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Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth
and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen
peroxide (H2O2), superoxide anions (O2

•−), hydroxyl radical (OH•) and singlet oxygen
(1O2) are by-products of physiological metabolisms, and are precisely controlled by
enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly
accumulated under abiotic stress conditions, which cause oxidative damage and
eventually resulting in cell death. Recently, ROS have been also recognized as key
players in the complex signaling network of plants stress responses. The involvement of
ROS in signal transduction implies that there must be coordinated function of regulation
networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS
production, involving ROS generating enzymes and the unavoidable production of ROS
during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence
showed that ROS play crucial roles in abiotic stress responses of crop plants for the
activation of stress-response and defense pathways. More importantly, manipulating
ROS levels provides an opportunity to enhance stress tolerances of crop plants under
a variety of unfavorable environmental conditions. This review presents an overview of
current knowledge about homeostasis regulation of ROS in crop plants. In particular,
we summarize the essential proteins that are involved in abiotic stress tolerance of crop
plants through ROS regulation. Finally, the challenges toward the improvement of abiotic
stress tolerance through ROS regulation in crops are discussed.

Keywords: crop plants, transcription factors, reactive oxygen species, abiotic stress, antioxidative enzymes, gene
regulation

INTRODUCTION

Abiotic stress conditions such as drought, heat, or salinity affect plant growth and reduce
agricultural production worldwide. These reductions result from climate change and the
freshwater-supply shortage as well as the simultaneous occurrence of different abiotic
stresses (Mittler and Blumwald, 2010; Hu and Xiong, 2014). To meet the demands of
food security in the face of an increasing world population and environmental challenge,
scientists envisage a crucial need for a “second green revolution” to enhance crop

Abbreviations: ABA, abscisic acid; AOX, alternative oxidases; APX, ascorbate peroxidase; AsA, ascorbic acid; ASR, ABA-,
stress-, and ripening-induced; BR, brassinosteroid; CCaMK, calcium/calmodulin-dependent protein kinase; CDPK, calcium-
dependent protein kinase; CIPK, calcineurin B-like protein-interacting protein kinase; DHAR, dehydroascorbate reductase;
GPX, glutathione peroxidase; GR, glutathione reductase; GRX, glutaredoxin; GSH, reduced glutathione; GST, glutathione
S-transferase; MAPK, mitogen-activated protein kinase; MAPKKK, MAPK kinase kinase; MDHAR, monodehydroascorbate
reductase; MT, metallothionein; PAs, polyamines; POD, peroxidase; PRX, peroxiredoxin; RBOH, respiratory burst oxidase
homolog; RCD, radical-induced cell death; ROS, reactive oxygen species; SOD, superoxide dismutase; SRO, similar to RCD
one; TRX, thioredoxin.

Frontiers in Plant Science | www.frontiersin.org 1 December 2015 | Volume 6 | Article 1092

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82876787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.01092
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2015.01092
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.01092&domain=pdf&date_stamp=2015-12-08
http://journal.frontiersin.org/article/10.3389/fpls.2015.01092/abstract
http://loop.frontiersin.org/people/200059/overview
http://loop.frontiersin.org/people/55086/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


You and Chan ROS Regulation in Crop Plants

yield and yield stability under non-optimal and adverse growing
conditions by a combination of approaches based on the recent
advances in genomic research (Zhang, 2007; Eckardt et al., 2009).

To cope with adverse conditions, plants have evolved a range
of physiological and metabolic responses by activation of a
great many of stress-responsive genes and synthesis of diverse
functional proteins through a complex signal transduction
network, so as to confer tolerance to the environmental stresses
(Hirayama and Shinozaki, 2010). Reactive oxygen species (ROS),
including hydrogen peroxide (H2O2), superoxide radical (O2

•−),
hydroxyl radical (OH•) and singlet oxygen (1O2) etc., resulting
from excitation or incomplete reduction of molecular oxygen,
are harmful by-products of basic cellular metabolism in aerobic
organisms (Apel and Hirt, 2004; Miller et al., 2010). Besides
the toxicity of ROS, ROS are also considered to be signaling
molecules that regulate plant development, biotic and abiotic
stress responses (Apel and Hirt, 2004; Mittler et al., 2004). Many
excellent reviews have focused on ROS metabolism (Apel and
Hirt, 2004; Noctor et al., 2014), ROS sensory and signaling
networks (Miller et al., 2010; Suzuki et al., 2012; Baxter et al.,
2014), as well as the cross-talk with other signaling molecules
function in developmental and stress response processes (Suzuki
et al., 2012; Noctor et al., 2014). However, most of these reviews
provided an overall retrospective for model plant Arabidopsis.
Gill and Tuteja (2010) reviewed enzymatic and non-enzymatic
antioxidants and their roles in abiotic stress tolerance of crop
plants. However, the regulation mechanism of the antioxidant
system and the key components involved in ROS regulation
and abiotic stress tolerance have not yet been summarized in
crop plants. In this review, we provide an overview of current
knowledge about ROS homeostasis regulation in crop plants.
In particular, the genes that have been characterized in ROS
homeostasis regulation affecting abiotic stress resistance in crop
plants were summarized.

ROS HOMEOSTASIS IN PLANT

The evolution of aerobic metabolic processes such as respiration
and photosynthesis unavoidably led to the production of ROS
in mitochondria, chloroplast, and peroxisome (Apel and Hirt,
2004; Gill and Tuteja, 2010). Under optimal growth conditions,
intracellular ROS aremainly produced at a low level in organelles.
However, ROS are dramatically acclimated during stress. Under
abiotic stress condition, limitation of CO2 uptake, caused
by stress-induced stomatal closure, favors photorespiratory
production of H2O2 in the peroxisome and production of
superoxide and H2O2 or singlet oxygen by the overreduced
photosynthetic electron transport chain (Apel and Hirt, 2004;
Noctor et al., 2014). In addition to organelles, plasma membrane
together with apoplast is the main site for ROS generation in
response to endogenous signals and exogenous environmental
stimuli. Several types of enzymes, such as NADPH oxidases,
amine oxidases, polyamine oxidases, oxalate oxidases, and a large
family of class III peroxidases, that localized at the cell surface
or apoplast are contributed to production of apoplast ROS (Apel
and Hirt, 2004; Cosio and Dunand, 2009; Gill and Tuteja, 2010).

Overproduction of ROS caused by stress conditions in plant
cells is highly reactive and toxic to proteins, lipids, and nucleic
acid which ultimately results in cellular damage and death (Gill
and Tuteja, 2010). On the other hand, the increased production
of ROS during stresses also thought to act as signals for the
activation of stress response pathways (Baxter et al., 2014).
Plants have evolved an efficient enzymatic and non-enzymatic
antioxidative system to protect themselves against oxidative
damage and fine modulation of low levels of ROS for signal
transduction.

ROS-scavenging enzymes of plants include superoxide
dismutase (SOD), ascorbate peroxidase (APX), catalase
(CAT), glutathione peroxidase (GPX), monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR),
glutathione reductase (GR), glutathione S-transferase (GST),
and peroxiredoxin (PRX). These antioxidant enzymes are
located in different sites of plant cells and work together to
detoxify ROS. SOD acts as the first line of defense converting
O2

•− into H2O2. CAT, APX, and GPX then detoxify H2O2. In
contrast to CAT, APX requires an ascorbic acid (AsA) and/or
a glutathione (GSH) regenerating cycle involved MDHAR,
DHAR, and GR. GPX, GST, and PRX reduce H2O2 and organic
hydroperoxides through ascorbate-independent thiol-mediated
pathways using GSH, thioredoxin (TRX) or glutaredoxin
(GRX) as nucleophile (Dietz et al., 2006; Meyer et al., 2012;
Noctor et al., 2014). Non-enzymatic antioxidants include
GSH, AsA, carotenoids, tocopherols, and flavonoids are also
crucial for ROS homeostasis in plant (Gill and Tuteja, 2010).
Besides traditional enzymatic and non-enzymatic antioxidants,
increasing evidences indicated that soluble sugars, including
disaccharides, raffinose family oligosaccharides and fructans,
have a dual role with respect to ROS (Couee et al., 2006;
Keunen et al., 2013). Soluble sugars were directly linked with
the production rates of ROS by regulation ROS producing
metabolic pathways, such as mitochondrial respiration or
photosynthesis. Conversely, they also feed NADPH-producing
metabolism to participate in antioxidative processes (Couee
et al., 2006).

In addition to the antioxidative system, avoiding ROS
production by alleviating the effects of stresses on plant
metabolism may also be important for keeping ROS homeostasis.
Alternative oxidases (AOX) can prevent the excess generation of
ROS in the electron transport chains of mitochondria (Maxwell
et al., 1999). By diverting electrons flowing through electron-
transport chains, AOX can decrease the possibility of electron
leaking to O2 to generate O2

•−. Other mechanisms, such as leaf
movement and curling, photosynthetic apparatus rearranging,
may also represent an attempt to avoid the over-reduction of ROS
by balancing the amount of energy absorbed by the plant with the
availability of CO2 (Mittler, 2002).

REGULATION OF NADPH OXIDASES IN
CROP PLANTS

Plant NADPH oxidases, also known as respiratory burst oxidase
homologs (RBOHs), are the most studied enzymatic source
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of ROS. Plant RBOHs have cytosolic FAD- and NADPH-
binding domains in the C-terminal region, and transmembrane
domains that correspond to those in mammalian NADPH
oxidases (Suzuki et al., 2011). In addition, plant RBOHs have
a cytosolic N-terminal extension contains regulatory regions
such as calcium-binding EF-hands and phosphorylation target
sites that are important for the function and regulation of
the plant NADPH oxidases (Oda et al., 2010; Suzuki et al.,
2011). Increasing evidence demonstrated NADPH oxidases
as key signaling nodes in the ROS regulation network of
plants integrating numerous signal transduction pathways with
ROS signaling and mediating multiple important biological
processes, including cell growth and plant development, abiotic
stress response and adaptation, plant–microbe pathogenic
and symbiotic interactions (Torres and Dangl, 2005; Suzuki
et al., 2011; Marino et al., 2012). Numerous studies have
uncovered several regulatory mechanisms of plant NADPH
oxidases in Arabidopsis, which involved various signaling
components including protein phosphorylation, Ca2+,
CDPKs, and phospholipase Dα1 (PLDα1) (Baxter et al.,
2014). Ca2+ regulates NADPH oxidase-dependent ROS
production by binding directly to the EF-hand motif in the N
terminus of RBOH protein and/or regulating Ca2+-dependent
phosphorylation medicated by CDPK (Ogasawara et al.,
2008; Dubiella et al., 2013). RBOHs were also found to be
phosphorylated by SnRK2 protein kinase OPEN STOMATA 1
(OST1) during ABA-dependent stomatal closure (Sirichandra
et al., 2009).

Functions and regulatory mechanisms of several RBOH
proteins were investigated in crops. The activity of NADPH
oxidase was increased by drought, and exhibited high-
temperature stability and an alkaline-philic feature, suggesting
its important role in response to drought stress (Duan et al.,
2009). Treatment with ABA and Ca2+ also considerably
induced the activity of NADPH oxidase in leaves of maize
seedlings (Jiang and Zhang, 2002a, 2003). Nine NADPH oxidase
(RBOH) genes (OsRBOHA–OsRBOHI) were identified in the
rice genome (Wong et al., 2007). Rice RBOH genes exhibited
unique patterns of expression changes in response to various
environmental stresses (Wang et al., 2013). A small GTPase
Rac in rice (OsRac1) was identified as a positive regulator of
OsRBOHB involved in pathogen defense (Wong et al., 2007).
A direct interaction between OsRac1 and the N-terminal
extension of OsRBOHB may be required for NADPH oxidase
activity modulated by the cytosolic Ca2+ concentration in plants
(Wong et al., 2007). Further mutation analyses of the regulatory
domains of OsRBOHB indicated that not only the EF-hand
motif but also the upstream N-terminal region was essential to
Ca2+-dependent but not phosphorylation-dependent activation
(Takahashi et al., 2012). In addition, Liu et al. (2012) found
that phosphatidylinositol 3-kinase (PI3K) regulated NADPH
oxidase activity by modulating the recruitment of Rac1 to plasma
membrane. Rice histidine kinase OsHK3 showed to regulate
the expression of NADPH oxidase genes and the production
of H2O2 in ABA signaling (Wen et al., 2015). In potato, two
CDPKs, StCDPK4 and StCDPK5, were found to induce the
phosphorylation of StRBOHB and regulated the oxidative burst

during pathogen defense (Kobayashi et al., 2007). In tobacco,
NbRBOHA and NbRBOHB are in charge of the generation of
ROS during the defense response (Yoshioka et al., 2003). Further
study indicated that mitogen-activated protein kinase (MAPK)
cascades MEK2-SIPK/NTF4 and MEK1-NTF6 were involved
in the NbRBOHB-dependent oxidative burst in response to
pathogen signals (Asai et al., 2008). Two tomato RBOH genes,
SlRBOHB (SlWfi1) and SlRBOHG (SlRBOH1), have turned out
to participate in wounding response and development (Sagi
et al., 2004). Other studies revealed that SlRBOHG (SlRBOH1)
is vital for brassinosteroid (BR)-induced H2O2 production, ABA
accumulation, stomatal closure/opening and oxidative stress
tolerance (Xia et al., 2014; Zhou et al., 2014a), while SlRBOHB
was found to positively regulate the defense response against
B. cinerea, the flg22-induced immune response and drought
stress response (Li et al., 2015). Lin et al. (2009) observed
that the activity of NADPH oxidase is regulated by H2O2 and
ZmMPK5 in maize. Zhu et al. (2013b) identified a BR induced
microtubule-associated protein, ZmMAP65-1a, interacts with a
MAPK and functions in H2O2 self-propagation by regulating
the expression of NADPH oxidase genes in BR signaling in
maize.

REGULATION OF ANTIOXIDATIVE
SYSTEM IN CROP PLANTS

Plant antioxidative system consists of numerous enzymatic and
non-enzymatic antioxidative components that work together
with ROS-generating pathway to maintain ROS homeostasis.
Several studies showed important roles of antioxidative
components in ROS homeostasis in crop plants. The rice
(japonica) genome has eight genes that encode putative SODs,
including two cytosolic copper-zinc SODs (cCuZn-SOD1 and
cCuZn-SOD2), one putative CuZn-SOD-like (CuZn-SOD-L),
one plastidic SOD (pCuZn-SOD), two iron SODs (Fe-SOD2
and Fe-SOD3), and one manganese SOD (Mn-SOD1) (Nath
et al., 2014). Transgenic rice plants overexpressing Mn-SOD1
showed less mitochondrial O2

•− under stress and reduced the
stress induction of OsAOX1a/b specifically (Li et al., 2013).
There are eight APX genes in rice, including two cytosolic APXs
(OsAPX1 and OsAPX2), two peroxisomal APXs (OsAPX3 and
OsAPX4), two mitochondrial APXs (OsAPX5 and OsAPX6) and
two chloroplastic APXs (OsAPX7 and OsAPX8) (Teixeira et al.,
2004, 2006). Two cytosolic APXs, OsAPX1 and OsAPX2, have
crucial roles in abiotic stress resistance in rice (Sato et al., 2011;
Zhang et al., 2013). Interestingly, rice mutants double silenced
for cytosolic APXs (APX1/2s) exhibit significant changes in
the redox status indicated by higher H2O2 levels and increased
glutathione and ascorbate redox states, triggering alterations in
the ROS signaling networks and making the mutants able to cope
with abiotic stress similar to non-transformed plants (Bonifacio
et al., 2011). Some of the ROS-scavenging enzymes, such as GST
(Dixon and Edwards, 2010), TRX, and GRX (Meyer et al., 2012),
have evolved into large multigene families with varied functions
that cope with a variety of adverse environmental conditions.
Recent mutational and transgenetic plants analyses revealed
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special member of multigene enzyme family as a key player in
ROS homeostasis regulation in crop plants. OsTRXh1, encodes
h-type TRX in rice, regulates the redox state of the apoplast
and participates in plant development and stress responses
(Zhang et al., 2011). OsTRXh1 protein possesses reduction
activity and secreted into the extracellular space. Overexpression
of OsTRXh1 produce less H2O2 under salt stress, reduce the
expression of the salt-responsive genes, lead to a salt-sensitive
phenotype in rice. In another study, Perez-Ruiz et al. (2006)
reported that rice NADPH thioredoxin reductase (NTRC)
utilizes NADPH to reduce the chloroplast 2-Cys PRX BAS1,
thus protects chloroplast against oxidative damage by reducing
H2O2.

The involvement of ROS in signal transduction implies that
there must be coordinated function of regulation networks to
maintain ROS at non-toxic levels in a delicate balancing act
between ROS production and ROS-scavenging pathways, and to
regulate ROS responses and subsequent downstream processes
(Mittler et al., 2004). Numerous studies from different plant
species observed that the generation of ROS and activity of
various antioxidant enzymes increased during abiotic stresses
(Damanik et al., 2010; Selote and Khanna-Chopra, 2010;
Tang et al., 2010; Turan and Ekmekci, 2011). There is an
increasing body of literature concerning the mechanisms by
which regulation of antioxidative system response to abiotic
stresses in crops. Intrinsic to this regulation is ROS production
and signaling that integrated with the action of hormone and
small molecules.

The plant hormone ABA is the key regulator of abiotic
stress resistance in plants, and regulates large number of stress-
responsive genes by a complex regulatory network so as to
confer tolerance to the environmental stresses (Cutler et al.,
2010; Raghavendra et al., 2010). ABA-induced stress tolerance
is partly linked with the activation of antioxidant defense
systems, including enzymatic and non-enzymatic constituents,
which protects plant cells against oxidative damage (Huang
et al., 2012; Zhang et al., 2012a, 2014). Water stress-induced
ABA accumulation and exogenous ABA treatment triggers the
increased generation of ROS, then leads to the activation of
the antioxidant system in crops (Jiang and Zhang, 2002a,b;
Ye et al., 2011). Small molecules, such as Ca2+, calmodulin
(CaM), NO and ROS have been demonstrated to play vital roles
in ABA-induced antioxidant defense (Jiang and Zhang, 2003;
Hu et al., 2007). In rice, a Ca2+/CaM-dependent protein kinase
(CCaMK), OsDMI3, is necessary for ABA-induced increases
in the expression and the activities of SOD and CAT. ABA-
induced H2O2 production activates OsDMI3, and the activation
of OsDMI3 also enhances H2O2 production by increasing the
expression of NADPH oxidase genes (Shi et al., 2012). Further
study indicated that OsDMI3 functions upstream of OsMPK1, to
regulate the activities of antioxidant enzymes and the production
of H2O2 in rice (Shi et al., 2014). Recent study provides evidence
to show that rice histidine kinase OsHK3 functions upstream
of OsDMI3 and OsMPK1, and is necessary for ABA-induced
antioxidant defense (Wen et al., 2015). Zhang et al. (2012a)
reported that C2H2-type ZFP, ZFP182, is involved in ABA-
induced antioxidant defense. Another C2H2-type ZFP, ZFP36,

is also necessary for ABA-induced antioxidant defense (Zhang
et al., 2014). Moreover, ABA-induced H2O2 production and
ABA-induced activation of OsMPKs promote the expression of
ZFP36, and ZFP36 also up-regulates the expression of NADPH
oxidase and MAPK genes and the production of H2O2 in
ABA signaling (Zhang et al., 2014). In maize, ABA and H2O2
increased the expression and the activity of ZmMPK5, which is
required for ABA-induced antioxidant defense. The activation
of ZmMPK5 also enhances the H2O2 production by increasing
the expression and the activity of NADPH oxidase, thus there
is a positive feedback loop involving NADPH oxidase, H2O2,
and ZmMPK5 in ABA signaling (Zhang et al., 2006; Hu et al.,
2007; Ding et al., 2009; Lin et al., 2009). Subsequent experiments
confirmed that ABA-induced H2O2 production mediates NO
generation in maize leaves, which, in turn, activates MAPK
and increases the expression and the activities of antioxidant
enzymes in ABA signaling (Zhang et al., 2007). Moreover, a
maize CDPK gene, ZmCPK11, acts upstream of ZmMPK5, is
essential for ABA-induced up-regulation of the expression and
activities of SOD and APX, and the production of H2O2 in
maize leaves (Ding et al., 2013). Hu et al. (2007) found that
Ca2+-CaM is required for ABA-induced antioxidant defense and
functions both upstream and downstream of H2O2 production
in leaves of maize plants. Afterward, Ca2+/CaM-dependent
protein kinase, ZmCCaMK, was reported to be essential for ABA-
induced antioxidant defense, and H2O2-induced NO production
is involved in the activation of ZmCCaMK in ABA signaling (Ma
et al., 2012).

Brassinosteroids are a group of steroid hormones and
important for a broad spectrum of plant growth and development
processes, as well as responses to biotic and abiotic stresses
(Bajguz and Hayat, 2009; Divi and Krishna, 2009; Yang et al.,
2011; Zhu et al., 2013a). Numerous studies have shown that
BR can activate antioxidant defense systems to improve stress
tolerance in crops (Özdemir et al., 2004; Xia et al., 2009).
Zhang et al. (2010) reported that ZmMPK5 is required for
NADPH oxidase-dependent self-propagation of ROS in BR-
induced antioxidant defense systems in maize. Further study
founded that a 65 kDa microtubule-associated protein (MAP65),
ZmMAP65-1a, directly phosphorylated by ZmMPK5, is required
for BR-induced antioxidant defense (Zhu et al., 2013b). Recently,
Ca2+ and maize CCaMK gene, ZmCCaMK, was demonstrated
to be required for BR-induced antioxidant defense (Yan et al.,
2015).

GENES INVOLVED IN ROS REGULATION
AND ABIOTIC STRESS TOLERANCE IN
CROPS

To cope with abiotic stress, plants have evolved multiple
and interconnected signaling pathways to regulate different
sets of stress-responsive genes for producing various classes
of proteins, such as protein kinases, transcriptional factors,
enzymes, molecular chaperones, and other functional proteins,
resulting in diverse physiological and metabolic response so as to
confer tolerance to the environmental stresses. Hundreds or even
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1000s of genes that regulate stress responses have been identified
in crop plants by diverse functional genomics approaches (Hu
and Xiong, 2014). In parallel to this, the functions of numerous
stress-responsive genes involved in ROS homeostasis regulation
and abiotic stress resistance have been characterized in transgenic
plants (Figure 1; Table 1).

Protein Kinases and Phosphatases
Mitogen-activated protein kinase cascades are involved in
diverse processes from plant growth and development to stress
responses. MAPK cascades also play crucial roles in ROS
signaling, and several studies in Arabidopsis have shown that
ROS are not only the trigger, but also the consequence of
activation of MAPK signaling (Kovtun et al., 2000; Pitzschke
and Hirt, 2006; Pitzschke et al., 2009). However, few MAPK
cascades components have been functionally characterized in
crops. Two MAPK kinases (MAPKKs), GhMKK1 and GhMKK5
have been characterized to be involved in stress resistance and
ROS homeostasis in cotton (Zhang et al., 2012b; Lu et al.,
2013). Overexpression of GhMKK1 in tobacco improved its
tolerance to salt and drought stresses, exhibited an enhanced
ROS scavenging capability and significantly elevated activities of
antioxidant enzymes (Lu et al., 2013).Whereas, overexpression of
another cotton MAPKK gene,GhMKK5, in tobacco reduced their

tolerance to salt and drought stresses. GhMKK5-overexpressing
plants showed significantly up-regulated expression of ROS-
related and cell death marker genes, and resulted in excessive
accumulation of H2O2 and hypersensitive response (HR)-like
cell death (Zhang et al., 2012b). In another study, a drought-
hypersensitive mutant (drought-hypersensitive mutant1 [dsm1])
of a putative MAPK kinase kinase gene has been identified in rice
(Ning et al., 2010). The dsm1 mutant was sensitive to oxidative
stress with down-regulated expression of two peroxidase (POD)
genes and reduced POD activity.

Calcium-dependent protein kinase proteins regulate the
downstream components in calcium signaling pathways.
A rice CDPK gene, OsCPK12, enhances tolerance to salt stress
by reducing the accumulation of ROS (Asano et al., 2012).
Expression of genes encoding ROS-scavenging enzymes
(OsAPx2 and OsAPx8) were up-regulated, whereas the
NADPH oxidase gene (OsRBOHI) was down-regulated in
OsCPK12-overexpressing plants compared with wild type plants.
Conversely, the oscpk12 mutant and RNAi plants were more
sensitive to high salinity and accumulated more H2O2 than
wild type plants (Asano et al., 2012). Overexpression of another
CDPK gene, OsCPK4, results in increased tolerance to salt and
drought stresses in rice plants. Transgenic plants exhibited higher
expression of numerous genes involved in lipid metabolism and

FIGURE 1 | Overview of major genes that involved in abiotic stress resistance through ROS regulation in crop plants. Plant cells perceive abiotic stress
signals and transduce them through various signaling pathways including secondary signaling molecules, plant hormones, and transcriptional regulators. The
regulation of gene expression by different transcription regulators results in the induction of various defense pathways, such as, reactive oxygen species (ROS)
scavenging and antioxidative metabolism. Transcription regulators also mediate ROS producing systems and activate the expression of stress-responsive gene so
as to confer tolerance to the environmental stresses. CDPK, calcium-dependent protein kinase; CIPK, calcineurin B-like protein-interacting protein kinase; MAPK,
mitogen-activated protein kinase; PK, protein kinase; PP, protein phosphatase; SRO, similar to RCD one.

Frontiers in Plant Science | www.frontiersin.org 5 December 2015 | Volume 6 | Article 1092

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


You and Chan ROS Regulation in Crop Plants

TA
B

L
E

1
|R

ep
re

se
n

ta
ti

ve
g

en
es

th
at

in
vo

lv
ed

in
ab

io
ti

c
st

re
ss

re
si

st
an

ce
in

m
aj

o
r

cr
o

p
s

th
ro

u
g

h
R

O
S

re
g

u
la

ti
o

n
.

F
u

n
ct

io
n

al
ca

te
g

o
ry

G
en

es
P

ro
te

in
fu

n
ct

io
n

O
ri

g
in

Tr
an

sf
o

rm
at

io
n

re
ce

p
to

r
R

O
S

re
g

u
la

ti
o

n
A

b
io

ti
c

st
re

ss
re

si
st

an
ce

R
ef

er
en

ce

P
ro

te
in

ki
n

as
e

M
A

P
K

s
G

hM
K

K
1

M
A

P
K

K
G

.h
irs

ut
um

N
.b

en
th

am
ia

na
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
an

d
sa

lt
st

re
ss

Lu
et

al
.,

20
13

D
S

M
1

M
A

P
K

K
K

O
.s

at
iv

a
O

.s
at

iv
a

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

st
re

ss
N

in
g

et
al

.,
20

10

C
D

P
K

O
sC

P
K

4
ca

lc
iu

m
-d

ep
en

de
nt

pr
ot

ei
n

ki
na

se
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
an

d
sa

lt
st

re
ss

C
am

po
et

al
.,

20
14

O
sC

P
K

12
ca

lc
iu

m
-d

ep
en

de
nt

pr
ot

ei
n

ki
na

se
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

pr
od

uc
tio

n
an

d
sc

av
en

gi
ng

S
al

ts
tre

ss
A

sa
no

et
al

.,
20

12

C
IP

K
Ta

C
IP

K
29

C
B

L-
in

te
ra

ct
in

g
pr

ot
ei

n
ki

na
se

T.
ae

st
iv

um
N

.b
en

th
am

ia
na

R
O

S
sc

av
en

gi
ng

sa
lt

st
re

ss
D

en
g

et
al

.,
20

13

M
dS

O
S

2L
1

C
B

L-
in

te
ra

ct
in

g
pr

ot
ei

n
ki

na
se

M
al

us
x

do
m

es
tic

a
M

al
us

x
do

m
es

tic
a;

S
.l

yc
op

er
si

cu
m

R
O

S
sc

av
en

gi
ng

;
an

tio
xi

da
tiv

e
m

et
ab

ol
is

m

S
al

ts
tre

ss
H

u
et

al
.,

20
15

O
th

er
ki

na
se

S
IT

1
Le

ct
in

re
ce

pt
or

-li
ke

ki
na

se
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

pr
od

uc
tio

n
S

al
ts

tre
ss

Li
et

al
.,

20
14

P
ro

te
in

ph
os

ph
at

as
e

O
sP

P
18

P
ro

te
in

ph
os

ph
at

as
e

2C
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
an

d
ox

id
at

iv
e

st
re

ss
Yo

u
et

al
.,

20
14

Tr
an

sc
ri

p
ti

o
n

fa
ct

o
rs

Zi
nc

fin
ge

r
D

S
T

C
2H

2
zi

nc
fin

ge
r

O
.s

at
iv

a
O

.s
at

iv
a

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

an
d

sa
lt

st
re

ss
H

ua
ng

et
al

.,
20

09

ZF
P

36
C

2H
2

zi
nc

fin
ge

r
O

.s
at

iv
a

O
.s

at
iv

a
A

B
A

-in
du

ce
d

an
tio

xi
da

nt
de

fe
ns

e
D

ro
ug

ht
an

d
ox

id
at

iv
e

st
re

ss
Zh

an
g

et
al

.,
20

14

O
sT

ZF
1

C
C

C
H

zi
nc

fin
ge

r
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
,

sa
lt

an
d

ox
id

at
iv

e
st

re
ss

Ja
n

et
al

.,
20

13

A
P

2/
E

R
F

S
ER

F1
E

R
F

O
.s

at
iv

a
O

.s
at

iv
a

R
O

S
si

gn
al

in
g

S
al

ts
tre

ss
S

ch
m

id
te

ta
l.,

20
13

S
U

B
1A

E
R

F
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
,

su
bm

er
ge

an
d

ox
id

at
iv

e
st

re
ss

Fu
ka

o
et

al
.,

20
11

JE
R

F3
E

R
F

S
.l

yc
op

er
si

cu
m

N
.b

en
th

am
ia

na
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
,

sa
lt

an
d

fre
ez

in
g

st
re

ss
W

u
et

al
.,

20
08

W
R

K
Y

G
m

W
R

K
Y2

7
W

R
K

Y
G

.m
ax

G
.m

ax
R

O
S

pr
od

uc
tio

n
D

ro
ug

ht
an

d
sa

lt
st

re
ss

W
an

g
et

al
.,

20
15

G
hW

R
K

Y1
7

W
R

K
Y

G
.h

irs
ut

um
N

.b
en

th
am

ia
na

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

an
d

sa
lt

st
re

ss
Ya

n
et

al
.,

20
14

N
A

C
G

m
N

A
C

29
N

A
C

G
.m

ax
G

.m
ax

R
O

S
pr

od
uc

tio
n

D
ro

ug
ht

an
d

sa
lt

st
re

ss
W

an
g

et
al

.,
20

15

S
N

A
C

3
N

A
C

O
.s

at
iv

a
O

.s
at

iv
a

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

,
he

at
an

d
ox

id
at

iv
e

st
re

ss
Fa

ng
et

al
.,

20
15

O
th

er
TF

Ta
A

S
R

1
A

S
R

T.
ae

st
iv

um
N

.b
en

th
am

ia
na

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

an
d

ox
id

at
iv

e
st

re
ss

H
u

et
al

.,
20

13

O
th

er
n

u
cl

ea
r

p
ro

te
in

s

S
R

O
pr

ot
ei

n
O

sS
R

O
1c

S
R

O
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
an

d
ox

id
at

iv
e

st
re

ss
Yo

u
et

al
.,

20
13

Ta
-s

ro
1

S
R

O
T.

ae
st

iv
um

T.
ae

st
iv

um
;

A
.t

ha
lia

na
R

O
S

pr
od

uc
tio

n
an

d
sc

av
en

gi
ng

O
sm

ot
ic

,s
al

ta
nd

ox
id

at
iv

e
st

re
ss

Li
u

et
al

.,
20

14

O
th

er
O

sS
K

IP
a

S
ki

-in
te

ra
ct

io
n

pr
ot

ei
n

O
.s

at
iv

a
O

.s
at

iv
a

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

st
re

ss
H

ou
et

al
.,

20
09

A
B

A
m

et
ab

ol
is

m
D

S
M

2
C

ar
ot

en
e

hy
dr

ox
yl

as
e

O
.s

at
iv

a
O

.s
at

iv
a

an
tio

xi
da

tiv
e

m
et

ab
ol

is
m

D
ro

ug
ht

an
d

ox
id

at
iv

e
st

re
ss

D
u

et
al

.,
20

10

S
gN

C
ED

1
9-

ci
s-

ep
ox

yc
ar

ot
en

oi
d

S
.g

ui
an

en
si

s
N

.b
en

th
am

ia
na

A
B

A
-in

du
ce

d
an

tio
xi

da
nt

de
fe

ns
e

D
ro

ug
ht

an
d

sa
lt

st
re

ss
Zh

an
g

et
al

.,
20

09

R
O

S
sc

av
en

gi
ng

M
nS

O
D

M
nS

O
D

N
.p

lu
m

ba
gi

ni
fo

lia
M

.s
at

iv
a

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

st
re

ss
M

cK
er

si
e

et
al

.,
19

96

O
sA

P
X2

A
P

X
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
,

sa
lt

an
d

co
ld

st
re

ss
es

Zh
an

g
et

al
.,

20
13

(C
on

tin
ue

d)

Frontiers in Plant Science | www.frontiersin.org 6 December 2015 | Volume 6 | Article 1092

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


You and Chan ROS Regulation in Crop Plants

TA
B

L
E

1
|C

o
n

ti
n

u
ed

F
u

n
ct

io
n

al
ca

te
g

o
ry

G
en

es
P

ro
te

in
fu

n
ct

io
n

O
ri

g
in

Tr
an

sf
o

rm
at

io
n

re
ce

p
to

r
R

O
S

re
g

u
la

ti
o

n
A

b
io

ti
c

st
re

ss
re

si
st

an
ce

R
ef

er
en

ce

D
et

ox
ifi

ca
tio

n
pr

ot
ei

ns
M

sA
LR

N
A

D
P

H
-d

ep
en

de
nt

al
do

se
/a

ld
eh

yd
e

re
du

ct
as

e

M
.s

at
iv

a
N

.b
en

th
am

ia
na

an
tio

xi
da

tiv
e

m
et

ab
ol

is
m

D
ro

ug
ht

an
d

ox
id

at
iv

e
st

re
ss

O
be

rs
ch

al
le

ta
l.,

20
00

O
sM

T1
a

ty
pe

1
m

et
al

lo
th

io
ne

in
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
st

re
ss

Ya
ng

et
al

.,
20

09

G
hM

T3
a

Ty
pe

3
m

et
al

lo
th

io
ne

in
G

.h
irs

ut
um

N
.b

en
th

am
ia

na
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
,s

al
ta

nd
co

ld
st

re
ss

es
Xu

e
et

al
.,

20
09

C
al

ci
um

tr
an

sp
or

te
rs

O
sA

C
A

6
ty

pe
IIB

C
a2

+ A
TP

as
e

O
.s

at
iv

a
N

.b
en

th
am

ia
na

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

an
d

sa
lt

st
re

ss
H

ud
a

et
al

.,
20

13

P
ol

ya
m

in
es

m
et

ab
ol

is
m

P
tA

D
C

A
rg

in
in

e
de

ca
rb

ox
yl

as
e

P
.t

rif
ol

ia
ta

N
.b

en
th

am
ia

na
;

L.
es

cu
le

nt
um

R
O

S
sc

av
en

gi
ng

D
ro

ug
ht

st
re

ss
W

an
g

et
al

.,
20

11

A
m

in
o

ac
id

m
et

ab
ol

is
m

O
sO

A
T

O
rn

ith
in

e
δ-

am
in

ot
ra

ns
fe

ra
se

O
.s

at
iv

a
O

.s
at

iv
a

an
tio

xi
da

tiv
e

m
et

ab
ol

is
m

;
R

O
S

sc
av

en
gi

ng

D
ro

ug
ht

an
d

ox
id

at
iv

e
st

re
ss

Yo
u

et
al

.,
20

12

H
el

ic
as

e
O

sS
U

V
3

N
TP

-d
ep

en
de

nt
R

N
A

/D
N

A
he

lic
as

e
O

.s
at

iv
a

O
.s

at
iv

a
R

O
S

sc
av

en
gi

ng
D

ro
ug

ht
an

d
sa

lt
st

re
ss

Tu
te

ja
et

al
.,

20
13

U
nk

no
w

n
fu

nc
tio

n
Ta

O
P

R
1

12
-o

xo
-p

hy
to

di
en

oi
c

ac
id

re
du

ct
as

es
T.

ae
st

iv
um

T.
ae

st
iv

um
;

A
.t

ha
lia

na
A

B
A

-in
du

ce
d

an
tio

xi
da

nt
de

fe
ns

e
S

al
ta

nd
ox

id
at

iv
e

st
re

ss
D

on
g

et
al

.,
20

13

protection against oxidative stress, therefore, reduced levels of
membrane lipid peroxidation under stress conditions (Campo
et al., 2014).

Calcium-dependent protein kinase proteins also have been
found to be responsive to abiotic stress via ROS regulation.
Overexpression of wheat CIPK gene TaCIPK29 in tobacco
resulted in increased salt tolerance. Transgenic tobacco seedlings
maintained high K+/Na+ ratios and Ca2+ content by up-
regulating the expression of some transporter genes, and also
reduced ROS accumulations by increasing the expression and
activities of ROS-scavenging enzymes under salt stress (Deng
et al., 2013). Overexpression of MdSOS2L1, a CIPK gene from
apple, also conferred salt tolerance in apple and tomato (Hu
et al., 2015). Molecular analysis and functional characterization
of MdSOS2L1 exhibited that it increases the ROS scavenging-
enzymes and antioxidant metabolites such as procyanidin and
malate, leading to enhanced salt tolerance in apple and tomato
(Hu et al., 2015). A rice lectin receptor-like kinase, salt intolerance
1 (SIT1) was demonstrated mediates salt sensitivity by regulating
ROS and ethylene homeostasis and signaling (Li et al., 2014). SIT1
phosphorylates MPK3 and 6, and their activation by salt requires
SIT1. SIT1 promotes accumulation of ROS, leading to plant death
under salt stress, which occurred in an MPK3/6- and ethylene
signaling-dependent manner (Li et al., 2014).

The dephosphorylation mediated by protein phosphatase is
an important event in the signal transduction process that
regulates various cellular activities. A rice protein phosphatase
2C (PP2C) gene, OsPP18, was identified as a SNAC1-regulated
downstream gene (You et al., 2014). The ospp18mutant exhibited
sensitive to drought and oxidative stress with reduced activities
of ROS-scavenging enzymes. The ABA-induced expression
of ABA-responsive genes has not been disrupted in ospp18
mutant, indicating OsPP18 mediates drought stress resistance
by regulating ROS homeostasis through ABA-independent
pathways (You et al., 2014).

Transcriptional factors
Transcriptional factors (TFs) are one of the important regulatory
proteins involved in abiotic stress responses. They play essential
roles downstream of stress signaling cascades, which could
alter the expression of a subset of stress-responsive genes
simultaneously and enhance tolerance to environmental stress
in plants. Members of AP2/ERF (APETALA2/ethylene response
factor), zinc finger, WRKY, bZIP (basic leucine zipper), and
NAC (NAM, ATAF, and CUC) families have been characterized
with roles in the regulation of plant abiotic stress responses
(Yamaguchi-Shinozaki and Shinozaki, 2006; Ariel et al., 2007;
Ciftci-Yilmaz and Mittler, 2008; Fang et al., 2008), and some of
them have been demonstrated to be involved in ROS homeostasis
regulation and abiotic stress resistance in crops.

Proteins containing zinc finger domain(s) were widely
reported to be key players in the regulation of ROS-related
defense genes in Arabidopsis and other species. For example,
the expression of some zinc finger genes in Arabidopsis, ZAT7,
ZAT10 and ZAT12, is intensely up-regulated by oxidative stress
in AtAPX1 knockout plants (Miller et al., 2008). Subsequent
experiments showed that these zinc finger proteins were involved
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in ROS regulation and multiple abiotic stresses tolerance
(Davletova et al., 2005; Mittler et al., 2006; Ciftci-Yilmaz et al.,
2007). The zinc finger proteins are divided into several types,
such as C2H2, C2C2, C2HC, CCCH and C3HC4, based on
the number and the location of characteristic residues (Ciftci-
Yilmaz and Mittler, 2008). The signaling pathways participating
in stomatal movement were well studied in the model plant
Arabidopsis, but were largely unknown in crops. Huang et al.
(2009) identified a drought and salt tolerance (dst) mutant, and
the DST was cloned by the map-based cloning. DST encoded
a C2H2-type zinc finger transcription factor that negatively
regulated stomatal closure by direct regulation of genes related
to H2O2 homeostasis, which identified a novel signaling pathway
of DST-mediated H2O2-induced stomatal closure (Huang et al.,
2009). Loss of DST function increased the accumulation of H2O2
in guard cell, accordingly, resulted in increased stomatal closure
and enhanced drought and salt tolerance in rice. Other two
C2H2-type zinc finger proteins, ZFP36 and ZFP179, also play
circle role in ROS homeostasis regulation and abiotic stress
resistance in rice. ZFP179 encodes a salt-responsive zinc finger
protein with two C2H2-type zinc finger motifs (Sun et al., 2010).
The ZFP179 transgenic rice plants increased ROS-scavenging
ability and expression levels of stress-related genes, and exhibited
significantly enhanced tolerance to salt and oxidative stress (Sun
et al., 2010). ZFP36 is an ABA and H2O2-responsive C2H2-type
zinc finger protein gene, and plays a important role in ABA-
induced antioxidant defense and the tolerance of rice to drought
and oxidative stresses (Zhang et al., 2014). Moreover, ZFP36
is a major player in the regulation of the cross-talk involving
NADPH oxidase, H2O2, and MAPK in ABA signaling (Zhang
et al., 2014). OsTZF1, a CCCH-tandem zinc finger protein, was
identified as a negative regulator of leaf senescence in rice under
stress conditions (Jan et al., 2013). Meanwhile, OsTZF1 confers
tolerance to oxidative stress in rice by enhancing the expression of
redox homeostasis genes and ROS-scavenging enzymes (Jan et al.,
2013). A cotton CCCH-type tandem zinc finger gene, GhTZF1,
also serves as a key player in modulating drought stress resistance
and subsequent leaf senescence by mediating ROS homeostasis
(Zhou et al., 2014b).

Members of AP2/ERF (APETALA2/ethylene response factor)
transcription factor family, including DREB/CBF transcription
factors, are especially important as they regulate genes involved
in multiple abiotic stress responses (Mizoi et al., 2012). During
the initial phase of abiotic stresses, elevated ROS levels might act
as a vital acclimation signal. But the key regulatory components
of ROS-mediated abiotic stress response signaling are largely
unknown. Rice salt- and H2O2-responsive ERF transcription
factor, SERF1, has a critical role in regulating H2O2-mediated
molecular signaling cascade during the initial response to salinity
in rice (Schmidt et al., 2013). SERF1 regulates the expression of
H2O2-responsive genes involved in salt stress responses in roots.
SERF1 is also a phosphorylation target of a salt-responsive MAPK
(MAPK5), and activation the expression of salt-responsive
MAPK cascade genes (MAPK5 andMAPKKK6), well established
salt-responsive TF genes (ZFP179 and DREB2A), and itself
through direct interaction with the corresponding promoters
in plants (Schmidt et al., 2013). The authors proposed that

SERF1 is essential for the propagation of the initial ROS signal
to mediate salt tolerance. SUB1A, an ERF transcription factor
found in limited rice accessions, limits ethylene production and
gibberellin responsiveness during submergence, economizing
carbohydrate reserves and significantly prolonging endurance
(Fukao and Xiong, 2013). After floodwaters subside, submerged
plants encounter re-exposure to atmospheric oxygen, leading
to postanoxic injury and severe leaf desiccation (Setter et al.,
2010; Fukao and Xiong, 2013). SUB1A also positively affects
postsubmergence responses by restrained accumulation of ROS
in aerial tissue during desubmergence (Fukao et al., 2011).
Consistently, SUB1A promptes the expression of ROS scavenging
enzyme genes, resulting in enhanced tolerance to oxidative
stress. On the other hand, SUB1A improves survival of rapid
dehydration following desubmergence and water deficit during
drought by increasing ABA responses, and activating stress-
inducible gene expression (Fukao et al., 2011). A jasmonate
and ethylene-responsive ERF gene, JERF3, was isolated from
tomato and involved in a ROS-mediated regulatory module in
transcriptional networks that govern plant response to stress
(Wu et al., 2008). JERF3 modulates the expression of genes
involved in osmotic and oxidative stresses responses by binding
to the osmotic- and oxidative-responsive related cis elements. The
expression of these genes leads to reduce accumulation of ROS,
resulting in enhanced abiotic stress tolerance in tobacco (Wu
et al., 2008).

The WRKY family proteins have one or two conserved
WRKY domains comprising a highly conserved WRKYGQK
heptapeptide at the N-terminus and a zinc-finger-like motif
at the C-terminus (Eulgem et al., 2000). The conserved
WRKY domain plays important roles in various physiological
processes by binding to the W-box in the promoter regions
of target genes (Ulker and Somssich, 2004; Rushton et al.,
2010). Wang et al. (2015) reported a multiple stress-responsive
WRKY gene, GmWRKY27, reduces ROS level and enhances
salt and drought tolerance in transgenic soybean hairy roots.
GmWRKY27 interacts with GmMYB174, which, in turn, acts
in concert to reduce promoter activity and gene expression of
GmNAC29 (Wang et al., 2015). Further experiments showed
that GmNAC29 is a negative factor of stress tolerance
for enhancing the ROS production under abiotic stress by
directly activating the expression of the gene encoding ROS
production enzyme. In another study, overexpression of cotton
WRKY gene, GhWRKY17, reduced transgenic tobacco plants
tolerance to drought and salt stress. Subsequent experiments
showed that GhWRKY17 involved in stress responses by
regulating ABA signaling and cellular levels of ROS (Yan
et al., 2014). Sun et al. (2015) isolated a WRKY gene,
BdWRKY36, from B. distachyon, and found it functions as a
positive regulator of drought stress response by controlling
ROS homeostasis and regulating transcription of stress-related
genes.

Members of other TF families also functioned in abiotic
stress response through ROS regulation. ASR proteins are plant-
specific TFs and considered to be important regulators of
plant response to various stresses. Wheat ASR gene, TaASR1, a
positive regulator of plant tolerance to drought/osmotic stress,
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is involved in the modulation of ROS homeostasis by activating
antioxidant system and transcription of stress-responsive genes
(Hu et al., 2013). Soybean NAC TF, GmNAC2, was identified
as a negative regulator during abiotic stress, and participates in
ROS signaling pathways through modulation of the expression
of genes related to ROS-scavenging (Jin et al., 2013). Ramegowda
et al. (2012) isolated a stress-responsive NAC gene,EcNAC1, from
finger millet (E. coracana). Transgenic tobacco plants expressing
EcNAC1 increased ROS scavenging activity, up-regulated many
stress-responsive genes, and exhibited tolerance to various abiotic
stresses and MV-induced oxidative stress (Ramegowda et al.,
2012). Recently, a NAC transcription factor gene, SNAC3,
functions as a positive regulator under high temperature and
drought stress, was identified in rice (Fang et al., 2015). SNAC3
enhances the abiotic stresses tolerance by modulating H2O2
homeostasis state through controlling the expression of ROS-
associated enzyme genes (Fang et al., 2015).

In addition to TFs, transcriptional coregulator as well as
spliceosome component, OsSKIPa, a rice homolog of human
Ski-interacting protein (SKIP), has been studied for effects on
drought resistance (Hou et al., 2009). OsSKIPa-overexpressing
rice exhibited significantly enhanced drought stress tolerance at
both the seedling and reproductive stages by increased ROS-
scavenging ability and transcript levels of many stress-related
genes (Hou et al., 2009).

SRO PROTEINS

The SRO (SIMILAR TO RCD ONE) protein family was recently
identified as a group of plant-specific proteins, and they are
characterized by the plant-specific domain architecture which
contains a poly (ADP-ribose) polymerase catalytic (PARP)
and a C-terminal RCD1-SRO-TAF4 (RST) domain (Jaspers
et al., 2010). In addition to these two domains, some SRO
proteins have an N-terminal WWE domain. Our limited
knowledge of SRO proteins is mainly from the study in
Arabidopsis mutant rcd1 (radical-induced cell death 1). rcd1
exhibits pleiotropic phenotypes related to a wide range of
exogenous stimulus responses and developmental processes,
including sensitivity to apoplastic ROS and salt stress, resistance
to chloroplastic ROS caused by methyl viologen (MV) and
UV-B irradiation (Ahlfors et al., 2004; Fujibe et al., 2004;
Katiyar-Agarwal et al., 2006). RCD1 interacts with SOS1 and
a large number of transcription factors which have been
identified or predicted to be involved in both development and
stress-related processes (Katiyar-Agarwal et al., 2006; Jaspers
et al., 2009). Recent study demonstrated that RCD1 is possibly
involved in signaling networks that regulate quantitative changes
in gene expression in response to ROS (Brosche et al.,
2014).

In rice, an SRO protein, OsSRO1c, was characterized as a
direct target of the drought stress-related transcription factor
SNAC1 (You et al., 2013). OsSRO1c was induced in guard
cells by drought stress. Overexpression of OsSRO1c resulted in
accumulated H2O2 in guard cells, which, in turn, decreased
stomatal aperture and reduced water loss. Further experiments

indicated that OsSRO1c has dual roles in drought and oxidative
stress tolerance of rice by promoting stomatal closure and H2O2
accumulation through a novel pathway involving the SNAC1 and
DST regulators (You et al., 2013). Recently, an SRO gene was also
identified to be crucial for salinity stress resistance by modulating
redox homeostasis in wheat (Liu et al., 2014). Ta-sro1, the allele
of the salinity-tolerant bread wheat cultivar Shanrong No. 3, is
derived from the wheat parent allele via point mutation. Unlike
Arabidopsis SRO proteins, Ta-sro1 has PARP activity. Both the
overexpression of Ta-sro1 in wheat and Arabidopsis promotes the
accumulation of ROS by regulating ROS-associated enzyme. Ta-
sro1 also enhances the activity of AsA-GSH cycle enzymes and
GPX cycle enzymes, which regulate ROS content and cellular
redox homeostasis (Liu et al., 2014).

ROS-scavenging or Detoxification
Proteins
Reactive oxygen species-scavenging enzymes such as SOD,
APX, CAT were properly described its role in ROS-scavenging
pathway. The presence of antioxidant enzymes and compounds
in almost all cellular compartments suggests the importance of
ROS detoxification for protection against various stresses (Mittler
et al., 2004). The effect of these ROS-scavenging enzymes in
abiotic stress resistance was also investigated in crop plants.
Transgenic alfalfa expressing MnSOD cDNA from Nicotiana
plumbaginifolia improved survival and vigor after exposure
to water deficit. Most importantly, transgenic alfalfa showed
increased yield and survival rate over three winters in natural
field environments (McKersie et al., 1996). A cDNA encoding a
cytosolic copper-zinc SOD from the mangrove plant Avicennia
marina was transformed into rice. The transgenic plants
exhibited more tolerant to drought, salinity and oxidative stresses
compared with the untransformed control plants (Prashanth
et al., 2008). Overexpression of OsAPX2 increased APX activity
and reduced H2O2 and malondialdehyde (MDA) levels in
transgenic plants under stress treatments (Zhang et al., 2013).
More importantly, OsAPX2-overexpressing plants were more
tolerant to drought stress than wild-type plants at the booting
stage as indicated a significantly increase in spikelet fertility
under abiotic stresses (Zhang et al., 2013). Transgenic rice
plants that overexpressing another APX gene, OsAPX1, also
exhibited increased spikelet fertility under cold stress (Sato et al.,
2011).

Accumulation of toxic products from ROS with lipids and
proteins significantly contributes to the damage of crop plants
under biotic and abiotic stresses. A novel plant NADPH-
dependent aldose/aldehyde reductase, which has the reduction
activity toward toxic products of lipid peroxidation, was
isolated from alfalfa. Tobacco plants overproducing the alfalfa
aldose/aldehyde reductase showed lower concentrations of
reactive aldehydes (products of lipid peroxidation) and tolerance
to oxidative and drought stress (Oberschall et al., 2000).

Metallothioneins (MTs) are a group of low molecular weight
proteins with the characteristics of high cysteine (Cys) residue
content and metal-binding ability. The presence of several Cys
residues in MTs suggests their involvement in the detoxification
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of ROS or in the maintenance of redox levels. OsMT1a,
encoding a type 1 MT in rice, was induced by dehydration
and Zn2+ treatment (Yang et al., 2009). Transgenic rice plants
overexpressing OsMT1a enhanced antioxidant enzyme activities
of CAT, POD and APX, and enhanced tolerance to drought.
OsMT1a also regulates the expression of several zinc finger
transcription factors by the modulation of Zn2+ homeostasis,
which leads to enhanced plant stress tolerance (Yang et al., 2009).
GhMT3a encodes a type 3 plant MT in cotton. Recombinant
GhMT3a protein showed an ability to bind metal ions and
scavenge ROS in vitro. Transgenic tobaccos showed more
tolerance tomultiple abiotic stresses, and lower H2O2 levels when
compared with wild-type plants (Xue et al., 2009). The SbMT-2
gene from a halophyte was also involved in maintaining cellular
homeostasis by regulating ROS scavenging during stresses and
thus improved tolerance to salt and osmotic stress in transgenic
tobacco (Chaturvedi et al., 2014).

ABA Metabolic-related Proteins
Abscisic acid is a key phytohormone that medicates the
adaptive responses to abiotic stresses of plants. ABA-induced
antioxidant defense has been well documented in plants. ABA
biosynthesis and catabolism also involved in antioxidant defense
and abiotic stresses. Du et al. (2010) isolated a rice drought-
sensitive mutant dsm2, impaired in the gene encoding a putative
β-carotene hydroxylase. β-carotene hydroxylase is predicted for
the biosynthesis of zeaxanthin, a carotenoid precursor of ABA.
Under drought stress, dsm2mutants had reduced zeaxanthin and
ABA, lower Fv/Fm and non-photochemical quenching (NPQ)
capacity than the wild type. Overexpression of DSM2 in rice
increases the xanthophylls andNPQ capacity, stress-relatedABA-
responsive genes expression, and resulted in enhancing resistance
to drought and oxidative stresses (Du et al., 2010). OsABA8ox3,
encoding ABA 8′-hydroxylase involved in ABA catabolism, is
also a key gene regulating ABA accumulation and anti-oxidative
stress capability under drought stress (Nguyen et al., 2015).
OsABA8ox3 RNAi plants exhibited significant improvement
in drought stress tolerance. Consistent with this, OsABA8ox3
RNAi plants showed increased SOD and CAT activities and
reduced MDA levels during dehydration treatment. In another
study, overexpression of the 9-cis-epoxycarotenoid dioxygenase
gene from Stylosanthes guianensis (SgNCED1) in the transgenic
tobacco increased ABA content and tolerance to drought and
salt stresses (Zhang et al., 2009). Moreover, enhanced abiotic
stresses tolerance in transgenic plants is associated with ABA-
induced production of H2O2 and NO, which, in turn, activate
the expression and activities of ROS-scavenging enzymes (Zhang
et al., 2009).

Calcium Transporters and
Calcium-binding Proteins
Calcium (Ca2+) regulates numerous signaling pathways involved
in growth, development and stress tolerance. The influx of
Ca2+ into the cytosol is countered by pumping Ca2+ out
from the cytosol to restore the basal cytosolic level, and this
may be achieved either by P-type Ca2+ATPases or antiporters.

Huda et al. (2013) report the isolation and characterization of
OsACA6, which encodes a member of the type IIB Ca2+ATPase
family from rice. Overexpression of OsACA6 confers tolerance
to salinity and drought stresses in tobacco, which was
correlated with reduced accumulation of ROS and enhanced
the expression of stress-responsive genes in plants (Huda et al.,
2013). In addition, overexpression of OsACA6 confers Cd2+
stress tolerance in transgenic lines by maintaining cellular ion
homeostasis and modulating ROS-scavenging pathway (Shukla
et al., 2014). Annexins are calcium-dependent, phospholipid-
binding proteins with suggested functions in response to
environmental stresses and signaling during plant growth and
development. OsANN1, a member of the annexin protein
family in rice, has ATPase activity, the ability to bind Ca2+,
and the ability to bind phospholipids in a Ca2+-dependent
manner. OsANN1 confers abiotic stress tolerance by modulating
antioxidant accumulation and interacting with OsCDPK24 (Qiao
et al., 2015).

Other Functional Proteins
Polyamines are low molecular weight aliphatic amines found in
all living cells. Because of their cationic nature at physiological
pH, PAs have strong binding capacity to negatively charged
molecules (DNA, RNA, and protein), thus stabilizing their
structure (Alcazar et al., 2010). The PAs biosynthetic pathway
has been thoroughly investigated in many organisms, and
arginine decarboxylase (ADC) plays a predominant role in the
accumulation of PAs under stresses (Capell et al., 2004; Alcazar
et al., 2010).Wang et al. (2011) isolated an arginine decarboxylase
gene (PtADC) from Poncirus trifoliata. The transgenic tobacco
and tomato plants elevated endogenous PAs level, accumulated
less ROS and showed an improvement in drought tolerance.
Jang et al. (2012) identified a highly oxidative stress-resistant
T-DNA mutant line carried an insertion in OsLDC-like 1 in
rice. The mutant produced much higher levels of PAs compared
to the wild type plants. Based on their results, the authors
suggested that PAs mediate tolerance to abiotic stresses through
their ability to decrease ROS generation and enhance ROS
degradation.

The 12-oxo-phytodienoic acid reductases (OPRs) are classified
into two subgroups, OPRI and OPRII. OPRII proteins are
involved in jasmonic acid synthesis, while the function of OPRI
is as yet unclear. Dong et al. (2013) characterizated the functions
of the wheat OPRI gene TaOPR1. Overexpression of TaOPR1
in wheat and Arabidopsis enhanced tolerance to salt stress by
regulating of ROS and ABA signaling pathways (Dong et al.,
2013).

Helicases are ubiquitous enzymes that catalyze the unwinding
of energetically stable duplex DNA or RNA secondary structures,
and thereby play an important role in almost all DNA and/or
RNA metabolic processes. OsSUV3, an NTP-dependent
RNA/DNA helicase in rice, exhibits ATPase, RNA and
DNA helicase activities (Tuteja et al., 2013). OsSUV3 sense
transgenic rice plants showed lesser lipid peroxidation and H2O2
production, along with higher activities of antioxidant enzymes,
consequently resulting in increased tolerance to high salinity
(Tuteja et al., 2013).
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Ornithine δ-aminotransferase (δ-OAT) is considered to be an
enzyme involved in proline and arginine metabolism. OsOAT-
overexpressing rice plants exhibited significantly increased
δ-OAT activity and proline levels under normal growth
conditions, and enhanced drought, osmotic, and oxidative stress
tolerance (You et al., 2012).

CONCLUSION AND PERSPECTIVES

The discovery of the enzymatic activity of SOD 45 years ago
(McCord and Fridovich, 1969) ushered in the field of ROS
biology. During the last two decades, the major sources and
sites of ROS production, and the key antioxidant molecules
and enzymes that scavenge ROS have been chartered in
plant. However, our current knowledge about ROS homeostasis
and signaling remains fragmental. Apoplastic ROS are rapidly
produced in plants as a defense response to pathogen
attack and abiotic stress. Whereas, in addition to NADPH
oxidase, the function and regulation of other apoplastic
ROS-associated enzymes, such as class III peroxidases, in
stress responses signaling are largely unknown. On the
other hand, 100s of genes that encode for ROS-metabolizing
enzymes and regulators compose ROS gene network in
plants. Thus, more than one enzymatic activity that produces
or scavenges ROS exits in certain cellular compartment.
How these different enzymes are coordinated within each
compartment and between different compartments to adjust
a particular ROS at an appropriate level during stresses
is an important question needs to be addressed. There
is increasing evidence suggesting the vital role of ROS
signaling pathway in plant development and stress responses.
However, regulatory mechanisms at the biochemical level, the
mechanisms of extracellular ROS perception, transduction of
ROS-derived signals, and especially the communication and
interaction between different subcellular compartments in ROS
signaling are still poorly understood. To build comprehensive
regulation networks in ROS signaling and responses requires a
combination of transcriptomics, proteomics and metabolomics
approaches with analysis of mutant as well as protein–protein
interactions.

Plants need diverse responses and adjustment of multiple
adaptation mechanisms to cope with the multiple stresses exist
in nature. Comparison of transcription profiles of rice in
response to multiple stresses suggested the central role of ROS
homeostasis in different abiotic stresses (Mittal et al., 2012).
Therefore, manipulating endogenous ROS levels provides us with
an opportunity to improve common defense mechanisms against
different stresses to ensure crop plants growth and survival under
adverse growing condition. The functions of numerous stress-
responsive genes involved in ROS homeostasis regulation and
abiotic stress resistance have been characterized in transgenic
plants (Table 1). As expected, transgenic crop plants harbored
these genes enhanced tolerance to multiple abiotic stresses (Wu
et al., 2008; Fukao et al., 2011; Lu et al., 2013; Campo et al.,
2014). However, few studies have reported the abiotic stress
tolerance of transgenic plant at the reproductive or flowering
stage based on yield and/or setting rate, and very few of these
tests were conducted under field conditions. Additionally, most
of the reported ROS-associated genes that involved in abiotic
stress just have been demonstrated its role in regulation of
expression and/or activity of ROS-scavenging enzymes. Thus,
network involving in function of these genes in ROS homeostasis
to medicate abiotic stress resistance needs to be fully investigated,
and the new components need to be integrated into the signaling
pathway. With a long-term goal to improve the abiotic stress
resistance of crop plants by the utilizing of ROS regulation
pathways, more and more key regulators need to be identified. It
is also very important to clarify the mechanisms regulating ROS
signaling pathways and their interplay during abiotic stresses.
This can finally help to incorporate multiple necessary ROS-
associated genes into the genetic backgrounds of elite cultivars
or hybrids to enhance their abiotic stress resistance under real
agricultural field conditions.
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