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In everyday life, many diverse bits of information, simultaneously derived from the
different sensory channels, converge into discrete brain areas, and are ultimately
synthetized into unified percepts. Such multisensory integration can dramatically
alter the phenomenal experience of both environmental events and our own body.
Crossmodal illusions are one intriguing product of multisensory integration. This
review describes and discusses the main clinical applications of the most known
crossmodal illusions in rehabilitation settings. We consider evidence highlighting the
contribution of crossmodal illusions to restore, at least in part, defective mechanisms
underlying a number of disorders of body representation related to pain, sensory, and
motor impairments in neuropsychological and neurological diseases, and their use for
improving neuroprosthetics. This line of research is enriching our understanding of the
relationships between multisensory functions and the pathophysiological mechanisms
at the basis of a number of brain disorders. The review illustrates the potential of
crossmodal illusions for restoring disarranged spatial and body representations, and,
in turn, different pathological symptoms.

Keywords: crossmodal illusions, neurorehabilitation, multisensory, body representation, pain, motor disorders,
sensory disorders

Introduction

In everyday life, we are surrounded by a plethora of different sensory signals that concurrently
hit our senses. Although our first-hand perception seems dominated by a single modality,
commonly vision (Wade and Swanston, 2001), different sensory signals are simultaneously
processed and integrated. In this way, without any conscious effort, perceptual and cognitive
functions, as well as the underlying brain activity, are shaped by interactions between senses.
The brain is endorsed with specialized neural and cortical mechanisms for the synthesis of
information derived from the different senses into coherent, unitary representations that guarantee
adaptive behavioral responses (Stein and Meredith, 1993; Driver and Noesselt, 2008). The
primary advantage of multisensory integration consists in the enhancement of the salience
of sensory stimuli, which, in turn, facilitates behavioral responses to them, as, for instance:
fastening spatial orienting, improving memory and language comprehension, optimizing
sensorimotor control (Bolognini et al., 2005; Alais et al., 2010). Multisensory facilitatory effects
typically arise through the processing of congruent sensory signals. However, our brain also
tends to impose coherence to discordant sensory information. This process may give rise to
crossmodal illusions. Indeed, the way we perceive signals from our own body, or from the external
space, can be conceived as the output of brain processes, based on an informed interpretation
of the stimuli. Crossmodal illusions occur when what we sense with one modality affects
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what we experience in another modality. Seen in this perspective,
crossmodal illusions represent perceptual strategies for dealing
with inter-sensory conflicts, ultimately aimed at giving coherence
to the on-going perceptual experience. Remarkably, this function
does not result from inferential, or other higher-level ‘‘cognitive’’
processes, such as deploying a decision strategy for responding
to ambiguous or conflicting experiences; rather, it is based
on automatic multisensory interactions in the brain, which
occur largely outside the realm of conscious perception. Two
basic mechanisms have been proposed as to how multisensory
interactions can affect perception. First, feedback projections
from higher-order association regions of the cortex provide a way
for information regarding one modality (e.g., vision) to influence
sensory processing at putatively unisensory cortical stages,
committed to a different modality (e.g., touch); alternatively,
feed-forward anatomical connections between primary sensory-
specific areas may allow a fast exchange of sensory information
at lower-level stages of cortical processing (Driver and Noesselt,
2008; Cappe et al., 2009).

In recent years, there has been an explosion of research
on crossmodal illusions, which has attempted at unravelling
how multisensory interactions shape human perception and
cognition. Crossmodal illusions have been applied also in
clinical populations. In neuropsychological research, for
instance, crossmodal illusions have been used to look for
evidence of disrupted or abnormal multisensory integration
in patients with acquired focal brain lesions, using anatomo-
clinical data to infer associations between the site of a brain
lesion, the resultant multisensory disorder, and findings
from neuroimaging experiments in healthy humans (for
a review of this line of research see Bolognini et al.,
2013a). The present review considers another intriguing
field of research, concerned with the possibility of using
crossmodal illusions as tools for rehabilitation. Here, we focus
on the two most renowned crossmodal illusions applied
with clinical purposes, the Mirror Box and the Rubber
Hand illusions, illustrating their efficacious use for the
treatment of pain (phantom limb pain, complex regional
pain syndrome, spinal cord injury), and post-stroke motor,
spatial, and bodily impairments (hemiparesis, visuo-spatial
neglect, somatoparaphrenia, anosognosia for hemiplegia,
alien hand syndrome); finally, their potential for optimizing
neuroprosthetics is discussed.

Therapeutic Applications of Crossmodal
Illusions

Mirror Box Illusion
The Mirror Box Illusion (MBI) is one of the most famous
crossmodal illusions (Ramachandran and Altschuler, 2009;
Lamont et al., 2011). The MBI is generated by a visual-
motor conflict: when participants move one hand in front of
a parasagittal mirror, while the other hand is kept behind the
mirror, hidden from view, they may experience the illusion
of symmetrical bimanual movements, as well as other illusory
kinaesthetic and motor effects on the hidden limb (e.g.,
Altschuler, 2005; Snijders et al., 2007; Romano et al., 2013).

Watching the mirror reflection of own movements also increases
the excitability in the motor cortex, ipsilateral to the moving
hand (Garry et al., 2005). Additionally, the mismatch between
the movement performed by participants and the movement
they observe increases neuronal activity in areas associated with
self-awareness and spatial attention (i.e., precuneus, posterior
cingulate and posterior parietal cortices; Fink et al., 1999; Dohle
et al., 2004; Matthys et al., 2009; Michielsen et al., 2011a; Nojima
et al., 2012).

The first clinical application of the MBI has been for
alleviating Phantom Limb Pain (PLP) after amputation
(Ramachandran et al., 1995). Melzack (1992) first proposed
a central role of multisensory integration of bodily signals by
the so-called ‘‘neuromatrix’’ in the construction of the body
image and the generation of pain. When, through the mirror
reflection, the intact arm is superimposed on the phantom
limb, patients report the sensation that they can move and
relax the cramped phantom limb, and experience pain relief.
In this framework, relief from PLP presumably results from
the correction of the incongruence between motor output
(intention) and sensory (proprioceptive) feedback, brought
about by the visual input of movements of the missing limbs.
As a consequence, the ‘‘latent’’ cortical map of the missing
limb may be re-activated (Moseley et al., 2008; Ramachandran
and Altschuler, 2009; Moseley and Flor, 2012). Moreover, the
sensory-motor conflict generated by the MBI can modulate
motor cortical excitability, which is altered in many patients
suffering from chronic pain of central origin (Lefaucheur,
2013; Bolognini et al., 2015). However, not always moving
the phantom limb diminishes PLP: in some amputees the
phantom movement can actually increase PLP (cramping
sensations). Therefore, an alternative version of the MBI has
been developed, whose main feature is that patients look at
the mirror reflection of touches applied to the intact hand,
while receiving touches on the stump positioned behind the
mirror (Schmalzl et al., 2013). The induction of illusory touch
on the phantom hand effectively reduces PLP in patients
who do not respond to the standard MBI. Hence, different
inter-sensory conflicts may be appropriate for amputees
with different types of phantom sensations: while the MBI is
effective for reinstalling voluntary movements of paralyzed
phantoms, and release concomitant clenching sensations, the
visual-tactile version of the MBI is useful for patients who
can voluntarily move their phantom, but tend to experience a
concomitant increase in cramping sensations (Schmalzl et al.,
2013).

Besides PLP, successful use of MBI has been reported in
patients with other pain syndromes, such as the Complex
Regional Pain Syndrome, and even in sensory re-education
of severe hyperesthesia after hand injuries (Moseley and
Flor, 2012). The finding of analgesic effects of the MBI
across different pain disorders is suggestive of a common
pathophysiological mechanism, linked to defective or
altered multisensory processing, which can be regulated
by the sensory-motor conflict of the MBI. Chronic pain
is indeed associated with the disruption of a range of
multisensory body-related cortical representations, which,
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in turn, reflects maladaptive neuroplastic changes in the
brain.

One recent development of MBI for pain relief concerns
its combined use with transcranial Direct Current Stimulation
(tDCS) of the motor cortex. Different physiological mechanisms
mediate the analgesic action of motor cortex stimulation
by tDCS, which share some similarities with those of the
MBI, namely: modulation of motor cortex excitability and
changes in perceptual and emotional processing of the pain
experience (Brunoni et al., 2012; Knotkova et al., 2013).
Therefore, the use of tDCS as an add-on intervention to
MBI could potentiate its antalgic action. This strategy was
applied in patients with neuropathic pain following Spinal Cord
Injury (Soler et al., 2010): tDCS over the motor cortex was
delivered during a modified version of the MBI, consisting
in a virtual reality procedure to induce a visual illusion
of walking. The combined use of tDCS and MBI reduced
the overall severity of pain, as well as improved various
subtypes of neuropathic pain (continuous and paroxysmal
pain, mechanical allodynia and dysaesthesias) in patients with
spinal cord injury, with greater and longer-lasting effects
than those induced by each single intervention (tDCS or
MBI).

Another well-known application of the MBI is for the
rehabilitation of hemiparesis in stroke patients (e.g., Altschuler
et al., 1999; Dohle et al., 2009; Ramachandran and Altschuler,
2009; Michielsen et al., 2011b; Thieme et al., 2013). Although
the precise mechanisms whereby MBI contributes to post-stroke
motor recovery are still unclear, neuroimaging data highlight
the key role of the sensory-motor mismatch (Michielsen et al.,
2011a). Watching the reflection of self-generated movements in
the mirror increases attentional demands for the integration of
vision and proprioception, induced by the mirror, and neural
activity in multisensory areas associated with self-awareness and
spatial attention. These effects may translate into an increased
awareness of the affected limb, which may counteract learnt
non-use (Michielsen et al., 2011a,b). This hypothesis is also
supported by evidence showing beneficial effects of the MBI
on unilateral visuo-spatial neglect (Dohle et al., 2009). In
this case, watching self-induced movements in the left side
of space, contralateral to the side of the hemispheric lesion
(contralesional), may facilitate leftward visuo-spatial orienting,
impaired in left spatial neglect, and awareness of events occurring
in the left, neglected, side of space. Noteworthy, self-observation
in a mirror is also useful for ameliorating somatoparaphrenia,
a somatic delusion usually following right-hemisphere lesions,
which typically manifests as a defective sense of ownership of
the patient’s left, contralesional, body parts (Fotopoulou et al.,
2011; Jenkinson et al., 2013). Finally, ‘‘off-line’’ self-observation
in a video replay reinstates motor awareness in patients with
anosognosia for hemiplegia, speeding up recovery (Fotopoulou
et al., 2009).

Recently, the MBI has been used to improve disorders of
motor control, such as the Alien Hand Syndrome (AHS). The
AHS is a higher-order disorder of motor control featured
by involuntary, yet purposeful, movements of the affected
limb, typically the hand, which may follow infarction in the

vascular territory of anterior cerebral artery, midline tumors,
and neurodegenerative illnesses. The impaired voluntary motor
control in the AHS has been proposed to be due to a pathological
neurofunctional disconnection between motor intentions and
sensory information. Following this line of reasoning, in one
patient with right AHS due to an intracerebral hemorrhage in
the left fronto-parietal cortex, the MBI was used for restoring
the congruency between motor intentions and visual feedback,
consequently improving the voluntary fine motor control of the
alien hand (Romano et al., 2014).

Rubber Hand Illusion
The Rubber Hand Illusion (RHI) is another crossmodal illusion
widely investigated in clinical settings (Botvinick and Cohen,
1998), although its application in rehabilitation is still in an early
stage (Christ and Reiner, 2014). The RHI is induced by brushing a
person’s hand, hidden from view, while synchronously brushing
a visible rubber hand. This results in a sense of ownership of
the rubber hand, and in a projection of sensations from the
brushed rubber hand to the person. The RHI is also associated
with a measurable proprioceptive drift in the perceived location
of the hand towards the rubber hand, and changes in reaching
movements performed with the stimulated hand (Tsakiris and
Haggard, 2005; Kammers et al., 2010). The RHI has been used
to uncover mechanisms of body ownership, the plasticity of
body representations, and their dependency on multisensory
integration of touch, proprioception, and vision. Deficient
body ownership is the hallmark of somatoparaphrenia, which
therefore represents the optimal condition for assessing the
chance of manipulating and, possibly, restoring a deranged
multisensory representation of the body concerned with self-
representation and body-part ownership (Vallar and Ronchi,
2009). In one study in two right-brain-damaged patients
with a stable somatoparaphrenia, we first applied the classical
RHI paradigm to verify whether multisensory mechanisms
supporting the sense of body-part ownership were disrupted,
notwithstanding the patients’ pathologic delusion for their left
hand (Bolognini et al., 2014; see also Jenkinson et al., 2013).
Both patients proved to be susceptible to the RHI to the same
extend as healthy subjects: this suggests undamagedmultisensory
mechanisms for the synthesis of bodily signals concerned with
body ownership. In the light of such evidence, we investigated
whether the RHI could also induce a remission of the delusional
beliefs concerning the left hand. This hypothesis was tested with
a modified version of the RHI, which consisted in stroking both
the patient’s visible (disowned) left hand, and the right hand,
hidden from view. Notably, patients could not report the feeling
of being touched during stroking of their left hand, due to
a co-occurring hemianesthesia. Our manipulation induced an
immediate self-re-attribution of the left hand, with one patient
showing a long-lasting remission of the somatic delusion. This
evidence indicates that the multisensory representation of the
body concerned with ownership, deranged as a somatic delusion
in somatoparaphrenia, is not completely lost, as indicated by its
restoration by multisensory bodily stimulations in the form of
the RHI, which allows regaining the sense of ownership of the
disowned hand.
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The use of RHI in the Complex Regional Pain Syndrome
(Reinersmann et al., 2013) and in Cervical Spinal Cord Injury
(Lenggenhager et al., 2013) is based on a similar line of reasoning.
In both these conditions, the RHI can be used to improve tactile
awareness and processing, likely by reactivating tactile memories,
and restoring an altered bodily self-representation, that may
follow impaired sensorimotor abilities. The RHI is also useful for
the treatment of chronic pain in these disorders, considering the
tight link between pain and body image distortions along with
disruption of a range of body-related cortical representations
(Lotze and Moseley, 2007).

The aim of using the RHI to strengthen spatial and
body awareness has guided its application in patients with
unilateral visuo-spatial neglect. In a right-brain-damaged patient,
immediately after the induction of the RHI (with the rubber hand
located in the left side of space), a short-lasting amelioration
of left spatial neglect took place in letter cancellation and
midline pointing tasks, with the patient experiencing a shift
in the felt position of his right hand towards the left-
sided rubber hand (Kitadono and Humphreys, 2007). The
amelioration of visual neglect could be due to changes in
the patient’s egocentric reference frames, brought about the
RHI, by cueing spatial attention, by modifying visuo-motor
mapping, or by a combination of these different mechanisms.
The susceptibility of patients with spatial neglect to crossmodal
illusions suggests that multisensory integration is largely spared
in this neuropsychological syndrome (Bolognini et al., 2013a),
despite the possible presence of modality-specific attentional
disturbances, which may impact perceptual awareness in
different sensory modalities (Vallar and Bolognini, 2014).

Another field of application of the RHI concerns
neuroprosthetics, where the major goal is to develop artificial
limbs that feel like a real part of the body. Here, the RHI was
used to favor, in a simple and non-invasive way, the embodiment
of the prosthesis, re-creating a coherent representation of the
body, and producing tactile sensations in the prosthetic limb
in amputees. Indeed, for a limb to be functionally useful one
must be able to sense not only movements, but even touch;
additionally, the acceptance of the prosthesis as one’s own body-
part influences the overall well-being of the amputee (Gallagher
and MacLachlan, 1999). In upper limb amputees, the RHI can
be induced by simultaneously touching the stump and the finger
of the prosthesis; this elicits an illusion of sensing touch on
the artificial hand and a feeling of ownership of it (Ehrsson
et al., 2008; Rosén et al., 2009). A similar approach was used in
upper limb amputees with surgically redirected nerves (Marasco
et al., 2011). Of note, such crossmodal manipulations with the
prosthesis activate in amputees the same multisensory regions
in the premotor cortex and the intraparietal sulcus involved,
in healthy individuals, in the integration of visual, tactile and

proprioceptive signals, on which the feeling of body ownership
(Schmalzl et al., 2013), and phantom sensations (Bolognini
et al., 2013b) are based. This supports the use of this crossmodal
strategy to guide post-amputation cortical plasticity.

Discussion

The examples considered in this review indicate that ‘‘tricking’’
the brain with simple crossmodal illusions may offer an effective
strategy to boost and wake up its multisensory capabilities,
which may be latent or weakened by a brain disease. In this
way, inter-sensory conflicts can restore altered sensory and
motor representations subtending various disorders of body
awareness, body ownership, movement, sensibility, attention and
pain. Overall, these findings suggest that the brain may preserve
its natural and basic tendency to integrate information from
different sensory modalities in many pathological conditions,
with crossmodal illusions resulting from hardwired perceptual
organizing strategies or principles that, in general, are adaptive
and advantageous. Such strategies involve rules for modulating
experiential responses to multisensory information and rules
that deal with important regularities (O’Callaghan, 2008), as
ways for coping with environmental and corporeal changes that
may emerge in pathological conditions. Noteworthy, current
evidence points to an overall spared ability of combining
multisensory cues, and, in particular, inputs from a damaged
sensory modality with inputs from a spared modality, at
least in patients with focal brain lesions (Bolognini et al.,
2013a). This is likely to be the case since multiple, parallel,
cortical and subcortical pathways are available for multisensory
integration to occur: accordingly, if a key node of a multisensory
network is damaged, alternative spared pathways may be
used to re-connect the sensory systems. This allows to re-
arrange sensory interactions, in order to preserve an optimal,
reliable, multisensory experience. Importantly, the effects of
crossmodal illusions may be even stronger in patients with
brain disease than in healthy subjects, likely because neurological
patients may present with sensory or motor deficits (e.g., Burin
et al., 2015) that could be more vulnerable to crossmodal
interferences from the intact senses. Moreover, some evidence
suggests that increasing the degree of inter-sensory conflict
can even enhance brain responses to crossmodal illusions
(Senna et al., 2015). Many other crossmodal illusions were
tested in clinical populations, though not in rehabilitation
settings, including: the Ventriloquism illusion in hemianopia
and neglect (Bertelson et al., 2000; Leo et al., 2008), the
Aristotle’s illusion in focal hand dystonia (Tinazzi et al., 2013),
and the Sound-induced flash illusion in migraine (Brighina
et al., 2015). They could offer novel frameworks for therapeutic
developments.
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