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Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic
selections in crop improvement. Several types of molecular markers, such as single
nucleotide polymorphism (SNP), have been identified and effectively used in plant
breeding. The application of next-generation sequencing (NGS) technologies has led to
remarkable advances in whole genome sequencing, which provides ultra-throughput
sequences to revolutionize plant genotyping and breeding.To further broaden NGS usages
to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been
developed and applied in sequencing multiplexed samples that combine molecular marker
discovery and genotyping. GBS is a novel application of NGS protocols for discovering
and genotyping SNPs in crop genomes and populations. The GBS approach includes the
digestion of genomic DNA with restriction enzymes followed by the ligation of barcode
adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of
flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As
an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in
implementing genome-wide association study (GWAS), genomic diversity study, genetic
linkage analysis, molecular marker discovery and genomic selection under a large scale of
plant breeding programs.
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INTRODUCTION
Plant breeding can be accomplished through two major strate-
gies, classical breeding and molecular breeding. Classical plant
breeding uses the deliberate interbreeding of closely related
individuals to produce new cultivars with desirable traits. As
it needs a long period and several generations to select and
evaluate useful genotypes, classical breeding could be lim-
ited to address global food security and meet the increasing
requirements of food demands (Tester and Langridge, 2010).
Molecular plant breeding is the applications of molecular biol-
ogy or biotechnology to improve or develop new cultivars,
which includes two major approaches, marker-assisted selec-
tion (MAS) and genetic transformation (Moose and Mumm,
2008). At moment, the application of genetic transformation
(or genetic engineering) is seriously hindered because there is
controversy on food safety and environmental impacts over any
genetically modified (GM) crop (Nicolia et al., 2014). MAS is
a process whereby molecular markers are used for the indirect
selection on traits of interest in crops. As a critical and effec-
tive method, MAS has been widely applied in plant breeding
to enhance crop yield, quality, and tolerance to biotic or abi-
otic stresses. Recent advance of genotyping-by-sequencing (GBS)
offers an ultimate MAS tool to accelerate plant breeding and crop
improvement.

MOLECULAR MARKERS
Plant molecular breeding has advanced so rapidly that
several types of molecular markers have been developed
and used for decades. The restriction fragment length poly-
morphism (RFLP) was firstly applied as DNA markers in
plant genotyping (Botstein et al., 1980). RFLP technique is
useful in the construction of genetic linkage maps, but
it is challenged by the complicated hybridization, radioac-
tivity, and time consuming and limited by the number
of available probes (Bernatsky and Tanksley, 1986). With
further advance of biotechnology, several types of PCR-
based markers were developed and used in plant breeding
programs. These PCR-based markers mainly include ran-
dom amplification of polymorphic DNA (RAPD; Williams
et al., 1990), sequence characterized amplified region (SCAR;
Paran and Michelmore, 1993), cleaved amplified polymorphic
sequences (CAPS; Konieczny and Ausubel, 1993), simple sequence
repeats (SSRs; Litt and Luty, 1986; Salimath et al., 1995),
amplified fragment length polymorphisms (AFLPs; Vos et al.,
1995), and direct amplification of length polymorphisms (DALP;
Desmarais et al., 1998). Compared to RFLP, all these PCR-
based markers are amplified form individual genomic sequences
under a small scale, relatively inexpensive and less time-
consuming.
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In combination with the genome and expressed sequence
tags (ESTs) in model plant species (Adams et al., 1991), Sanger
sequencing throughput was improved to accelerate the identi-
fication of variations at the single base pair resolution (Wang
et al., 1998). The use of single nucleotide polymorphisms (SNPs;
Lander, 1996) as DNA markers for plant genotyping has increased
the potential to score variation in specific DNA targets. More
importantly, the information on potentially millions of genome-
wide SNPs or small insertion-deletions and their surrounding
sequences sets the foundation of high-throughput genotyping.
Over the past 10 years, SNP-based marker techniques have been
improved in marker density and, if compared with the earlier
genotyping approaches, the costs and time on SNP discoveries
have been significantly reduced. Among them, the fluorescent
detection of SNP-specific hybridization probes on PCR prod-
ucts, including Taqman, Molecular Beacons, and Invader, is the
most commonly used system (Tapp et al., 2000; Prince et al.,
2001; Livak, 2003; Storm et al., 2003; Olivier, 2005; Ragoussis,
2006). In addition, the homogeneous mass-extend (hME) assay
also uses SNP-specific PCR primer extension products but results
are read on a MALDI-TOF mass spectrophotometer (Ragoussis,
2006). All these techniques can acquire 100–1000s of SNPs on a
daily basis. With the increasing requirement of higher throughput
data, the Taqman and Invader technologies have been significantly
improved by enhancing the microtiter plates from 96 to 1536 wells
(Procunier et al., 2009).

Molecular markers are extremely useful in plant genetics and
breeding. Markers are prerequisite for gene mapping and tagging,
segregation analysis, genetic diagnosis, forensic examination, phy-
logenetic analysis and numerous biological applications (Semagn
et al., 2006; Lam et al., 2010; Singh et al., 2010; Sonah et al., 2011a).
Although several types of molecular markers have been devel-
oped and are routinely being used in plant breeding, most of
these marker systems are restricted in their applications because
of the limitation on their availability and the high cost of analyses
conducted on a large scale. Among various types of molec-
ular markers (Agarwal et al., 2008; Sonah et al., 2011b), SNPs
are the most abundant in a genome and suitable for analysis
on a wide range of genomic scales (Rafalski, 2002; Zhu et al.,
2003). However, the development of high-throughput geno-
typing platforms for large numbers (thousands to millions) of
SNPs has proved to be relatively time-consuming and costly.
Typically, a fairly large sequencing effort is devoted to iden-
tify polymorphic sites in a genome among a set of breeding
lines.

NEXT-GENERATION SEQUENCE (NGS)
The high demand for low cost sequence data has driven the
development of high-throughput sequencing (or next-generation
sequencing) technologies that can produce 1000 or millions of
sequences concurrently. Next-generation sequencing (NGS) relies
on massively parallel sequencing and imaging techniques to yield
several 100s of millions to several 100s of billions of DNA bases
per run (Shendure and Ji, 2008). Several NGS platforms, such
as Roche 454 FLX Titanium (Thudi et al., 2012), Illumina MiSeq
and HiSeq2500 (Bentley et al., 2008), Ion Torrent PGM (Rothberg
et al., 2011), have been developed and used recently (Deschamps

et al., 2012; Quail et al., 2012). High-throughput sequencing tech-
nologies are intended to lower the cost of DNA sequencing beyond
what is possible with standard dye-terminator methods (Schuster,
2008). In ultra-high-throughput sequencing as many as 500,000
sequencing-by-synthesis operations may be run in parallel (Quail
et al., 2012).

All NGS strategies follow a similar protocol for DNA template
preparation, where universal adapters are ligated at both ends of
randomly sheared DNA fragments. They also rely on the cyclic
interrogation of millions of clonally amplified DNA molecules
immobilized on a synthetic surface to generate up to several bil-
lions of sequences in a massively parallel fashion. Sequencing is
performed in an iterative manner, where the incorporation of one
or more nucleotides is followed by the emission of a signal and its
detection by the sequencer (Metzker, 2010). Most NGS platforms
are able to generate reliable sequences and display near perfect
coverage behavior on GC-rich, neutral and moderately AT-rich
genomes. However, there are key differences between the quality
of that data and the applications it will support (Quail et al., 2012).

For Illumina NGS sequencers, DNA molecules and primers
are first attached on a slide and amplified with polymerase so
that local clonal DNA colonies are formed. To determine the
sequence, four types of reversible terminator bases (RT-bases)
are added and non-incorporated nucleotides are washed away.
A camera takes images of the fluorescently labeled nucleotides,
then the dye, along with the terminal 3′ blocker, is chemically
removed from the DNA,allowing for the next cycle to begin. Unlike
pyrosequencing, the DNA chains are extended one nucleotide
at a time and image acquisition can be performed at a delayed
moment, allowing for very large arrays of DNA colonies to
be captured by sequential images taken from a single camera
(Mardis, 2008). NGS can produce ultra-high throughput sequence
data on an unparalleled scale compared to Sanger sequencing
(Pareek et al., 2011).

NGS technologies commercialized by Illumina generate shorter
reads, ranging from 50 to 300 bp, with sequencing throughputs
ranging from 1.5 to 600 Gbp depending on the platform being
used. Several instruments are commercialized by Illumina, rang-
ing from the bench top MiSeq sequencer to the high-throughput
HiSeq2500 sequencer. The Illumina sequencing technology com-
bines clonal amplification of a single DNA molecule with a cyclical
sequencing-by-synthesis approach. The PCR amplification is per-
formed using a solid phase amplification protocol to generate
up to 1,000 copies of an original molecule of DNA, grouped
together into a cluster. Sequencing is performed with propri-
etary reversible fluorescent terminator deoxyribonucleotides, in
a series of cycles consisting of single base extension, fluorescence
detection (where the nature of the signal is used to determine the
identity of the base being incorporated) and cleavage of both the
fluorescent label and of the chemical moieties at the 3′ hydroxyl
position to allow for the next cycle to occur (Deschamps et al.,
2012).

The application of NGS technologies highlights the strik-
ing impact of these massively parallel platforms on genotyping,
which have expanded from previously focused readouts from a
variety of DNA preparation protocols to a genome-wide scale
and have fine-tuned their resolution to single base precision
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(Kilian and Graner, 2012). NGS has also enabled novel appli-
cations, such as the sequencing of ancient DNA samples, and
has substantially widened the scope of metagenomic analysis
of environmentally derived samples (Mardis, 2008). Based on
the accuracy, lower cost, higher throughput and assay simplic-
ity (Gupta et al., 2008), NGS technologies have been recently
used for whole genome sequencing and for resequencing projects
where the genomes of several specimens are sequenced to dis-
cover large numbers of SNPs for exploring the diversity within
species, constructing haplotype maps and performing genome-
wide association studies (GWAS; Elshire et al., 2011). Multiplex
sequencing has also been accomplished by tagging randomly
sheared DNA fragments from different samples with unique, short
DNA sequences (barcodes) and pooling samples into a single
sequencing channel (Craig et al., 2008). This approach (random
DNA shearing followed by barcode tagging) has been used to
rapidly determine the complete chloroplast genome sequences of
spruce and several pine species and for discovery and mapping
of genomic SNPs in rice (Cronn et al., 2008; Huang et al., 2009;
Elshire et al., 2011).

GENOTYPING-BY-SEQUENCING (GBS)
Advances in NGS have driven the costs of DNA sequencing down
to the point that GBS is now feasible for high diversity and large
genome species (Elshire et al., 2011). GBS is a simple highly multi-
plexed system for constructing reduced representation libraries for
the Illumina NGS platform developed in the Buckler lab (Elshire
et al., 2011). It generates large numbers of SNPs for use in genetic
analyses and genotyping (Beissinger et al., 2013). Key components
of this system include low cost, reduced sample handling, fewer
PCR and purification steps, no size fractionation, no reference
sequence limits, efficient barcoding and easiness to scale up (Davey
et al., 2011). GBS is becoming increasingly important as a cost-
effective and unique tool for genomics-assisted breeding in a range
of plant species. Figure 1 simplifies the GBS technology by sum-
marizing the steps needed for any plant species and some potential
application of the results.

GBS combined with genome-independent imputation provides
a simple and efficient method for genetic map construction in any
pseudo-testcross progeny (Ward et al., 2013). The GBS method
offers a greatly simplified library production procedure more
amenable to use on large numbers of individuals/lines (Elshire
et al., 2011). A two-enzyme (PstI/MspI) GBS protocol, which pro-
vides a greater degree of complexity reduction and uniform library
for sequencing than the original protocol using ApeKI, has now
been developed and applied to both wheat and barley (Poland
et al., 2012a). Sonah et al. (2013) described a modified library
preparation protocol, in which selective amplification is used to
increase both the number of SNPs called and their depth of cover-
age, resulting in a high efficiency to allow an important reduction
in per sample cost.

Two different GBS strategies have been developed with the Ion
PGM system (Poland et al., 2012a). (A) Restriction enzyme diges-
tion, in which no specific SNPs have been identified and ideal for
discovering new markers for MAS programs. The complexity of
the genome under this approach is reduced by digesting the DNA
with one or two selected restriction enzymes prior to the ligation

FIGURE 1 | Schematic steps of the genotyping-by-sequencing (GBS)

protocol for plant breeding. Panel (A): tissue is obtained from any plant
species as depicted here a young triticale plant; Panel (B): ground leaf
tissues for DNA isolation, quantification and normalization. At this step it is
important to prevent any cross-contamination among samples; Panel (C):
DNA digestion with restriction enzymes; Panel (D): ligations of adaptors
(ADP) including a bar coding (BC) region in adapter 1 in random Pst I-MseI
restricted DNA fragments; Panel (E): representation of different amplified
DNA fragments with different bar codes from different biological
samples/lines. These fragments represent the GSB library; Panel (F):
analysis of sequences from library on a NGS sequencer; Panel (G):
bioinformatic analysis of NGS sequencing data; Panel (H): possible
application of GBS results.

of the adapters. (B) Multiplex enrichment PCR, in which a set of
SNPs has been defined for a section of the genome. This approach
uses PCR primers designed to amplify the areas of interest.

The value of sequencing restriction site associated genomic
DNA (RAD) for high density SNP discovery and genotyping
was first demonstrated by Baird et al. (2008). Increased effi-
ciency and cost benefits were realized by incorporating a multiplex
sequencing strategy that uses an inexpensive barcoding system.
Barcodes are included in one of the adapter sequences, and their
locations, just upstream of the RE cut-site in genomic DNA, elim-
inate the need for a second Illumina sequencing (“indexing”)
read. The barcoding strategy is similar to RAD but modula-
tion of barcode nucleotide composition and length results in
fewer sequence phasing errors (Baird et al., 2008). Compared to
the RAD method, GBS is substantially less complicated; gen-
eration of restriction fragments with appropriate adapters is
more straightforward, single-well digestion of genomic DNA and
adapter ligation results in reduced sample handling, there are
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fewer DNA purification steps, and fragments are not size selected.
Costs can be further reduced via shallow genome sampling cou-
pled with imputation of missing internal SNPs in haplotype
blocks.

GBS was originally developed for high resolution associa-
tion studies in maize and, like RAD, has been extended to a
range of species with complex genomes. Unlike other high den-
sity genotyping technologies which have mainly been applied
to general interest “reference” genomes, the low cost of GBS
makes it an powerful approach on discovering and genotyp-
ing SNPs in a variety of crop species and populations. As a
technically simple, highly multiplexed technology, GBS is suit-
able for population studies, germplasm characterization, plant
genetics, and breeding in diverse crops and it has widely been
applied in many large crop genomes to saturate the mapping
and breeding populations with 10–100s of 1000s of SNP markers
(Poland et al., 2012a).

Construction of GBS libraries is based on reducing genome
complexity with restriction enzymes (REs; Elshire et al., 2011).
This approach is simple, quick, extremely specific, highly repro-
ducible, and may reach important regions of the genome that
are inaccessible to sequence capture approaches. By choosing
appropriate REs, repetitive regions of genomes can be avoided,
and lower copy regions can be targeted with two to three fold
higher efficiency (Gore et al., 2007), which tremendously simplifies
computationally challenging alignment problems in species with
high levels of genetic diversity. The GBS procedure is demon-
strated with maize and barley recombinant inbred populations
where roughly 200,000 and 25,000 sequence tags were mapped,
respectively (Elshire et al., 2011).

APPLICATION OF GBS IN PLANT BREEDING
Genotyping-by-sequencing is an ideal platform for studies rang-
ing from single gene markers to whole genome profiling (Poland
and Rife, 2012). One of the most powerful applications of GBS is
in the field of plant breeding. GBS provides a rapid and low-cost
tool to genotype breeding populations, allowing plant breeders to
implement GWAS, genomic diversity study, genetic linkage analy-
sis, molecular marker discovery, and genomic selection (GS) under
a large scale of plant breeding programs. There is no requirement
for a priori knowledge of the species genomes as the GBS method
has been shown to be robust across a range of species and SNP dis-
covery and genotyping are completed together (Poland and Rife,
2012; Narum et al., 2013).

As GWAS require 100s of 1000s to millions of markers to
generate sufficient information and coverage, the emergence of
NGS technologies has greatly improved such marker resolution
(Edwards and Batley, 2010). Recently, GBS through the NGS
approach has been used to resequence collections of recombinant
inbred lines (RILs) to analyze and map various traits of interest
in specific breeding programs (Deschamps et al., 2012). More and
more crops, such as maize, wheat, barley, rice, potato, and cassava,
have been optimized by GBS for the efficient, low-cost and large
scales of genome sequencing (Poland and Rife, 2012; van Poecke
et al., 2013). A collection of 5,000 RILs have been resequenced
using a restriction endonuclease-based approach and the Illumina
sequencing technology, which generated a total of 1.4 million SNPs

and 200,000 indels in maize (Gore et al., 2009). A comprehensive
genotyping of 2,815 maize inbred accessions showed that 681,257
SNP markers are distributed across the entire genome, in which
some SNPs are linked to the known candidate genes for kernel
color, sweetness, and flowering time (Romay et al., 2013). A set of
205,614 SNPs have been identified after resequencing 31 soybean
genotypes, providing a valuable genomic resource for soybean
breeding programs (Lam et al., 2010). In potato, 12.4 gigabases
of high-quality sequence data and 129,156 sequence variants have
been identified, which are mapped to 2.1 Mb of the potato refer-
ence genome with a median average read depth of 636 per cultivar
(Uitdewilligen et al., 2013).

GBS has been shown to be a valid tool for genomic diversity
studies (Fu and Peterson, 2011; Lu et al., 2013; Fu et al., 2014).
For example, Fu and Peterson (2011) applied the Roche 454 GS
FLX Titanium technology with reduced genome representation
and advanced bioinformatics tools to analyze the genetic diver-
sity of 16 diverse barley landraces, discovered 2,578 contigs, and
3,980 SNPs, and confirmed a key geographical division in the
cultivated barley gene pool. Lu et al. (2013) developed a network-
based SNP discovery protocol to enhance the diversity analysis of
540 switchgrass plants sampled from 66 populations and revealed
informative patterns of genetic relationship with respect to eco-
type, ploidy level, and geographic distribution. The GBS protocol
was used to analyze genetic diversity of 24 diverse yellow mus-
tard accessions, in which roughly 1.2 million sequence reads (total
about 392 million nucleotides) were generated, 512 contigs, and
828 SNPs were identified (Fu et al., 2014). Diversity analysis of
these yellow mustard SNPs revealed that 26.1% of total variation
resided among landrace, cultivar, and breeding lines and 24.7%
between yellow-seeded and black-seeded germplasm.

Identification of high density SNP markers through GBS to
construct genetic linage maps has a great value for numerous
applications in plant breeding. In Arabidopsis, Schneeberger et al.
(2009) sequenced, via whole genome shotgun sequencing on the
Illumina platform, a pool of 500 F2 plants generated by cross-
ing a recessive ethane methyl sulfonate (EMS)-induced Col-0
mutant characterized by slow growth and light green leaves, with
a wild type Ler (Landsberg erecta) line. Spindel et al. (2013)
used a 384 plex GBS protocol to add 30,984 SNP markers to
an indica × japonica mapping population consisting of 176 rice
recombinant inbred lines and mapped the recombined hot and
cold spots and quantitative trait loci (QTLs) for leaf width and
aluminum tolerance. After the efficiency of multiplexed SNP
genotyping for diversity, mapping and breeding applications were
evaluated, Thomson et al. (2012) demonstrated that 384 plex SNP
genotyping on the BeadXpress platform is a robust and efficient
method for marker genotyping and mapping in rice (Heffner et al.,
2009; Huang et al., 2009; Jannink et al., 2010). GBS was applied to
bread wheat, resulting in the incorporation of 1000s of markers in
the bread wheat map (Poland et al., 2012a). The high resolution
of SNP markers were identified in barley and the GBS mapping
data were used to confirm that the semi-dwarfing gene (ari-e) is
located on barley chromosome 5H (Liu et al., 2014). Construction
of a GBS linkage map using the sequence-based markers leads to
the RAD technique (Baird et al., 2008), which has been used in
barley QTL analysis (Chutimanitsakun et al., 2011).
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By integrating molecular markers and genotyping of large
populations, GBS is an excellent platform for plant breeding
applications even in the absence of reference genome sequences
or without previous DNA polymorphism discovery. The GBS
approach has been shown to be suited to genetic analysis and
marker development of rapeseed, lupin, lettuce, switchgrass,
soybean, and maize (Bus et al., 2012; Truong et al., 2012; Yang
et al., 2012; Lu et al., 2013; Sonah et al., 2013). With Illu-
mina genome analyzer, Varala et al. (2011) identified 4294 to
14550 SNPs between four soybean accessions and the refer-
ence and indicated that the MseI digestion of soybean genomic
DNA followed by high throughput sequencing provides a rapid
and reproducible method for generating SNP markers. High-
throughput SNP discovery and genotyping in durum wheat have
been investigated from 92 RILs derived from a cross between
the two elite cultivars (Mantovani et al., 2008). The applica-
tion of GBS on a large collection of autotetraploid potato
cultivars were studied with Illumina HiSeq2000 and the alleles
strongly associating with maturity and flesh color were identified
(Uitdewilligen et al., 2013).

Compared to traditional MAS, GS is a novel approach which
combines molecular markers with phenotypic and pedigree data
to increase the breeding accuracy on genotypic values (Heffner
et al., 2009). Theoretical and applied studies on GS show great
promise to accelerate the rate of developing new crop varieties.
GS through the GBS approach stands to be a major supplement
to traditional crop improvement and it is a very important feature
to move the genomics-assisted breeding into commercial crops
with large and complex genomes (Poland and Rife, 2012). One
premise of GBS applications is the development of genome-wide
molecular markers with high density and low cost (Heffner et al.,
2009, 2010; Jannink et al., 2010). GBS approach on barley and
wheat study (Poland et al., 2012a) provides a powerful method of
developing high density markers in species without a reference
genome while providing valuable tools for anchoring and order-
ing physical maps and whole genome shotgun sequence. Poland
et al. (2012b) used GBS to discover 41,371 SNPs in a set of 254
advanced breeding lines from CIMMYT’s semiarid wheat breed-
ing program. Ward et al. (2013) reported that the high marker
density allows the identification of genomic regions with segre-
gation distortion in Rubus idaeus, which may help to identify
deleterious alleles that are the basis of inbreeding depression in
that species. An efficient GBS approach has been developed to
catalog SNPs both within the mapping population and among
diverse African cassava varieties, allowing the improvements of
MAS programs on disease resistance and nutrition in cassava
(Prochnik et al., 2012).

Although GBS offers a novel approach on enhancing the effi-
ciency and capacity of plant breeding, some potential drawbacks
have been identified under its applications, which seems not
unique to this technique. A major challenge encountered by all
genotyping methods has been the difficulty to align true alle-
les of each single locus in large, complex, polyploidy genomes.
Among all the tools available, however, GBS is the one offer-
ing the higher potential to resolve the issue. As exemplified
by Huang et al. (2014), alleles in hexaploid oat can be distin-
guished after extensive analyses of sequence data through two

different bioinformatics pipelines, suggesting the data analysis
algorithms may now represent the limiting factor to ascer-
tain alleles at each single locus in a large polyploidy genome
rather than GBS itself given sufficient depth of sequence is
available.

The reduction in genome complexity using restriction enzymes
in the GBS protocol means that, in case of any mutation at the
restriction site, the genomic DNA of this region is not available to
be PCR amplified and consequently the SNPs of this region will
become unavailable. In the worst case of this scenario, a heterozy-
gote gene may appear as homozygous. However, this is a drawback
shared by all the different methods involving reduction in genome
complexity based on the utilization of restriction sites. No scientist
is ready to sacrifice the high throughput of these methods to move
back to RFLP-based protocols. The feasibility of reduced represen-
tation and highly multiplexed GBS strategy was demonstrated in
the complex genomes of maize and barley via a simple procedure
targeting regions flanking restriction endonuclease sites (Elshire
et al., 2011).

Epigenetic studies have revealed the importance of differential
DNA methylation in numerous biological systems. Two restric-
tion enzymes [a rare cutter, PstI (CTGCAG), and a frequent
cutter, MspI (CCGG)] were employed to improve the reduction
of genome complexity in barley and wheat (Poland et al., 2012a).
It may have been overlooked that the activity of MspI is inhib-
ited when the DNA is methylated at the external “C.” In epigenetic
studies, however, the activity of the isoschizomer HpaII is inhibited
by methylation at any of two“C.”Because of the wide utilization of
HpaII, the methylation of the internal “C” in epigenetic regulation
studies seems to be much more important than the methylation
of the external “C.” Therefore, the possibility that developmental
responses in plants may affect the SNP identification when using
the enzyme MspI cannot be ignored, but is likely reduced.

Orphan plant species without a known genomic sequence rep-
resent the vast majority of crops over the world. The GBS protocol
for wheat and barley and subsequent genetic analyses (Poland
et al., 2012a) were carried out when a draft genomic sequence
was not available yet. An available reference genome can simplify
the data analyses, but it is not essential in GBS, indicating a great
advantage of the GBS technique in accelerating plant breeding and
crop improvement. This reality has been confirmed with the recent
GBS applications on different oat accessions (Huang et al., 2014).
The depth of genomic sequencing is important to identify stable
and representative SNPs which can be generated to improve crop
genotypes. Huang et al. (2014) also demonstrate the importance of
the bioinformatic pipeline to fully exploit the GBS datasets, which
is likely more critical in orphan plant species.

PERSPECTIVES
Genotyping-by-sequencing is a novel application of NGS proto-
cols for discovering and genotyping SNPs for crop improvement.
The low cost of GBS makes it an attractive approach to saturate
the mapping and breeding populations with a high density of SNP
markers. Successive improvements of the sequencing chemistries
and base-calling software will allow NGS technologies to deliver
higher sequencing throughputs per run, which in turn enables
deeper multiplexing for a fixed average sequencing depth per
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sample. As the amount and quality of sequence information gen-
erated per run keeps increasing, which allows even higher plexing
and lower costs per samples, GBS has become a cost-competitive
alternative to other whole genome genotyping platforms. It can
be anticipated that high density of SNP markers from NGS will be
extensively applied to GWAS, MAS, and GS. Plant breeders will be
able to sequence even large crop genomes and establish high den-
sity of genetic linkage maps from breeding populations. Future
applications of GBS to crop improvement may allow plant breed-
ers to conduct MAS or GS on a novel germplasm or species without
first having to develop any prior molecular tools. As the sequence-
based genotyping is available for whole range of genomic studies,
GBS will stand to be one of major components in plant genetics
and breeding.
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