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Flow cytometry-based analysis of lymphocyte division using carboxyfluorescein succin-
imidyl ester (CFSE) dye dilution permits acquisition of data describing cellular proliferation
and differentiation. For example, CFSE histogram data enable quantitative insight into cellu-
lar turnover rates by applying mathematical models and parameter estimation techniques.
Several mathematical models have been developed using different types of deterministic
or stochastic approaches. However, analysis of CFSE proliferation assays is based on the
premise that the label is halved in the two daughter cells. Importantly, asymmetry of pro-
tein distribution in lymphocyte division is a basic biological feature of cell division with the
degree of the asymmetry depending on various factors. Here, we review the recent litera-
ture on asymmetric lymphocyte division and CFSE-based lymphocyte proliferation analysis.
We suggest that division- and label-structured mathematical models describing CFSE-
based cell proliferation should take into account asymmetry and time-lag in cell proliferation.
Utilization of improved modeling algorithms will permit straightforward quantification of
essential parameters describing the performance of activated lymphocytes.
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INTRODUCTION
The ability of the immune system to protect the host organism
against live-threatening infections and tumors directly depends
on the reactivity of lymphocytes to antigenic stimulation, with a
key role of clonal T cell responses (1). The perception of infec-
tions as a race between the invading pathogen and immunity
suggests that it is the knowledge of the proliferation and death
rates of T cells which provides a quantitative basis for assessing
the quality of the host immunity (2). For almost 20 years, flow
cytometry-based analysis of intracellular fluorescent dye distrib-
ution has been used to assess the proliferative performance and
differentiation patterns of lymphocytes (3–5). Since the prototype
dye for this analysis is CFSE, the assay is commonly referred to
as CFSE dilution assay or – more simply – CFSE assay. A quanti-
tative characterization of T cell turnover which can be elaborated
from time series of CFSE histograms ranges from“static”measures
such as precursor cell frequency or mean generation number, to
“dynamic”parameters characterizing the cell cycle progression and
apoptosis rates (6). However, estimation of turnover parameters
requires formulation of mathematical models of cell growth which
can take various forms and differ in their complexity depending
on the parameters of interest and the richness of the available data
[comprehensively reviewed by De Boer and Perelson (7)]. Impor-
tantly, current approaches to the analysis of CFSE proliferation
data are based on the assumption that cell division is symmetric,
i.e., the fluorescent label is halved in the two daughter cells (3, 5,
7–9). However, a random and uneven partition of mass between
the sister cells is considered as an axiom in cell biology since many
years (10). Although the detailed knowledge of the intracellular

reactions which affect the turnover and intracellular heterogene-
ity of CFSE labeled proteins is currently limited (11), it is broadly
accepted that CFSE binds indiscriminately to intracellular proteins
and the fluorescence intensity of any single cell is roughly propor-
tional to the total number of CFSE molecules bound to proteins
within that cell (12). The latter study proposed a method for the
analysis of CFSE-labeling experiments which also considered the
possibility of an unequal division of CFSE molecules between the
daughter cells.

The inequality of the mass (protein) distribution to the daugh-
ter cells directly suggests that CFSE labeled proteins are unequally
partitioned between daughter cells. Indeed, recent studies describ-
ing T cell activation showed that asymmetric cell division can
be an inherent part of T cell growth and differentiation (13–16).
However, direct experimental evidence for asymmetric partition
of CFSE between daughter cells is still missing. Nevertheless,
the existing deterministic mathematical frameworks should be
amended to facilitate a quantitative analysis of CFSE-based lym-
phocyte proliferation when asymmetry of cell division associated
with unequal partition of CFSE labeled proteins between the two
daughter cell results in a poor resolution of divisional clusters
in CFSE histograms. Here, we briefly summarize recent findings
describing asymmetric lymphocyte division and progress in the
analysis of CFSE-based lymphocyte activation. Moreover, cell pro-
liferation is not an instantaneous process and it takes a finite time
for a cell to progress from the G1-phase of the cell cycle to the
completion of the M-phase. The duration of the continuous pro-
gression is called a time-lag and in general, needs to be explicitly
parameterized in the model equations. Finally, we suggest that
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mathematical models describing CFSE-based lymphocyte prolif-
eration should consider both asymmetry in division and time-lag
in proliferation.

ASYMMETRIC LYMPHOCYTE DIVISION
Symmetric or asymmetric cell divisions refer to the mode of cell
division which results in two phenotypically identical- or different-
daughter cells, respectively. The phenotypic features could be the
cell size, cell surface receptors, intracellular components such as
proteins (including those labeled with CFSE), transcription fac-
tors, or messenger RNA (17). Hence, these phenotypic differences
provide the basis for the functional differences in the daughter
cells, i.e., their cell fates.

Following encounter with their antigen displayed in the context
of major histocompatibility complex molecules, naïve T lympho-
cytes go through well-orchestrated series of divisions generating
different populations of cells that fulfill immediate effector func-
tions or generate long-lived immunological memory. Two basic
models explain the generation of such functionally distinct T cell
phenotypes. According to the “one naïve cell – one fate” model,
naïve lymphocytes are instructed to generate either effector or
memory progeny (18). In this model, instruction of T cells, for
example, is achieved through interaction with professional APCs
(19). Hence, to preserve the instructing signal(s) received dur-
ing activation and to maintain equality of the cells throughout
division, T cells should divide in a symmetric fashion. The alter-
native model proposes asymmetric cell division as the mechanism
that allows naïve T cells to give rise to two different daughter
cells. These are referred to as proximal or distal daughter cell
depending on their proximity to the APC. Such asymmetric T
cell division represents a process that allows single cells to give rise
to two, phenotypically and functionally different daughter cells,
and thereby permits diversification of cell populations. In other
words, one of the daughter cells inherits the potential to differen-
tiate into full effector cell (proximal daughter), while the second
daughter maintains the stemness of the mother cell. This prin-
ciple feature of asymmetric cell division has also been described
in developmental studies examining neurogenesis (20). Likewise,
adaptation of adult tissues to changing environmental conditions
such as the content of the gut requires rapid adaptation of one
cell fraction while other cells maintain their high proliferative
potential (21).

The processes involved in activation and differentiation of T
cells, for example during infection have to swiftly generate cells
with direct effector function to efficiently restrict viral replication
(1). At the same time, some T cells should retain their ability to
proliferate in order to prevent exhaustion of certain T cell subsets
(22) and to facilitate generation of long-lived memory T cells (23).
Indeed, Chang et al. (13) demonstrated that division of CD8+ T
cells specific for a viral peptide leads to the generation of daugh-
ter cells with different characteristics. CFSE-based assays revealed
that asymmetry is established already during the first round of
division and is dependent on the presence of the cognate anti-
gen (13). Assessment of the protein content in the daughter cells
generated during the first cell division showed that asymmetry
established during mitosis is preserved throughout cytokinesis.
Moreover, proximal and distal daughter cells exhibit different

protein expression profiles and functional properties with proxi-
mal daughter cells exhibiting higher immediate protective capacity
(13). The finding that proximal daughter cells exhibit higher CD8
co-receptor and LFA-1 expression facilitating formation of more
frequent and longer lasting interactions with antigen presenting
APCs (14) further emphasized that asymmetric division critically
determines both T cell phenotype and function.

Asymmetric cell division is not only an important feature of
CD8+ T cell activation (13, 14), but also occurs during the activa-
tion and differentiation of CD4+ T cells (13, 24) and B cells (25,
26). While naïve CD8+ T cells require only one or only few encoun-
ters with APCs to proliferate and differentiate into effector cells,
naïve CD4+ T cells depend on multiple encounters in order to dif-
ferentiate and to exhibit specialized effector functions (27). Hence,
it is likely that CD4+ T cells acquire their distinct phenotypes,
e.g., Th1, Th2, or Th17, through multiple sequential asymmet-
ric cell divisions. However, recent studies suggest that asymmetric
cell division cannot be considered as the only mechanism that
leads to the profound heterogeneity of T cell lineages (16). Thus,
more research is required to resolve the contribution of sequen-
tial asymmetric T cell division to the generation of diverse T cell
phenotypes. We suggest that a combination of CFSE-based T cell
proliferation analysis with mathematical modeling may help – at
least in part – to clarify this issue.

CURRENT MATHEMATICAL MODELS FOR CFSE-BASED
LYMPHOCYTE PROLIFERATION ANALYSIS
Several mathematical models have been established for the analysis
of CFSE-based proliferation assays (7, 9, 12, 28–32). The existing
modeling frameworks can be subdivided on the basis of the major
requirements for CFSE histogram data processing into two main
categories (Table 1). The first group requires a decomposition of
the CFSE histograms characterizing the distribution of cells with
respect to the fluorescent dye into the distinct generations of cells.
The procedure is based on fitting the CFSE histogram with a series
of log-normal Gaussian distributions differing in their means and
standard deviation and is implemented in commercially available
standard software packages. Importantly, the assignment of dis-
tinct cell generations to CFSE clusters has remained an empiric
process which depends heavily on initial labeling homogeneity,
label degradation, cellular auto-fluorescence, and other factors
including experimental skills of the researcher (33). As long as
the division is symmetric (or almost symmetric) (Figure 1A),
these factors can be tuned in a proper way to enable resolution
of successive generations as distinct CFSE clusters (Figure 1B).
Under these conditions a range of existing mathematical models
can be tuned to estimate the turnover parameters of the stimulated
lymphocyte population. The key features of the corresponding
families of the models are outlined in Table 1, rows one to three.
These models describe the population dynamics of cells which
differ in the number of completed divisions and ignore the het-
erogeneity of the cells within a generation with respect to the CFSE
content. The immunologically relevant issues that were addressed
with the models of this group include regulatory effects of IL-2
on the T cell responses (34, 35), regulation of hematopoietic stem
cells cycling (36), and kinetics of mouse erythroid progenitor cell
differentiation (37).
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Table 1 | Major features of mathematical models describing CFSE-based proliferation assays.

Cell proliferation model1 Input data Estimated parameters Mathematical approach2 Primary sources

A–B state model Generation

structure

Division entry-, apoptosis-

rates, duration of division

DDE Nordon et al. (6), Ganusov et al. (28)

G0 model Generation

structure

Division entry-, apoptosis rates,

duration of division

hPDE Bernard et al. (51)

Random birth-death Generation

structure

Division-, apoptosis rates,

progressor fraction

ODE, IE, branching

processes

Ganusov et al. (28), Yates et al. (29),

Lee et al. (30), Zilman et al. (31), Hyrien

et al. (41), Veiga-Fernandes et al. (52),

Revy et al. (53), Hawkins et al. (54)

Random birth-death,

CFSE-structured

CFSE

histograms

Division-, apoptosis-, CFSE

decay rates

hPDE Luzyanina et al. (38)

Random birth-death,

generation-, CFSE-structured

CFSE

histograms

Division-, apoptosis-, CFSE

decay rates, auto-fluorescence

hPDE Hasenauer et al. (40), Banks et al. (32)

Asymmetric division,

G0-model, generation-,

CFSE-structured

CFSE

histograms

Asymmetry, division-,

apoptosis-, CFSE decay rates,

time-lag of proliferation

hPDE See text for details

1The following notations are used: “A–B state model” refers to the model of cell cycle in (55) in which the intermitotic period is composed of an A-state (major part

of G1-phase) and a B-phase (conventional S, G2, and M phases); “G0 model” refers to the view of the cell cycle with two states (47), i.e., resting- (G0) and cycling-

states (G1, S, G2, M). Conceptually, it is equivalent to the A–B state model. “Random birth-death” model refers to a discrete compartmental (generation structured)

model of cycling cells (56). “Generation structured” refers to the mathematical model in which the cell population is decomposed into cohorts of cells which differ

with respect to the number of completed division cycles; “CFSE-structured” represents the mathematical description of cell population in which the distribution

(heterogeneity) of cells with respect to the fluorescence intensity is followed by considering the cell distribution function.
2DDE, delay differential equations; hPDE, hyperbolic partial differential equations; ODE, ordinary differential equations; IE, integral equations.

The second group of models which refer directly to the CFSE
histograms seems to be more appropriate when the generational
structure of the labeled population cannot be easily resolved
(Table 1, rows four to five). The initially proposed model describes
the evolution of the labeled cells distribution with respect to the
CFSE level (38). Although this and similar models proved to be
functional in estimating the proliferation- and death rates as func-
tions of the structure variable directly from the histogram data (38,
39), the problem of translating the estimated functions into bio-
logically meaningful parameters still requires the knowledge of the
division structure of the lymphocyte population. A major break-
through in the improvement of the distributed parameter models
for the dynamics of heterogeneous CFSE labeled cell populations
were recently proposed division- and label-structured mathemat-
ical models (32, 40). The major potential of this framework as an
analytical tool is based upon the following features: (i) no need
for CFSE histogram decomposition, (ii) characterization of cell
growth in terms of generation dependent division- and death rates,
(iii) an explicit form of the dependence of solution on the turnover
parameters.

Another class of recently developed mathematical models
which allow a direct fitting of the CFSE histograms is based on
branching processes (12, 41). The approach allows for proba-
bilistic characterization of cell activation, proliferation, and death
from the CFSE dilution data and does not require the assump-
tion about equality of CFSE division between the two daughter
cells.

The first and the second group of models rely on the premise
of symmetric cell division. However, tracing proliferation of other
cell types such as cancer cells has been reported to be difficult
(42) due to poorly resolved peaks of the different cell genera-
tions. Since cytokinesis is not perfect, it was suggested that the two
daughter cells are unlikely to inherit exactly half of the CFSE flu-
orescence dye of the mother cell. An increase in the degree of the
asymmetry of mass partition between daughter cells and hence
disparate distribution of fluorescently labeled proteins should
result in a poorer resolution of generational clusters as shown
in Figures 1C,D for lower asymmetry and in Figures 1E,F for
higher asymmetry. This in turn will lead to the generations over-
lap in CFSE histograms thus posing a limit to experimentalists’
ability to resolve the individual generations using conventional
decomposition methods.

MODELING ASYMMETRIC DIVISION OF CFSE LABELED T
CELLS
We have been recently dealing with the analysis of the prolifer-
ative performance of monoclonal CD8+ T cells recognizing an
H2-Kb-binding epitope derived from the S protein of the mouse
hepatitis virus (MHV). Clearance of MHV during acute infec-
tion is achieved through the combined action of type I interferons
(43) and CD8+ T cells (44). Moreover, CD8+ T cells essentially
contribute to control of the virus during persistent infection, for
example in the central nervous system (45). We have initiated a
project on the generation of avidity-tuned, antigen-specific T cells
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FIGURE 1 | Impact of asymmetry inT cell division impinges on
fluorescent protein partition between daughter cells. (A,B) Symmetric
cell division with equal distribution of the fluorescent dye between daughter
cells (A) and modeled time course analysis of T cell proliferation as
determined by flow cytometry [(B), solid black lines]. Dashed red lines in (B)
indicate the evolution of CFSE intensity of the cohorts (generations) of cell
which differ in the number of completed divisions with the assumption of
symmetric division. (C,D) Asymmetric cell division with “low” asymmetry
(C) and modeled flow cytometric time course analysis of CFSE dilution [(D),
solid black lines] that corresponds to an asymmetry 46/54% [(D), dashed
red lines describe the CFSE distributions for cell cohorts differing in terms of
the completed divisions]. (E,F) T cells dividing with “high” asymmetry (E)
and corresponding model-generated flow cytometric CFSE dilution patterns
[(F), solid black lines] with asymmetry values of 42/58% describing the
behavior of the T cells in this setting [(F), dashed red lines describe the cell

cohorts corresponding to different generations]. (G) Schematic
representation of the structure of a mathematical approach which considers
the division- and CFSE label-heterogeneity of proliferating cells as well as
asymmetry and time of cell division. Some cells from the cohort of cells
which completed “i” divisions are activated (αi characterizes the activation
rate) and progress through the cell cycle (τi stands for the duration of the
progression through S-G2-M phases), resulting to the generation of
daughter cells which differ with respect to their CFSE content. Asymmetric
mitosis refers to cell division which results into appearance of two
phenotypically different daughter cells with a smaller and larger cell mass,
respectively. These cells are characterized by an unequal amount of CFSE
labeled proteins (m1 and m2 = 1−m1, describe the fractions of CFSE from
the mother cell inherited by the two daughter cells). The natural decay of the
CFSE fluorescence intensity is taken into account (kx – stands for an
exponential decay of CFSE loss).
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for adoptive transfer as an option to augment antiviral immune
responses during chronic infection. To this end, MHV-specific T
cell receptors (TCRs) were cloned and tested in retrogenic sys-
tems (46). In vitro re-stimulation of the CFSE labeled monoclonal
CD8+ T cells showed that CFSE dilution was characterized by
broadly varying patterns from highly distinct peaks to poorly
resolved generational clusters. We propose that an explicit con-
sideration of the asymmetry in protein partition between the
daughter cells facilitates a consistent mathematical description of
CFSE histogram time series data (Figure 1G). The appropriate
mathematical framework should describe the population of CFSE
labeled T cells by the distribution of cells with respect to CFSE
amount (unit of intensity, UI). The subpopulations differ in terms
of completed rounds of division and are further distinguished in
resting and proliferating states, with the respective notation and i
standing for the generation (number of completed divisions), t –
for time and x – for CFSE amount per cell. A conceptual scheme
of the modeling approach is shown in Figure 1G suggesting that
such a model can be naturally formulated as an extension of a
generation- and division-structured population balance model
with the cell cycle represented according to the G0 model (47)
and the division asymmetry explicitly taken into account.

Under conditions of symmetric CD8+ T cell division with the
difference of protein partition between the sister cells being equal
to zero (i.e., every daughter cell inherits half of the fluorescently
labeled proteins of the mother cell), the model should predict
clearly distinct generations (Figure 1B, dashed red lines). If the
division is “weakly” asymmetric, i.e., the protein partition between
the sister cells is different, the width of the CFSE distribution of
the successive generations should become broader (Figure 1D,
dashed red lines). Further increase in the degree of the asymmetry
would result in a substantial overlap of the distinct cell generations
(Figure 1F, dashed red lines). Obviously, this type of behavior of T
cells – and other cells such as tumor cells needs to be regarded as a
cause of a poor resolution of the generations in CFSE histograms
(Figures 1D,F, solid black lines) thus creating an obstacle on the
application of standard CFSE analysis tools.

The fitting of mathematical models for asymmetric cell division
as conceptualized in Figure 1G to the time series data provides a
tool for the estimation of the cell physiology parameters such as: (i)
the generation-specific activation and death rates (αi, βi); (ii) the
duration of the division cycle characterized by the time-lag (τi);
(iii) the division asymmetry factors (m1+m2= 1), specifying the
fraction of proteins which is inherited by the first and the sec-
ond daughter cells, respectively; and (iv) the natural decay of the
CFSE fluorescence intensity of the labeled cells (parameterized as

kx). Taken together, asymmetric cell division improves assessment
of T cell performance parameters from CFSE-based proliferation
assays, even under conditions of poorly separated peaks.

CONCLUDING REMARKS
It is considered that the regulation of cell expansion and differ-
entiation can occur by modulating the degree of asymmetry of
cell divisions (17). It has been clearly shown that T lymphocyte
division in response to pathogen exhibits unequal partitioning of
proteins that mediate signaling and cell fate determination (13).
Hence, asymmetric T lymphocyte division provides an additional
mechanism for generating functionally heterogeneous popula-
tions of CD8+ T cells both in primary and memory adaptive
immune responses (48). Since a precise mechanistic link between
the quantitative differences in partitioning of specific proteins
between daughter cells and the developmental path of antigen-
specific T cells remains to be established (49), mathematical mod-
eling is now a key “instrument” for understanding the regulation
of individual cell fates (15, 16, 50).

The addition of asymmetric T cell division to the analysis
of CFSE-based proliferation data fills important gaps as it: (i)
allows one to estimate the proliferation parameters for asymmet-
rically dividing cells directly from CFSE histograms with poorly
resolved generations peaks and (ii) introduces a quantitative para-
meter which characterizes the difference in the partition of the
fluorescent proteins between daughter cells and can be directly
estimated from the same CFSE dilution data. A further question
in CFSE analyses open for examination is the interplay between
experimental variability, biological variability, and model parsi-
mony. We expect that new mathematical tools for the analysis
of a fundamental property of cell division, i.e., the phenotypic
identity or differences of the daughter cells known as asymmetry,
will be developed and introduced into daily experimental work.
Thereby, a better understanding of the diversity and mechanisms
underlying activation and homeostasis of T cell responses will be
achieved.
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