C).
Since these experiments were performed on whole animals as
opposed to cultured cells, it might be necessary to check the sta-
tus of these antioxidant enzymes in PGC-1KO mice. Secondly,

FIGURE 2 | Spargel gain of function was achieved by activating an

EP-srl+ transgene ubiquitously with the help of Actin-GAL4 driver (see

Kapahi et al., 2004, for detail). Percent survival was measured following
exposure to 20 mM paraquat made in 1% sucrose solution. (A,B) Male and
female flies overexpressing Spargel/dPGC-1 survive longer in paraquat than
the control indicating that Spargel/dPGC-1 overexpression cause increased
resistance to oxidative stress, (C) Spargel/dPGC-1 overexpression or its
ablation in srl1 does not alter the expression of SOD2 and SOD1
antioxidant enzymes, (D) Reduced Spargel/dPGC-1 in srl1 cause significant
reduction in life span.

since it is involved in the Insulin-TOR signaling (Mukherjee and
Duttaroy, 2013), Spargel/dPGC-1 might utilize other stress resis-
tance pathways (which remain to be tested) such as FoxO or Jnk
as opposed to antioxidant enzymes. Incidentally, a recent study
in Drosophila showed that Wolbachea induced metabolic stress
promotes mitogenesis through activation of Spargel/dPGC-1
(Chen et al., 2012). Clearly, more needs to be done to under-
stand the relationship between Spargel/dPGC-1 and stress
resistance.

GROWTH, LONGEVITY, AND AGING
Insulin-TOR signaling pathway is involved in systemic regula-
tion of growth, longevity and aging in all taxa (Hietakangas and
Cohen, 2009; Partridge et al., 2011). In the absence of Insulin,
PGC-1 expression is elevated in liver and gluconeogenesis is initi-
ated (Puigserver et al., 2003). Therefore liver-specific knock down
of PGC-1 shows higher insulin sensitivity in mice (Koo et al.,
2004). On the contrary, absence of PGC-1 in skeletal muscles
imposes no effect on insulin sensitivity (Zechner et al., 2010).
Thus one can assume that the metabolic role of PGC-1 and
its relationship with Insulin/TOR signaling became more tissue
specific during the course of evolution.

The requirement of Spargel/dPGC-1 in the Insulin-TOR
signaling pathway (Tiefenbock et al., 2010; Mukherjee and
Duttaroy, 2013) automatically connects it to the cell growth
process. Spargel/dPGC-1 is a terminal effector of this path-
way hence reduced spargel expression results in growth retar-
dation with smaller body size and developmental delays,
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though Spargel/dPGC-1 overexpression has no immediate effect
on growth (Rera et al., 2011; Mukherjee and Duttaroy,
2013).

With respect to longevity, members of the Insulin-TOR sig-
naling pathway extend life span in C. elegans (Vellai et al., 2003;
Kenyon, 2010; Partridge et al., 2011), Drosophila (Clancy et al.,
2001; Tatar et al., 2001; Kapahi et al., 2004) and mice (Fontana
et al., 2010; Kenyon, 2010) by delaying the aging process. Mutant
forms of Insulin receptor (InR), the Insulin receptor substrate
chico and TOR all extend longevity, whereas for FoxO lifespan
extension happens through its overexpression. Spargel/dPGC-
1’s action on longevity is apparent as reduced Spargel/dPGC-1
expression cause significant shortening of life span (Figure 2D).
Reduced ROS production and stem cell over proliferation were
cited as two major reasons for Spargel/dPGC-1 mediated exten-
sion of lifespan (Rera et al., 2011), though the gain of function
effects are specific to the intestinal stem cells as opposed to the
Insulin and TOR mediated lifespan extensions, which are largely
ubiquitous. So, research on Drosophila is pioneering for under-
standing the aging aspects of the PGC-1 group of proteins, and
we are anxiously awaiting studies on how the mammalian PGC-1
protein influences aging.

To summarize, the effects of Spargel/dPGC-1 on growth
and survival are positive, like all the other members of the
Insulin/TOR signaling pathway (Mukherjee and Duttaroy, 2013).
So, spargel/dPGC-1 loss of function is lethal (Duttaroy et al.,
in preparation), spargel/dPGC-1 hypomorphs have a much
shorter life span (Figure 2D) where as ubiquitous gain of
Spargel/dPGC-1 function does not extend lifespan (Rera et al.,
2011). Thus, Spargel/dPGC-1 completes the function of Insulin-
TOR pathway leading to survival.

IS Spargel/dPGC-1 ESSENTIAL FOR FEMALE FERTILITY?
Reduced Spargel/dPGC-1 expression causes only a few viable
adults to appear from srl1 homozygous mothers, indicating that
fecundity is seriously compromised in srl1 hypomorphic females
though the fertility of srl1 males remain unchanged (Table 1).
The growth retardation effect of srl1 could be the reason for the
appearance of dysgenic ovaries, which carry about half the num-
ber of ovarioles compared to the wild type (Figures 3A,B). A
simple time course analysis of oogenesis revealed that srl1 ovaries
develop slowly. In 24 h post eclosion (PE) wild type ovarioles
reach up to stage 10/11 whereas ovarioles in srl1 are lagging
behind in stage 6/7. By 48 h mature oocytes appear in the wild
type ovarioles, whereas most srl1 ovarioles are observed around
stage 10 during this time (Figure 3C). Efforts are underway to
pin down the requirement of Spargel/dPGC-1 during oogen-
esis through its selective ablation in the ovaries. Interestingly,

Table 1 | Fertility of srl1 females.

Genotype Fecundity (# of adults)

y w 361

y w; srl1 female X y w male 8

y w; srl1 male X y w female 296

y w; srl1 female X y w, srl1 male 0

decreased female fecundity results from oogenesis defects in InR
and chico mutants (Tatar et al., 2001; Partridge et al., 2011). These
observations suggested a correlation between Insulin signaling
and reproductive aging. Incidentally, the effect of srl1 mutant on

FIGURE 3 | Possible requirement of Spargel/dPGC-1 during oogenesis.

(A) Mature ovaries from spargel hypomorph srl1 females are much smaller
in size with respect to the control ovaries of same age, (B) Quantification of
number of ovarioles suggest srl1 ovaries carry about 40% less number of
ovarioles with respect to the wild type ovaries. (C) Time course analysis of
oogenesis shows srl1 ovaries matures more slowly in comparison to the
wild type ovaries (PE, post eclosion). ∗∗∗P < 0.001.

FIGURE 4 | Spargel/dPGC-1 plays a central role in maintaining

homeostasis. Spargel/dPGC-1 is acting downstream of Insulin/TOR
signaling pathway. At this position, Spargel/dPGC-1 is regulating the
mitochondrial energy flow into the system leading to cell growth. In
addition, Spargel/dPGC-1 provides oxidative stress resistance. Though
unlike mammals, this stress resistance does not confer SOD1 and SOD2
protein expression. Spargel/dPGC-1 also affects Drosophila fecundity
possibly through oogenesis. Moreover, Spargel/dPGC-1 regulates tissue
homeostasis by controlling over proliferation of intestinal stem cells in older
flies.
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female fecundity and oogenesis appears to suggest that Spargel
could be important for reproductive aging.

In summary, the PGC-1 group of proteins retained many
important biological functions between vertebrates and inverte-
brates, though many are still unknown. The overarching hypoth-
esis of this article is that Spargel/dPGC-1 can pave the way
to uncover newer biological functions, which can be tested in
mammalian PGC-1 (Figure 4). Given the amount of functional
overlaps already existing between PGC-1 and Spargel/dPGC-
1, some of these similarities may be of immediate interest,
including the role of the PGC-1 group of proteins on tran-
scription and RNA processing and finding PGC-1 interacting
proteins involved in growth and metabolism. Available genetic
tools and genomic reagents in Drosophila should come in handy
for exploring the functionality of this omnipotent transcription
co-activator.
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