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Like that of many other Germanic languages, the stress system of Swedish has

mainly undergone phonological analysis. Recently, however, researchers have begun

to recognize the central role of morphology in these systems. Similar to the lexical

specification of tonal accent, the Swedish stress system is claimed to be morphologically

determined and morphemes are thus categorized as prosodically specified and

prosodically unspecified. Prosodically specified morphemes bear stress information as

part of their lexical representations and are classified as tonic (i.e., lexically stressed),

pretonic and posttonic, whereas prosodically unspecified morphemes receive stress

through a phonological rule that is right-edge oriented, but is sensitive to prosodic

specification at that edge. The presence of prosodic specification is inferred from vowel

quality and vowel quantity; if stress moves elsewhere, vowel quality and quantity change

radically in phonologically stressed morphemes, whereas traces of stress remain in

lexically stressed morphemes. The present study is the first to investigate whether stress

is a lexical property of Swedish morphemes by comparing mismatch negativity (MMN)

responses to vowel quality and quantity changes in phonologically stressed and lexically

stressed words. In a passive oddball paradigm, 15 native speakers of Swedish were

presented with standards and deviants, which differed from the standards in formant

frequency and duration. Given that vowel quality and quantity changes are associated

with morphological derivations only in phonologically stressed words, MMN responses

are expected to be greater in phonologically stressed words than in lexically stressed

words that lack such an association. The results indicated that the processing differences

between phonologically and lexically stressed words were reflected in the amplitude and

topography of MMN responses. Confirming the expectation, MMN amplitude was greater

for the phonologically stressed word than for the lexically stressed word and showed a

more widespread topographic distribution. The brain did not only detect vowel quality

and quantity changes but also used them to activate memory traces associated with

derivations. The present study therefore implies that morphology is directly involved in

the Swedish stress system and that changes in phonological shape due to stress shift

cue upcoming stress and potential addition of a morpheme.
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INTRODUCTION

Unlike most Germanic languages, Swedish exhibits both a stress
system and a tone accent system1. While tonal accents have
been investigated extensively, stress has received relatively little
attention in Swedish. Stress is indeed more fundamental than
accent in Swedish for the following reasons (Zonneveld et al.,
1999): (i) As part of the rhythmical structure of the language,
stress determines the phonetic quality of sounds; (ii) unlike
accents, stress is a common feature of all dialects; and (iii) accents
are not independent from stress. The present study, therefore,
investigates Swedish stress, specifically the interplay between the
stress system and morphology.

Like that of many other Germanic languages, the stress
system of Swedish has mostly undergone phonological analysis.
Stress systems of Germanic languages have typically been
investigated based on phonological information such as word
edge and number of syllables (Linell, 1972; van der Hulst, 1984;
Kager, 1989; Wiese, 1996; Zonneveld et al., 1999; Kristoffersen,
2000; Shokri, 2001; Frid, 2003). Exceptions have been treated
with features such as extrametricality2 and direct marking for
exceptional behavior, whereas morphological information has
not received much attention. Recently, however, researchers have
begun to recognize the central role that morphology plays in
stress systems.

Riad (2012, 2014) argues that stress placement in Swedish
largely relies on morphology and emphasizes the lexical nature
of the stress system. Prosodic specification in the morphology
is favored for the following reasons: (i) It removes the need
for features employed in traditional phonological analyses; (ii)
Swedish has lexical specification of tone. Besides the prosodic
specification in the morphology, there is a phonological stress
rule that applies at the right edge of prosodic words. It should
be noted, however, that phonological stress is assigned when
there is no pre-assigned prosodic specification at that edge.
One advantage of this combined approach is that there are
no exceptions to the phonological algorithm. It should be
emphasized that although a phonological stress rule exists, stress
placement largely relies on morphologically specified prosodic
information (Riad, 2014).

In this morphological approach, morphemes are categorized
as (i) prosodically unspecified or (ii–iv) prosodically specified;
prosodically specifiedmorphemes are either (ii) lexically stressed,
tonic, or (iii) occur in the positions before stressed syllables,
pretonic, or (iv) after stressed syllables, posttonic. Roots are either
(i) unspecified or (ii) tonic, whereas affixes may be any of the
four categories. Some examples of the four categories are given
in Table 1 (Riad, 2014).

Prosodically unspecified morphemes obtain stress through a
phonological rule. The general phonological stress rule assigns
stress to the rightmost available syllable, such as in meka"nik
‘mechanics’ and electrici"tet ‘electricity’. On the other hand,

1By tonal accent system, it is meant that there is a phonological distinction between
two tonal configurations, and a lexical distinction is attributed to the prominence
function of these tonal configurations. There are two accent patterns in Swedish:
Accent 1 and Accent 2 (Heldner, 2001; Riad, 2014).
2Ignoring a particular segment for stress placement.

TABLE 1 | Four prosodic types of morphemes: (i) unspecified, (ii) tonic

(lexically stressed) (iii) posttonic (positioned after stressed syllables), and

(iv) pretonic (positioned before stressed syllables).

Prosodic specification Example

i. Unspecified ka"lif

ban-"al

ii. Tonic "gris

kub-"an

iii. Posttonic "trev-lig

"spel-are

iv. Pretonic be-"löna

för-"tala

prosodically specified morphemes are argued to bear prosodic
specifications, that is, being tonic, pretonic, and posttonic, as
part of their lexical representations. These prosodic specifications
directly determine stress placement3. It should be noted that
phonological stress placement is sensitive to lexical prosodic
information. For instance, if the rightmost syllable is a posttonic
suffix, the last available syllable is the syllable preceding that
suffix, as in po"lit-isk ‘political’, where the root is unspecified and
the suffix (–isk) is posttonic. In forms consisting of consecutive
unspecified morphemes, stress is assigned to the rightmost
morpheme, such as in ba"nal ‘id’. and banali"tet ‘banality’, where
both the root and the suffix (–itet) are unspecified (Riad, 2012,
2014).

A way of diagnosing the prosodic specification of morphemes,
suggested in Riad (2012, 2014), is to look at changes in vowel
quality and vowel quantity between stressed and unstressed
positions. In unspecified morphemes, if stress is moved away,
the quality and quantity of vowels change radically, as in politiker
[pU"li:tIkεr] ‘politician’—politisera [pUlItI"se:ra] ‘to politicize’. On
the other hand, in tonic morphemes, a trace of vowel length
remains, and the vowel retains the same quality as seen in slipa
["sli:pa] ‘to grind’—sliperi [sli;pe"ri:] ‘grindery’. Thus, unspecified
morphemes retain no trace of stress if unstressed, whereas
lexically stressed (tonic) morphemes retain traces of stress even
after stress moves.

Similarly, it is suggested that lexical tone is part of the lexical
specification of suffixes in Swedish; tones are typically associated
with different suffixes rather than with the whole lexical item
(Riad, 2009, 2012, 2014). Depending on the suffixes attached,
the word stem receives either a low tone (Accent 1) or a high
tone (Accent 2); for instance, a word like lek- ‘game’ is realized
with an initial low tone if followed by a singular definite suffix
–en, as in lek-en ‘the game’, whereas it receives a high tone if
followed by a plural suffix –ar, as in lek-ar ‘games’ (Roll et al.,
2013). It has been argued that while the association between high
tones and suffixes is defined in the mental lexicon (marked),
low tones are assigned postlexically (default) in Central Swedish

3It is crucial to note that no stress is assigned by affixes; that is, affixes are not
pre- or post-stressing but are rather pre- or post-tonic (Riad, 2012).
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(Riad, 2009, 2012, 2014, 2015)4. The electrophysiological effects
of the lexical association of the tone with suffixes have been
studied by investigating high and low stem tones with matching
and mismatching suffixes (Roll et al., 2010, 2013). The aim of
these studies was to examine if the stem tones function as cues for
the associated suffixes and trigger an expectation for the following
suffix information. As a result, they found a P600-like response
for suffixes that typically correlate with high tone stems but were
incorrectly preceded by a low stem tone, whereas no response was
found for suffixes that typically correlate with low tone stems but
were incorrectly preceded by a high stem tone. In summary, the
authors interpreted these findings as evidence for the postlexical
status of low tones and argued that there is a stronger association
between high tone and its suffixes compared to low tones; high
tone on a word stem is therefore claimed to cue the following
suffix in online processing of Swedish.

Given that tone has been shown to be a part of the
lexical specification of morphemes in Swedish with an
electrophysiological approach and that lexical specification
of prosodic features has been shown to be the case in various
languages (Zora et al., 2015, 2016), the present study investigates
whether stress is also a lexical property of morphemes in Swedish.
The aim is to establish how lexically and phonologically stressed
words are represented in the brain by using the mismatch
negativity (MMN) component of event-related potentials
(ERPs). MMN signals the brain’s automatic reaction to any
change in the auditory sensory input and is elicited irrespective
of the subject’s attention to the auditory stimulus (Näätänen et al.,
1978, 2007; Näätänen and Winkler, 1999). In addition, MMN
reflects the activation of long-term memory traces for lexical
information (Dehaene-Lambertz, 1997; Pulvermüller et al.,
2001; Shtyrov and Pulvermüller, 2002; Zora et al., 2015, 2016).
Shtyrov and Pulvermüller (2002), for instance, investigated
MMN responses elicited either by words presented among words
or pseudowords or by pseudowords presented among words.
Pseudowords differed from words only in the last phoneme
(e.g., bite /bait/ and pseudoword /baip/). The findings indicated
greater MMN response for words than for pseudowords,
suggesting the existence of long-term memory traces for spoken
words in the brain.

Memory traces for words are argued to be organized as
strongly connected cell assemblies of cortical neurons, and
these neural assemblies are fully activated when words are
being processed (Pulvermüller, 1999; Pulvermüller et al., 2001).
Therefore, in theory, presentation of a word that does not occur
in the usual language output (either as a stem or a derivation)
would not initiate the activation process. Memory traces for
prosodic information and their contribution toward the lexical
activation process have previously been investigated in English
(Zora et al., 2015) and Turkish (Zora et al., 2016). The findings
indicated that the memory traces for words are indeed activated
on the sole basis of prosodic information, and the presence

4There are opposing views regarding the markedness of tonal accents in
Scandinavian tonal dialects. In contrast to the above-mentioned view, other
researchers argue that Accent 1 is marked, while Accent 2 is the default (for
Swedish, see Lahiri et al., 2005, 2006; Felder et al., 2009, and for Norwegian, see
Wetterlin, 2010).

of prosodic representations in lexical representations has a
differential effect on the processing of prosodic changes. Given
these findings, the present study is the first to investigate whether
changes in vowel quality (formant frequency) and in vowel
quantity (duration) cue upcoming stress and activate potential
lexical derivations.

If stress is a property of the stems defined in the mental
lexicon, as argued in Riad (2012, 2014), changes in vowel quality
and vowel quantity in lexically stressed words will in theory
not activate memory traces associated with potential derivations
because lexically stressed words will not undergo drastic changes
in vowel quality and vowel quantity due to the stress shift.
It was therefore predicted that changes in vowel quality and
vowel quantity would cue upcoming stress and, hence, trigger
memory traces for the potential derivations in phonologically
stressed words, whereas they would only be considered as
acoustic deviations in lexically stressed words. This hypothesis
was investigated by inspecting MMN responses to changes in
vowel quality and vowel quantity in phonologically and lexically
stressed disyllabic words.

METHODS

Participants
The participants were 15 native speakers of Swedish (9 females, 6
males; age range 22–57 years,M = 32.2, SD= 9.07). Handedness
was assessed by the Edinburgh Handedness Inventory (Oldfield,
1971); all participants were right-handed. All were born and
raised in Sweden, and reported normal development and hearing.
Informed consent was signed prior to testing, and the study
was approved by the Stockholm Regional Ethics Committee
(2015/63-31).

Stimuli
The material was a minimal pair, differing in the final segment:
banal [ba"nA:l] ‘id’. and banan [ba"nA:n] ‘banana’. Both words are
listed as basic vocabulary in the Frequency Dictionary of Present-
Day Swedish (Allén, 1970). The words were pronounced in
isolation by a female native speaker of Swedish (from Stockholm,
52 years old) in an anechoic chamber and were sampled at a rate
of 44.1 kHz with 16 bits/per sample.

The choice of the stimuli was constrained by the prosodic
specification of words. Despite extensive searching in dictionaries
and through a lexical database for Swedish developed by Nordisk
Språkteknologi (NST)5, the banal—banan pair was, to our
knowledge, the only minimal pair that enabled the diagnostic
of prosodic specification6. In order to confirm the prosodic
specification of these words, the unspecified morphemes –itet
and –eri were added to the stems, as in banalitet [banalI"te:t]
‘banality’ and bananeri [banA;nε"ri:], and vowel quality and vowel
quantity changes were scrutinized. Although it is not a lexical
entry in Swedish dictionaries, bananeri is not considered an

5http://www.nb.no/sprakbanken.
6Minimal pairs are hard to find since tonic morphemes are usually stressed on
the root-initial syllable (mainly etymologically Germanic), whereas phonologically
stressed words tend to have unstressed syllables preceding the stressed syllable
(mainly etymologically Romance or Greek) (Riad, 2012, 2014).
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absolute nonsense word due to the productivity of the suffix
–eri, which can be combined with any root, typically to denote
an ongoing activity or a place where an activity takes place
(Riad, 2012). Swedish speakers apparently relate bananeri to a
representation similar to that of orangeri ‘orangery’, a protected
place, especially a greenhouse, for growing oranges in cool
climates.

Table 2 illustrates the acoustic effects in the vowel of the
second syllable as stress shifted to the last syllable after
derivational morphemes were attached. Vowel quality and vowel
quantity measurements were performed in Praat (Boersma and
Weenink, 2014). The vowel onset and offset were determined
based on the information from waveforms and spectrograms.
Table 2 presents the duration (in ms), overall intensity (dB) and
frequency measures for F0, F1, and F2 (in Hz) over the vowel of
the second syllable in banan and banal, and in their derivations
bananeri and banalitet, as well as in the pseudoword sananitet.

As seen in Table 2, while varying quite distinctly in banalitet,
the vowel retained nearly the same quality in bananeri even after
the stress moved. Moreover, in contrast to banalitet, some traces
of vowel length remained in bananeri. In short, the second vowel
in banalitet got shorter and relatively more close and fronted
compared to the second vowel in banal. It should be noted that
the most drastic change was F2-related. These acoustic effects
indicated banal to be a phonologically stressed word and banan
as a lexically stressed word. Table 2 provides further information
about the phonetics of Swedish lexical stress: F0 and duration
were employed in marking the stressed syllable, whereas overall
intensity did not lead to any straightforward interpretation. This
is in line with previous findings that identified duration and
F0 as correlates, with duration being the primary correlate,
and which argued that intensity is not a consistent correlate of
stress in Swedish (Fant and Kruckenberg, 1994; Eriksson et al.,
2013).

The experiment consisted of two blocks: A phonologically
stressed word block (PSW) and a lexically stressed word block
(LSW). In a passive oddball paradigm, the frequently presented
standards [banA:l] and [banA:n], were occasionally replaced by
deviants [banal] and [banan], respectively, in the two blocks
(Audio Files 1–4 are provided as Supplementary Material to
this article). The deviants differed from the standards in vowel
quality and vowel quantity on the second syllable. It should

TABLE 2 | Vowel durations (in ms), overall intensity (in dB), and frequency

measures for F0, F1, and F2 (in Hz) over the vowel of the second syllable

in the phonologically stressed word banal and the lexically stressed word

banan and in their potential derivations banalitet and bananeri, as well as

in the pseudoword sananitet (vowel marked in bold).

ba"nA:l banalI"te:t ba"nA:n banA;nε"ri: sananI"te:t*

/a/ - σ2 Duration in ms 350 119 337 158 112

/a/ - σ2 Intensity in dB 72 74 73 73 74

/a/ - σ2 F0 in Hz 161 154 160 158 151

/a/ - σ2 F1 in Hz 675 611 601 631 654

/a/ - σ2 F2 in Hz 1086 1479 1089 1194 1396

*Pseudoword.

be noted that the deviants do not occur in actual spoken
Swedish.

In order to keep the difference minimal across the stimuli,
the deviants were created out of the standards through a cross-
splicing technique. The critical vowels (i.e., second vowels) in
[banA:l] and [banA:n] were extracted and replaced with the
critical vowels in [banalI"te:t] and [sananI"te:t]∗ to produce
[banal] and [banan]. An experienced phonetician was asked to
pronounce the pseudoword [sananI"te:t]7 in order to get an [a] to
be spliced in [banan] (Table 2). In this way, it was ensured that
the replacement [a] was extracted from the same surrounding
segmental context as the standards. All stimuli were matched for
total length: The standard stimuli were ∼830 ms in duration,
and the deviant stimuli ∼580 ms. The onset of the second
vowel was at ∼350 ms. The intensity was normalized and the
F0 contour was flattened and approximated across the standards
and deviants to increase listeners’ reliance on duration and
first/second formant frequencies. Table 3 presents the duration
(in ms), overall intensity (in dB) and frequency measures for F0,
F1, and F2 (in Hz) over the vowel of the second syllable in the
standard and deviant stimuli in each block. Figure 1 presents the
waveforms and spectrograms of the standard and deviant stimuli
in each block.

As mentioned above, when stress moves, vowel quality and
vowel quantity varies distinctly in phonologically stressed
words but not in lexically stressed words. Considering
potential lexical derivations, e.g., banalitet [banalI"te:t] and
bananeri [banA;nε"ri:], the deviant [banal] is acceptable for
phonologically stressed words, but [banan] is unacceptable for
lexically stressed words. A greater MMN response is therefore
predicted for deviants in PSW than in LSW due to strongly
interconnected neuronal networks. Since vowel quality and
quantity changes are associated with morphological derivations
in PSW, neural networks for these derivations would be
activated only in PSW. Vowel quality and quantity changes
would therefore elicit greater negativity in PSW than LSW,
which lacks such an association between vowel changes and
derivations.

TABLE 3 | Vowel durations (in ms), overall intensity (in dB), and frequency

measures for F0, F1, and F2 (in Hz) over the vowel of the second syllable

of standards and deviants in the phonologically stressed word block

(PSW) and the lexically stressed word block (LSW) (vowel marked in bold).

PSW LSW

Standard Deviant Standard Deviant

ba"nA:l banal ba"nA:n banan

/a/ - σ2 Duration in ms 350 114 337 103

/a/ - σ2 Intensity in dB 71 71 71 71

/a/ - σ2 F0 in Hz 145 145 145 145

/a/ - σ2 F1 in Hz 675 621 601 671

/a/ - σ2 F2 in Hz 1086 1495 1089 1425

7Splicing [a] from [banalI"te:t] to [banan] would be problematic due to the
segmental differences surrounding the vowel.
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FIGURE 1 | Waveforms and spectrograms of the standard and deviant stimuli in each block. Blue dotted line, Pitch; Yellow solid line, Intensity; PSW,

Phonologically stressed word; LSW, Lexically stressed word.

Procedure
The experiment was run using E-Prime (version 2.0). The stimuli
were delivered via loudspeakers at a comfortable listening level
of 60–65 dB at source. The stimuli were presented in an auditory
oddball paradigm: Standard stimulus (p = 8/10) was randomly
replaced by deviant stimulus (p = 2/10). The stimulus onset
asynchrony (SOA) was set at 1200 ms. The experiment had two
blocks, PSW and LSW, each block consisting of 640 standards
and 160 deviants. Each block took 16 min, and the participants
were given a chance to take a break between the blocks. The
order of the blocks was counterbalanced across the participants.
A silent documentary was used to take participants’ attention off
the auditory stimuli.

Electroencephalography Recordings and
Data Analysis
The electroencephalography (EEG) data were collected at a
sampling rate of 2048 Hz using the BioSemi ActiveTwo system
and ActiView acquisition software (BioSemi, Netherlands) from
16 electrodes. In all, 7 external electrodes were used: 4 for
monitoring horizontal and vertical eye movement, 2 for mastoid
recordings and 1 for nose recording. Offline data analysis
was carried out in MATLAB (The Math Works Inc., Natick,
Massachusetts, USA) using the EEGLAB toolbox (Delorme and
Makeig, 2004). The continuous EEG data were first resampled to
256 Hz and band-pass filtered at 0.5–30 Hz. The BioSemi enables
referencing the data for online EEG display without actually

referencing the data. Referencing is accomplished offline; in this
study, the signals were referenced offline to the nose channel.
To identify and remove eye artifacts, independent component
analysis (ICA; Jung et al., 2000) was carried out. The EEG data
were then segmented into epochs from −100 to 900 ms with
a time window of 100 ms for the baseline correction. ERPs
were time-locked to the word onset. Artifact rejection was set to
remove activation exceeding±100µV at any channel. The grand
average was computed per stimulus type for all participants,
and deviant-minus-standard subtractions were calculated for the
deviants.

Statistical Analysis
Statistical analysis was carried out using SPSS (International
Business Machines Corp., Armonk, New York, USA). The
electrodes were grouped together in three regions of interest
(ROI), each having three electrodes: frontal (F3, FZ, F4), central
(C3, CZ, C4), and parietal (P3, PZ, P4). The measurement
window was determined by visual inspection of grand average
ERP waveforms. Amplitudes were computed as a mean voltage
within a 60-ms-window centered around the peak.

Four-way repeated-measures ANOVA with factors of Time
(two levels: first and second time window), ROI (three levels:
frontal, central and parietal), Block (two levels: PSW and LSW)
and Stimuli (two levels: standard and deviant) were performed.
If significant interactions occurred, follow-up ANOVAs were
performed, and the levels were then compared in pairwise
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comparisons. Additional two-tailed t-tests were carried out to
compare the amplitudes obtained by deviant-minus-standard
subtractions in PSW against those in LSW in each ROI
and in each time window. Mean values were reported with
standard deviations. P-values were given with Greenhouse-
Geisser correction in case of sphericity violations. Effect sizes
were reported with η

2 (partial η2).

RESULTS

The grand average of standard, deviant and difference waveforms
recorded from Fz, Cz and Pz in PSW and LSW blocks are shown
in Figure 28. The deviants seem to elicit two MMN responses:
one with a time-course of 150–250 ms, and another with a time-
course of 350–450 ms. While there are two clear MMN peaks
in PSW, only the first peak appears to be pronounced in LSW.
Figure 3 shows topographic difference maps at the first and
second time window for PSW and LSW blocks.

Data entered for statistical analysis was computed from time
windows 160–220 ms and 380–440 ms. The minimum number
of accepted standard and deviant items per participant was
541 and 135 in LSW and 523 and 137 in PSW, respectively.
Figure 4 indicates mean deviant-minus-standard subtractions in
each time window and in each ROI per block.

The four-way repeated measures ANOVA indicated a
significant main effect of Time [F(1, 14) = 18.419, p= 0.001, η2

=

0.568]; a significantmain effect of ROI [F(2, 28) = 5.045, p= 0.032,

8The onset of the second vowel was used as the zero point in figures given that
the standards and deviants were identical up to the second vowel and information
about any difference between the standards and deviants would be present only
after this point.

η
2
= 0.265]; a significant two-way interaction of ROIwith Stimuli

[F(2, 28) = 8.485, p = 0.001, η
2
= 0.377]; a significant two-way

interaction of Time with Stimuli [F(1, 14) = 7.947, p = 0.014, η2

= 0.362]; a significant two-way interaction of Block with Stimuli
[F(1, 14) = 11.987, p = 0.004, η

2
= 0.461]; a significant three-

way interaction of Time with ROI and Block [F(2, 28) = 8.621,
p = 0.001, η2

= 0.381]; and a four-way interaction of Time with
ROI, Block and Stimuli [F(2, 28) = 7.183, p = 0.011, η2

= 0.339;
Table 4].

Follow-up three-way repeated measures ANOVAs were
carried out to investigate the interaction of Time with ROI and
Stimuli in each block (Follow-up ANOVA 1, Table 5). In LSW,
there was a significant main effect of Time [F(1, 14) = 11.376,
p = 0.005, η

2
= 0.448]; a significant main effect of ROI

[F(2, 28) = 5.915, p = 0.023, η
2
= 0.297]; a significant two-way

interaction of ROI with Stimuli [F(2, 28) = 7.053, p = 0.003,
η
2
= 0.335]; and a significant three-way interaction of Time with

ROI and Stimuli [F(2, 28) = 9.977, p= 0.004, η2
= 0.416]. In PSW,

there was a significant main effect of Time [F(1, 14) = 12.823,
p = 0.003, η

2
= 0.478]; a significant main effect of Stimuli

[F(1, 14) = 5.258, p = 0.038, η
2
= 0.273]; a significant two-way

interaction of Time with ROI [F(2, 28) = 4.935, p = 0.015,
η
2
= 0.261]; and a significant two-way interaction of ROI with

Stimuli [F(2, 28) = 4.499, p = 0.020, η
2
= 0.243]. This follow-

up analysis indicated that the interaction of Time with ROI and
Stimuli was significant only in LSW.

Follow-up two-way repeated measures ANOVAs were carried
out for the three-way interaction in LSW; the interaction of Time
and Stimuli was scrutinized in each ROI (Follow-up ANOVA 2,
Table 6). In frontal sites, there was a significant main effect of
Time [F(1, 14) = 9.050, p = 0.009, η2

= 0.393] and a significant

FIGURE 2 | The grand average of standard, deviant and difference (deviant-minus-standard) waveforms recorded from Fz, Cz, and Pz in PSW and

LSW blocks. Negativity is plotted upward. PSW, Phonologically stressed word; LSW, Lexically stressed word.
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FIGURE 3 | Topographic difference maps at the first time window (150–250ms) and at the second time window (350–450 ms) in PSW and LSW blocks.

PSW, Phonologically stressed word; LSW, Lexically stressed word.

FIGURE 4 | Mean deviant-minus-standard subtractions in each time window and in each ROI per block. ROI, Region of interest; PSW, Phonologically

stressed word; LSW, Lexically stressed word.
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TABLE 4 | Results for four-way repeated measures ANOVA with factors of

Time window (Time), Regions of interest (ROI), Block and Stimuli (Stim).

Factor F p η
2

FOUR-WAY REPEATED MEASURES ANOVA

Time F (1, 14) = 18.419 0.001* 0.568

ROI F (2, 28) = 5.045 0.032* 0.265

Block F (1, 14) = 0.004 0.951 0.000

Stim F (1, 14) = 2.508 0.136 0.152

Time × ROI F (2, 28) = 1.806 0.196 0.114

Time × Block F (1, 14) = 0.357 0.559 0.025

ROI × Block F (2, 28) = 2.412 0.134 0.147

ROI × Stim F (2, 28) = 8.485 0.001* 0.377

Time × Stim F (1, 14) = 7.947 0.014* 0.362

Block × Stim F (1, 14) = 11.987 0.004* 0.461

Time × ROI × Block F (2, 28) = 8.621 0.001* 0.381

Time × ROI × Stim F (2, 28) = 3.719 0.062 0.210

Time × Block × Stim F (1, 14) = 0.232 0.638 0.016

ROI × Block × Stim F (2, 28) = 0.586 0.563 0.040

Time × ROI × Block × Stim F (2, 28) = 7.183 0.011* 0.339

*p < 0.05.

two-way interaction of Time with Stimuli [F(1, 14) = 10.722,
p = 0.006, η

2
= 0.434]. In central sites, there was a significant

main effect of Time [F(1, 14) = 9.827, p = 0.007, η
2
= 0.412]

and a significant two-way interaction of Time with Stimuli
[F(1, 14) = 6.966, p = 0.019, η2

= 0.332]. In parietal sites, there
was a significant main effect of Time [F(1, 14) = 8.456, p = 0.011,
η
2
= 0.377]. Follow-up analyses in frontal and central sites

indicated that the difference between standard (M = −1.192
µV, SD = 0.284) and deviant (M = −2.109 µV, SD = 0.545)
was significant only in frontal sites (p = 0.019) and only in
the first time window. These analyses indicated that the MMN
response was restricted to the first time window and to the frontal
sites in LSW.

In order to assess the MMN responses in PSW block, a
follow-up analysis to two-way interaction of ROI with Stimuli
was carried out (Table 7). The difference between standard
(M = −0.741 µV, SD = 0.230) and deviant (M =−1.781µV,
SD = 0.494) was significant in frontal sites (p = 0.009); the
difference between standard (M = −0.808 µV, SD = 0.194) and
deviant (M = −1.639 µV, SD = 0.455) was also significant in
central sites (p = 0.027). The analysis indicated that regardless
of time window, there were significant MMN responses in both
frontal and central sites in PSW.

Additional two-tailed t-tests were carried out to compare the
amplitudes obtained by deviant-minus-standard subtractions in
PSW against those in LSW in each ROI and in each time window
(Table 8). In the first time window, the difference between PSW
(M = −1.136µV, SD = 1.586) and LSW (M = −0.916 µV,
SD= 1.345) did not reach significance at frontal sites (p= 0.430);
at central sites, PSW (M = −1.113 µV, SD = 1.622) elicited
greater negativity than LSW (M = −0.384 µV, SD = 1.204, p
= 0.022); at parietal sites, PSW (M = −0.656 µV, SD = 1.644)
elicited negativity, whereas LSW elicited positivity (M = 0.210
µV, SD = 0.915, p = 0.015). In the second time window, at

TABLE 5 | Results for follow-up three-way repeated measure ANOVAs.

Block Factor F p η
2

FOLLOW-UP ANOVA 1

LSW Time F (1, 14) = 11.376 0.005* 0.448

ROI F (2, 28) = 5.915 0.023* 0.297

Stim F (1, 14) = 0.214 0.650 0.015

Time × ROI F (2, 28) = 0.062 0.868 0.004

Time × Stim F (1, 14) = 4.428 0.054 0.240

ROI × Stim F (2, 28) = 7.053 0.003* 0.335

Time × ROI × Stim F (2, 28) = 9.977 0.004* 0.416

PSW Time F (1, 14) = 12.823 0.003* 0.478

ROI F (2, 28) = 2.870 0.099 0.170

Stim F (1, 14) = 5.258 0.038* 0.273

Time × ROI F (2, 28) = 4.935 0.015* 0.261

Time × Stim F (1, 14) = 3.294 0.091 0.190

ROI × Stim F (2, 28) = 4.499 0.020* 0.243

Time × ROI × Stim F (2, 28) = 0.377 0.266 0.090

Interaction of Time with Regions of interest (ROI) and Stimuli (Stim) in the phonologically

stressed word block (PSW) and the lexically stressed word block (LSW).

*p < 0.05.

frontal sites, PSW (M = −0.943 µV, SD = 1.218) elicited greater
negativity than LSW (M = −0.067 µV, SD = 1.153, p = 0.006);
at central sites, PSW (M = −0.548 µV, SD = 1.118) elicited
negativity, whereas LSW elicited positivity (M = 0.227 µV, SD
= 1.320, p = 0.009); the difference between PSW (M = −0.382
µV, SD = 1.553) and LSW (M = 0.220 µV, SD = 1.136) did not
reach significance at parietal sites (p= 0.073).

Taken together, these results indicate that vowel quality and
quantity changes elicit MMN responses at around 160 ms after
change onset, confirming automatic response of the brain to
a change in auditory sensory input, which typically peaks at
150–250 ms from change onset (Näätänen et al., 2007). The
findings further indicate that the MMN responses are maximal
over frontal and central scalp locations, in line with previous
findings (Näätänen and Winkler, 1999; Näätänen et al., 2007).
The processing differences between PSW and LSW are reflected
in the amplitude and topography of MMN responses. In LSW,
the MMN response is restricted to the first time window and to
the frontal sites; in the second time window, the neural response
to LSW develops into a positive response. On the other hand, in
PSW, theMMN response is present in both time windows, and in
central sites as well as in frontal sites. In short, the amplitude of
MMN is greater for PSW than it is for LSW, and the topographic
distribution of MMN response is more widespread for PSW than
for LSW.

DISCUSSION

By recording neural responses to changes in vowel quality
and vowel quantity, the present study has investigated the
lexical specification of stress information in Swedish. The neural
responses to formant frequency and duration changes in both
phonologically and lexically stressed words were recorded.
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TABLE 6 | Results for follow-up two-way repeated measures ANOVAs.

ROI Factor F p η
2

FOLLOW-UP ANOVA 2

Frontal Time F (1, 14) = 9.050 0.009* 0.393

Stim F (1, 14) = 2.753 0.119 0.164

Time × Stim F (1, 14) = 10.722 0.006* 0.434

Central Time F (1, 14) = 9.827 0.007* 0.412

Stim F (1, 14) = 0.066 0.800 0.005

Time × Stim F (1, 14) = 6.966 0.019* 0.332

Parietal Time F (1, 14) = 8.456 0.011* 0.377

Stim F (1, 14) = 0.906 0.357 0.061

Time × Stim F (1, 14) = 0.001 0.972 0.000

ROI Time window Factor F p η
2 Stim level M SD

Frontal 1st Stim F (1, 14) = 6.964 0.019* 0.332 Standard −1.192 0.284

Deviant −2.109 0.545

2nd Stim F (1, 14) = 0.051 0.825 0.004 Standard −1.175 0.286

Deviant −1.242 0.501

Central 1st Stim F (1, 14) = 1.531 0.236 0.099 Standard −1.270 0.252

Deviant −1.655 0.481

2nd Stim F (1, 14) = 0.445 0.515 0.031 Standard −1.156 0.228

Deviant −0.929 0.464

Interaction of Time with Stimuli (Stim) in each of the Regions of interest (ROI) in the lexically stressed word block (LSW).

*p < 0.05.

TABLE 7 | Follow-up analysis to two-way interaction of Regions of interest

(ROI) with Stimuli (Stim) in the phonologically stressed word block (PSW).

ROI Factor F p η
2 Stim level M SD

Frontal Stim F (1, 14) = 9.157 0.009* 0.395 Standard −0.741 0.230

Deviant −1.781 0.494

Central Stim F (1, 14) = 6.127 0.027* 0.304 Standard −0.808 0.194

Deviant −1.639 0.455

Parietal Stim F (1, 14) = 1.665 0.218 0.106 Standard −0.582 0.154

Deviant −1.101 0.495

*p < 0.05.

Given that only phonologically assigned stress varies with the
phonological shape, it was predicted that formant frequency and
duration changes would activate assembly-internal connections
and cue upcoming stress and, hence, lexical derivation only in
phonologically stressed words. If morphologically determined
stress is defined in the mental lexicon and traces of it are stable
even after stress moves, as argued in Riad (2012, 2014), formant
frequency and duration changes will in theory not activate
memory traces associated with potential derivations in lexically
stressed words.

The choice of the stimuli was constrained by the prosodic
specification of words. The banal—banan pair is, to our

knowledge, the only minimal pair that can be used to make
a distinction between phonological and lexical specification.
Prosodic classification was confirmed by examining changes
in vowel quality and vowel quantity after adding unspecified
morphemes to the stems, as in banalitet—bananeri. The
drawback of this pair is that bananeri, the potential derivation
of banan, is not a real word; that is, it does not have a lexical
entry in Swedish dictionaries. However, Swedish speakers do
not consider bananeri to be an absolute nonsense word. It
should also be emphasized that the lexical status of bananeri
is not central to the present study; bananeri is employed to
confirm the prosodic classification of banan. Vowel quality and
quantity changes are associated with morphological derivations
only in the phonologically stressed word banal. Vowel quality
and quantity changes are not expected in banan whatever the
potential derivation is (either bananeri or another word). That is,
banan lacks an association between vowel changes and potential
derivations, and therefore, there cannot be any memory traces
associated with vowel changes in banan.

One might question the appropriateness of choosing
the only existing minimal pair attesting to this morpho-
phonological phenomenon in Swedish. However, the validity of
this phenomenon does not depend on the existence/plurality of
minimal pairs (for a list of specified and unspecified morphemes
and examples, see Riad, 2014). The motivation for having a
minimal pair was due to the experimental paradigm employed
in the present study; since the MMN paradigm is sensitive
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TABLE 8 | Two-tailed t-tests with amplitudes obtained from

deviant-minus-standard subtractions in the phonologically stressed word

block (PSW) and the lexically stressed word block (LSW) in each Time

window and in each of the Regions of interest (ROI).

Time window ROI p

1st time window Frontal 0.430

Central 0.022*

Parietal 0.015*

2nd time window Frontal 0.006*

Central 0.009*

Parietal 0.073

*p < 0.05.

to physical changes, it was crucial to control the physical
characteristics of the stimuli and, thus, have a minimal pair. It
should be possible to investigate this phenomenon with another
experimental paradigm that is not limited to individual language
stimuli. However, it should be noted that it is important to
reduce stimulus variance in order to study the early effects of
word processing, and it is, therefore, more appropriate to use
single words rather than a large group of stimuli (Pulvermüller
and Shtyrov, 2006).

The findings of the present study demonstrate that the
brain does not only detect vowel quality and vowel quantity
changes, but also uses them to activate assembly-internal
connections; there is a difference in how the brain treats vowel
quality and vowel quantity changes depending on the prosodic
specification of words. First of all, the topographic distribution of
MMN responses is more widespread for phonologically stressed
words than for lexically stressed words, which demonstrates
that a larger area is recruited for the processing of vowel
changes in phonologically stressed words than in lexically
stressed words. This finding is not surprising given that
vowel changes are associated with potential derivations only in
phonologically stressed words, whereas lexically stressed words
lack such an association. Strongly connected cell assemblies
and the activation of these assemblies for vowel changes
associated with potential derivations explain the difference in
this topographic distribution. Secondly, the MMNs to vowel
quality and vowel quantity changes are obtained in two time
windows for phonologically stressed words, while restricted
to one time window for lexically stressed words. In the first
time window, both phonologically stressed and lexically stressed
words elicit MMN responses; the amplitude is, however, smaller
in lexically stressed words than in phonologically stressed
words. In the second time window, the negative response is
stable in phonologically stressed words, while developing into
a positive response in lexically stressed words, which might
indicate attention orientation to acoustic change. Alternatively,
one could argue the second negativity in phonologically
stressed words to be a Late Discriminative Negativity (LDN).
Similar to MMN, LDN (also called late MMN) is elicited by
deviant stimuli in a passive oddball paradigm and shows a
fronto-central distribution. Although its functional significance
remains unclear, LDN has often been associated with higher

cognitive processes such as long-term memory, similar to
MMN. However, LDN typically occurs in a later time window
(400–700ms after change onset) and is found in infants and
children (Cheour et al., 2001; Mueller et al., 2008). Given that the
functional significance of LDN remains unclear and it is typically
present in infants, the MMN interpretation has been adopted for
the second negativity in the present study. It should, however, be
noted that whatever interpretation is taken, eitherMMNor LDN,
this negative response is apparently related to long-termmemory
traces for vowel changes associated with potential derivations.

Given that memory traces for words are organized as strongly
connected cell assemblies and these neural assemblies are
fully activated when words are being processed (Pulvermüller,
1999; Pulvermüller et al., 2001), salient changes in vowel
quality and vowel quantity are expected to trigger potential
lexical derivations; that is, changes in vowel quality and vowel
quantity would signal upcoming stress and, hence, addition of a
morpheme at the end of the form. Memory traces associated with
vowel quality and vowel quantity changes are therefore activated
in phonologically stressed words, since phonologically assigned
stress varies with the phonological shape. However, presentation
of a word that does not occur in the usual language output
(either as a stem or a derivation) would not initiate the activation
process. Changes in vowel quality and vowel quantity do not
therefore activate memory traces in lexically stressed words since
they do not undergo drastic vowel quality and vowel quantity
changes even after stress moves.

The present findings make a significant contribution to the
literature by demonstrating the involvement of morphology in
the Swedish stress system. As mentioned in the introduction,
like those of many other Germanic languages, the stress system
of Swedish has mostly been treated phonologically; recently,
however, researchers have begun to recognize the central role
of morphology in these systems. The advantage of giving
morphological information a central role is that it removes
the need for features employed in traditional phonological
analyses. Furthermore, there are some circumstances that
favor morphological stress generalizations over automatic
phonological generalizations in Swedish. First of all, there
is a weaker sense of automaticity to the stress system in
Swedish in contrast to the more prototypically phonological
stress systems such as French or Finnish9. For instance, the
stress rule in French and Finnish strongly influences speakers’
pronunciation of foreign languages. Swedish speakers, on the
other hand, do not encounter difficulties pronouncing words
with different stress patterns; however, they cannot easily
abandon postlexical generalizations of Swedish phonology. This
leads to the conclusion that, in comparison with Finnish and
French, the phonological part of the Swedish stress system is
very restricted, and stress placement is mostly determined by
morphological marking. Secondly, words that are loaned to
Swedish tend to retain the stress of the source language. If
there were a strong, automatic phonological generalization for
stress placement, it would have influenced at least some of these

9It should be noted, however, that this argument is partly impressionistic and based
on the experience of language teachers (Riad, 2014).
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loanwords. However, this is not the case in Swedish, which again
favors an analysis based on morphological stress generalizations
(Riad, 2014).

In sum, the present study is the first EEG study to indicate the
direct involvement of morphology in the Swedish stress system.
The findings indicate that the presence of lexical stress is inferred
from vowel quality and vowel quantity; changes in phonological
shape due to stress shift cue the upcoming stress and the potential
derivations. However, these findings need to be supported by
further research. As a follow up, a group of listeners who know
no Swedish will be tested to see if they differ from native
speakers in their processing of these changes of vowel quality
and quantity in phonologically and lexically stressed words. This
would enable the comparison of native and nonnative processing,
and strengthen the interpretation of the present study regarding
the activation of neural assemblies associated with vowel changes
and potential derivations. Moreover, investigating the derived
versions, for instance, bananeri and banalitet, will provide greater
detail on the lexical specification of vowel quality and quantity
information. The mismatch of vowel quality and vowel quantity
in phonologically and lexically stressed words, as in [banalI"te:t]
vs. [banA;lI"te:t]∗ and [banA;nε"ri:] vs. [banane"ri:]∗, might result

in different neural responses. Given that the present study has
indicated the involvement of morphology, future research should
shed more light on lexical specification of prosodic information
in Swedish.
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