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The mechanisms for the development and spread of antibacterial resistance (ABR) in
bacteria residing in environmental compartments, including the marine environment,
are far from understood. The objective of this study was to examine the ABR rates
in Escherichia coli and other Enterobacteriaceae isolates obtained from marine bivalve
mollusks collected along the Norwegian coast during a period from October 2014
to November 2015. A total of 549 bivalve samples were examined by a five times
three tube most probable number method for enumeration of E. coli in bivalves
resulting in 199 isolates from the positive samples. These isolates were identified
by biochemical reactions and matrix Assisted Laser Desorption Ionization-Time of
Flight Mass Spectrometry, showing that 90% were E. coli, while the remaining were
species within the genera Klebsiella, Citrobacter, and Enterobacter. All 199 isolates
recovered were susceptibility tested following the European Committee on Antimicrobial
Susceptibility Testing disk diffusion method. In total, 75 of 199 (38%) isolates showed
resistance to at least one antibacterial agent, while multidrug-resistance were seen
in 9 (5%) isolates. One isolate conferred resistance toward 15 antibacterial agents.
Among the 75 resistant isolates, resistance toward extended-spectrum penicillins
(83%), aminoglycosides (16%), trimethoprim (13%), sulfonamides (11%), tetracyclines
(8%), third-generation cephalosporins (7%), amphenicols (5%), nitrofurans (5%), and
quinolones (5%), were observed. Whole-genome sequencing on a selection of 10
E. coli isolates identified the genes responsible for resistance, including blaCTX-M genes.
To indicate the potential for horizontal gene transfer, conjugation experiments were
performed on the same selected isolates. Conjugative transfer of resistance was
observed for six of the 10 E. coli isolates. In order to compare E. coli isolates from
bivalves with clinical strains, multiple-locus variable number tandem repeats analysis
(MLVA) was applied on a selection of 30 resistant E. coli isolates. The MLVA-profiles
were associated with community-acquired E. coli strains causing bacteremia. Our study
indicates that bivalves represent an important tool for monitoring antibacterial resistant
E. coli and other members of the Enterobacteriaceae family in the coastal environment.

Keywords: bivalve mollusks, Enterobacteriaceae, Escherichia coli, antibacterial resistance, horizontal gene
transfer
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INTRODUCTION

The development of antibacterial resistance (ABR) is a natural
process and ancient among bacteria (Aminov and Mackie,
2007; D’Costa et al., 2011). However, the current global use of
antibacterial agents in human and veterinary medicine, as well
as in agriculture, are a driving force for ABR development and
also increase the release of these substances to the environment
(Davies and Davies, 2010).

The intestines of humans and other homeothermic animals
are colonized by a dense and diverse microbiota belonging to,
among others, the Enterobacteriaceae family (Tancrède, 1992;
Dethlefsen et al., 2006). The predominant genus within this
family is Escherichia, with Escherichia coli being the main species.
E. coli occurs naturally in the large intestine of humans, birds, and
terrestrial and marine mammals (Welch, 2006). Most E. coli of
the large intestine of humans and other homeothermic animals
are commensal strains, however opportunistic and pathogenic
strains may be present (Strockbine et al., 2015). E. coli cause
morbidity and mortality as a result of common infections,
including enteritis, meningitis, urinary tract, or bloodstream
infections (Strockbine et al., 2015). The main sources of infections
with pathogenic E. coli are consumption of contaminated
water and food, as well as through animal contact (ILSI,
2011).

Antibacterial treatments are known to substantially affect the
normal intestinal microbiota favoring resistant strains (Sommer
and Dantas, 2011). The prevalence of resistant E. coli and other
bacteria in the intestinal microbiota of humans are shown to be
strongly correlated with the use of antibacterial agents (Murray
et al., 1982; Bruinsma et al., 2003; van der Veen et al., 2009).

The microbiological communities in coastal environments can
be influenced by sewage and runoff from land, concomitantly
containing both fecal bacteria as well as residues of antibacterial
substances (Martinez, 2009; Alves et al., 2014; Balière et al., 2015).
A significant proportion of the antimicrobial agents are excreted
unchanged and in a biologically active form (Dolliver and Gupta,
2008; Gillings, 2013; Michael et al., 2013). During periods with
heavy rainfall, increased amount of fecal material from land living
animals will reach the sea. In addition, high precipitation could
cause an overload and possible leakage from sewage systems.
Sewage and manure harbor bacteria of high diversity, have a high
concentration of organic substances, as well as anthropogenic
pollution as heavy metals and antimicrobial agents, which in
combination can favor bacterial growth and promote spread of
genetic elements through horizontal gene transfer (Moura et al.,
2010; Heuer et al., 2011). Bacteria conferring ABR colonizing
the intestines of humans and other homeothermic animals, may
contribute to the dissemination of antibiotic resistant bacteria
(ABR-B) via sewage to the marine environment (Poeta et al.,
2005; Penders et al., 2013). The survival of these bacteria in
aquatic environments are affected by both abiotic and biotic
factors, e.g., nutrient availability, osmotic stress, variations in
temperature and pH, and predation (Barcina et al., 1997; Rozen
and Belkin, 2001; Campos et al., 2013). Importantly, E. coli have
the ability to persist in the aquatic habitat due to its genetic
flexibility (van Elsas et al., 2011).

The presence of Enterobacteriaceae conferring resistance to
antibacterial agents in coastal waters may represent a human
health issue, especially in areas used for marine food production
or recreational activities (Murugaiyan et al., 2015). Multidrug-
resistant (MDR) bacteria have been detected in coastal waters,
and could result in the transmission of resistance among marine
and contaminating bacteria via exchange of genetic elements,
such as plasmids (Wright, 2010; Alves et al., 2014; Moura et al.,
2014).

Bivalve mollusks are invertebrates that have an external two-
part hinged shell that contains the soft parts. Typical bivalve
mollusks comprise among others clams, oysters, mussels, and
scallops. As these mollusks are suspension feeders, they actively
filter, retain, and concentrates particles from their surrounding
water, including free living or particle-bound bacteria (Bernard,
1989; Leff et al., 1992; Maugeri et al., 2004). Bivalve associated
members of the Enterobacteriaceae family, may originate from
humans and other homeothermic animals either via sewage, by
runoff from land, or from representatives of the wild fauna such
as birds or marine mammals (Bogomolni et al., 2008). These
bivalves are therefore excellent indicators for fecal contamination
and will reflect the load of E. coli and other bacteria in the
Enterobacteriaceae family present in the water column at a
given location. However, different environmental conditions, e.g.,
temperature, water flow rate, and food availability, can affect
the filtration rate, consequently also the accumulation of fecal
bacteria (Šolić et al., 1999; Strohmeier et al., 2012; Campos et al.,
2013).

Bivalve mollusks are good candidate for studies on resistance
in bacteria originating from several sources including humans
and animals, and gives the possibility of comparing temporal
and spatial changes and the potential for exposure to humans
by consumption of marine bivalves. The main objective of this
study was to examine the ABR rates in Enterobacteriaceae isolates
obtained from marine bivalve mollusks collected along the
Norwegian coast. In addition, an assessment of the transferability
of certain resistance genes, as well as comparing bivalve isolates
with clinical isolates of human origin, was performed.

MATERIALS AND METHODS

Sampling and Identification of Bacterial
Isolates
As part of the mandatory EU surveillance program
(854/2004/EC, 2004) conducted by the Norwegian Food
Safety Authority (NFSA), sampling of bivalve mollusks were
performed from 57 localities covering the Norwegian coast
on several occasions from October 2014 to November 2015.
A standardized most probable number (MPN) reference method
for enumeration of E. coli in bivalves (Oblinger and Koburger,
1975), with Minerals Modified Glutamate Broth (MMGB)
(Oxoid, UK) as growth media in combination with verification
on Tryptone Bile with X-glucuronide (TBX) agar (Oxoid,
UK) (Donovan et al., 1998), was performed as described in
Grevskott et al. (2016). A total of 549 bivalves were collected
and examined at the National Institute of Nutrition and Seafood
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Research and the Norwegian Institute of Public Health, as
presented in Grevskott et al. (2016). More than a half of the
bivalve samples (51%) was harvested from commercially active
rearing localities, while the rest were collected from positions
established by NFSA for long time reference monitoring
purposes of shellfish safety. A total number of 199 bacterial
isolates, one from each randomly selected culture-positive
bivalve sample (n= 335), was grown into pure culture for further
analysis.

Antibacterial Susceptibility Testing
The bacterial isolates were susceptibility tested by disk diffusion
on Mueller-Hinton (MH) agar (Oxoid, UK) according to the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) (Matuschek et al., 2014). Each bacterial isolate
was tested for 24 antibacterial agents, representing 10 drug
classes (WHOCC Server, 2016). The following disks (Oxoid,
UK) were applied: ampicillin (10 µg), amoxicillin (10 µg),
amoxicillin/clavulanic acid (2/1 µg), mecillinam (10 µg),
piperacillin/tazobactam (30/6 µg), chloramphenicol (30 µg),
ciprofloxacin (5 µg), levofloxacin (5 µg), nalidixic acid (30 µg),
norfloxacin (10 µg), nitrofurantoin (100 µg), gentamicin
(10 µg), tobramycin (10 µg), streptomycin (25 µg), kanamycin
(30 µg), trimethoprim (5 µg), trimethoprim/sulfamethoxazole
(1.25/23.75 µg), cefotaxime (5 µg), ceftazidime (10 µg),
doxycycline (30 µg), tetracycline (30 µg), colistin sulfate
(25 µg), imipenem (10 µg), and meropenem (10 µg).
To monitor the quality for each new batch of MH agar,
and antibacterial disks, E. coli CCUG 17620 was included
on a regular basis. The inhibition zones were interpreted
according to the EUCAST clinical breakpoint tables v.6.0
(EUCAST, 2016). For some substances breakpoints were not
available and for these substances clinical breakpoints given
by Clinical and Laboratory Standards Institute (CLSI, 2014)
or Indian Council of Medical Research (ICMR, 2009), were
used.

Whole-Genome Sequencing
A selection of 10 isolates was subjected to whole-genome
sequencing (WGS). The isolates were selected on the basis
of phenotypes showing resistance toward multiple antibacterial
agents and/or expressing resistance to critically important agents,
such as to third-generation cephalosporins. DNA was isolated by
the use of the MagNA Pure 96 DNA and Viral NA Small Volume
Kit and a MagNApure 96 instrument (Roche Diagnostics,
Germany). The sequencing libraries were prepared using the
Kapa HyperPLus Library Preparation Kit (Kapa Biosystems,
USA). The isolates were sequenced on an Illumina MiSeq
platform (Illumina, USA), producing (2 bp × 250 bp) paired-
end reads. The data were adaptor and quality trimmed using
Trimmomatic (Bolger et al., 2014), and assembled using SPAdes
(Bankevich et al., 2012). The processed sequence data were
analyzed for genes encoding resistance to antimicrobial resistance
using the web-based ResFinder tool (Zankari et al., 2012), for
serotype using the SerotypeFinder tool (Joensen et al., 2015) and
for multi-locus sequence types (MLSTs) using the MLSTs tool

(Larsen et al., 2012) from Centre for Genomic Epidemiology1, at
the Technical University of Denmark.

Conjugation Experiments
The whole-genome sequenced strains were subjected to
conjugation experiments in order to investigate the ability of
self-transfer of resistance properties to susceptible recipient
strains. The 10 donor isolates were mated with one of the two
sensitive recipient strains, E. coli DH5α (Culture Collection,
University of Göteborg, Sweden) and One Shot E. coli (Thermo
Fisher, USA). Eight of the donor E. coli isolates were susceptible
to quinolones, and were conjugated with E. coli DH5α resistant
to nalidixic acid, as recipient. Two of the donor E. coli isolates
were resistant to quinolones, but susceptible to kanamycin, and
were therefore conjugated with One Shot E. coli resistant to
kanamycin, as recipient. The conjugal transfer was conducted
in a Luria-Bertani (LB) broth (Sigma-Aldrich, USA) and the
mating was prepared as previously described by Sunde and
Sørum (2001). The transconjugant was selected as described
by Sunde and Norström (2006), by applying antibacterial disks
corresponding to the resistance profile of the donors (Oxoid,
UK; Rosco, Denmark) onto the surface of the MH agar plates
(BD, USA), with 20 µg/ml nalidixic acid (N-8878 Sigma-Aldrich,
USA) or 50 µg/ml kanamycin (K4000 Sigma-Aldrich, USA).
The obtained transconjugants were subcultured for inspection
of colony morphology as previously described (Sunde and
Norström, 2006) and subsequently subjected to susceptibility
testing by disk diffusion.

Multiple-Locus Variable Number Tandem
Repeats Analysis
Based on resistance profile, 30 of the 199 isolates were selected for
multiple-locus variable number tandem repeats analysis (MLVA).
Extraction of DNA was done by dissolving bacterial cells in 350 µl
sterile, distilled water (Fresenius Kabi, Germany) and boiling at
100◦C for approximately 15 min. Extracted DNA was mixed with
reagents from Qiagen Multiplex PCR kit (Qiagen, Germany).
The PCR mixture consisted of 12.5 µl of 2x Master mix, 0.5 µl
of primer mix and 11 µl of sterile water. Four different primer
mixes were used for each DNA sample: EC-5, EC-6, CVN002
and EC-12, where 1 µl extracted DNA was added to the PCR
mixtures, to a total volume of 25 µl. The PCR mixtures were
placed in the GeneAmp R© PCR System 9700 machine (Applied-
Biosystems, USA) followed by capillary electrophoresis on an
ABI 3130xl Genetic Analyzer (Applied-Biosystems, USA), as
described by Løbersli et al. (2012). A control DNA sample (GJ57)
was measured along with the unknown DNA samples for quality
assurance.

Molecular Epidemiologic Analysis of the
E. coli Isolates by BioNumerics
From the MLVA-profiles of the 30 bivalve E. coli isolates, the allele
numbers generated were entered into BioNumerics database
version 7.6 (Applied Maths, Belgium) as character values, and

1https://cge.cbs.dtu.dk/services/
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an analysis based minimal spanning tree (MST) clustering was
constructed. As markers of genetic relationships, we included 212
community-acquired E. coli bacteremia isolates, 38 other human
strains from the E. coli Reference (ECOR)-collection obtained
from the Microbial Evolutionary Laboratory (State University of
Michigan, USA), four Enterohemorrhagic E. coli (EHEC) strains
associated with hemorrhagic uremic syndrome (HUS) from the
strain collection at the Norwegian Institute of Public Health, as
described (Wester et al., 2013, 2014). The community-acquired
E. coli isolates causing blood stream infection (BSI) were classified
as non-severe, early organ failure (≥organs affected within
1 day of admittance to hospital), or in-hospital death within
14 days of admission (Wester et al., 2013). We applied MST for
categorical data, with one-locus difference as first priority rule
(weight 10,000), and two-loci difference as second priority rule
(weight 10).

RESULTS

Sampling and Identification
The majority of the bacterial isolates (90%) were identified as
E. coli, both by Analytical Profile Index 20E (Oxoid, UK) and
by Matrix Assisted Laser Desorption Ionization-Time of Flight
Mass Spectrometry (Bruker, Germany). The remaining isolates
(10%) belonged to the three genera Klebsiella, Citrobacter, and
Enterobacter.

Prevalence of Antibacterial Resistance
A total of 75 (38%) of the 199 isolates showed resistance
to at least one antibacterial agent, while multidrug-resistance
was seen in nine (5%) of the isolates (Figure 1), using the
definition by Magiorakos et al. (2012). Among the 75 resistant
isolates, resistance toward extended-spectrum penicillins (83%),
aminoglycosides (16%), trimethoprim (13%), sulfonamides
(11%), tetracyclines (8%), third-generation cephalosporins (7%),
amphenicols (5%), nitrofurans (5%), and quinolones (5%), were
observed. Amoxicillin-resistance was found in 59 (79%) isolates,
while ampicillin-resistance was found in 36 (48%) isolates. The
two E. coli isolates B177 and B184 showed phenotypic resistance
against nine and 15 antibacterial agents, respectively.

Genetic Characterization of Selected
Resistant E. coli Isolates
Among the 10 bacterial isolates subjected to WGS, eight sequence
types (STs) were identified. Two isolates belonged to ST-95,
and two isolates belonged to ST-58, the remaining six isolates
belonged to ST-10, ST-38, ST-69, ST-88, ST-191, or ST-3572,
respectively.

Multiple resistance genes were present as examined by
ResFinder (Table 1). Resistance toward extended-spectrum
penicillins was observed in all 10 E. coli isolates and they
all harbored the blaTEM-1 gene. Isolate B117 and B184 were
resistant to third-generation cephalosporins, and carried the

FIGURE 1 | Number of E. coli and other bacteria in the Enterobacteriaceae family showing phenotypic resistance to antibacterial agents applied in
accordance with the EUCAST, CLSI, and ICMR clinical breakpoint tables. The two E. coli isolates B177 and B184 (marked by arrows) displayed resistance
against nine or more antibacterial agents.
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TABLE 1 | Distribution of sequence type (ST), resistance genes, and
serotype among 10 Escherichia coli isolates by WGS.

Isolate no. MLST ResFinder Serotype

B2 ST-58 blaTEM-1B, strA-strB,
dfrA5, sul2

O8:H25

B53 ST-10 blaTEM-1B No O type:H4

B117 ST-191 blaTEM-1B, blaCTX-M-15 O48:H20

B158 ST-95 blaTEM-1B, strA-strB,
dfrA5, sul2

O1:H7

B160 ST-58 blaTEM-1B, qnrS1, tet(A) O8:H30

B161 ST-69 blaTEM-1B, aac(3)-IId O17/O44:H18

B165 ST-95 blaTEM-1C, strA-strB,
dfrA14, sul2, tet(A)

O1:H7

B167 ST-88 blaTEM-1C, tet(A) O8:H17

B177 ST-3572 blaTEM-1B, strA-strB,
dfrA17, sul1, sul2, catA1,
aadA5, aph(3′)-Ia, tet(B)

O89:H9

B184 ST-38 blaTEM-1B, blaCTX-M-14,
strA-strB, dfrA17, sul1,
sul2, catA1, aac(3)-IId,
aadA5, tet(D), mph(A)

O102:H6

Genes conferring resistance toward: extended-spectrum penicillins (blaTEM-1),
third-generation cephalosporins (blaCTX-M-14, blaCTX-M-15), aminoglycosides [strA-
strB, aadA5, aac(3)-IId, aph(3)-Ia], trimethoprim (dfrA17, dfrA5, dfrA14),
sulfonamides (sul1, sul2), tetracyclines [tet(A), tet(B), tet(D)], amphenicols (catA1),
quinolones (qnrS1), and macrolides (mphA).

blaCTX-M-15 and blaCTX-M-14 genes, respectively. Six isolates
possessed genes conferring resistance to aminoglycosides, while
five isolates carried genes for resistance against trimethoprim,
sulfonamides, and tetracyclines. A gene conferring resistance
against amphenicols was observed in two isolates. Two
isolates had genes conferring resistance toward quinolones
and macrolides, respectively. Notably, three isolates harbored
resistance genes (strA-strB, catA1, and qnrS1, respectively) which
did not correspond to the phenotypic resistance pattern.

Conjugal Transfer of Antibacterial
Resistance Determinants
Six of 10 E. coli isolates transferred resistance genes by
conjugation (Table 2). The three bacterial isolates B2, B158,
and B165 transferred trimethoprim- and sulfamethoxazole-
resistance, two isolates (B160 and B167) transferred tetracycline-
resistance, while one isolate (B117) transferred resistance
to cefotaxime and ceftazidime. The resistance patterns of
transconjugants were examined by the EUCAST disk diffusion
method, in which only a selection of antibacterial agents were
employed as determined by the resistance profile of the donor.

Phylogenetic Diversity of the E. coli
Isolates
A total of 284 strains were included and MLVA-profiles
matching nine specific loci were regarded as phylogenetic related
(Figure 2). The ECOR strains of different phylogroups and E. coli
isolates causing BSI did not cluster, nor showed to be located in
any specific branch of the MST, except from strains belonging to
phylogroup A. The 30 E. coli isolates from bivalves seemed to be

TABLE 2 | Conjugative transfer and antibacterial resistance (ABR) profile
in transconjugants.

Donor Resistance profile Conjugation∗ Resistance profile
transconjugants

B2 AMP-AML-TRI-SXT-S + TRI-SUL

B117 AMP-AML-CTX-CAZ + AMP-CTX-CAZ

B158 AMP-AML-MEL-TRI-SXT-S + TRI-SUL

B160 AMP-AML-TRI-SXT-DO-TE + TE

B165 AMP-AML-TRI-SXT-DO-TE + TRI-SUL

B167 AMP-AML-DO-TE + TE

B53 AMP-AML-NA-TRI −

B161 AMP-AML-MEL-GEN-TOB −

B177 AMP-AML-C-S-K-TRI-SXT-
DO-TE

−

B184 AMP-AML-MEL-NA-NOR-
GEN-TOB-S-K-TRI-SXT-
DO-TE-CTX-CAZ

−

∗Transferability of resistance plasmids; “+” transconjugants were obtained, “−”
no transconjugants were obtained. AMP, ampicillin; AML, amoxicillin; MEL,
mecillinam; C, chloramphenicol; NA, nalidixic acid; NOR, norfloxacin; GEN,
gentamicin; TOB, tobramycin; S, streptomycin; K, kanamycin; TRI, trimethoprim;
SUL, sulfamethoxazole; SXT, trimethoprim/sulfamethoxazole; DO, doxycycline; TE,
tetracycline; CTX, cefotaxime; CAZ, ceftazidime.

evenly distributed throughout the MST, together with both the
bacteremia E. coli and the ECOR strains and the HUS-associated
EHEC strains.

DISCUSSION

Antibacterial resistant fecal bacteria from animals or humans
may spread among the human population by direct contact, or
via water and food. The transfer of ABR-B in the food production
chain may affect the development and spread of resistance among
the foodborne pathogens (Sørum and L′Abée-Lund, 2002; VKM,
2015). This could also apply for seafood. Contaminated seafood
as fish, bivalves, and crustaceans may cause ABR-B from both
marine and fecal origins to reach humans during handling and
consumption. A possible risk of transmission of ABR-B may
occur from unintentional improper heat treatment, or through
bivalves intended for raw- or light preserved consumption.
Especially, flat oysters (Ostrea edulis) and great scallops (Pecten
maximus) represents a risk, as they are commonly consumed
raw. If these food products are consumed without proper
heat treatment, resistant bacteria may enter the consumer and
subsequently interact with the intestinal microbiota (Sullivan
et al., 2001).

In this study, two E. coli isolates displayed phenotypic
resistance toward as many as nine or more antibacterial
agents, indicating a potential risk of exposure to MDR
Enterobacteriaceae during consumption or handling of marine
bivalves. In addition, extended spectrum beta-lactamase (ESBL)-
producing E. coli isolates were identified from this food
source (Table 1). Among the European countries, Norway has
the lowest production corrected use of antimicrobial agents
in animals (EMA, 2016). Furthermore, as reported in the
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FIGURE 2 | Minimal spanning tree showing the phylogenetic relationships between 212 E. coli isolated from blood stream infection (BSI) according
to patient outcome (non-severe, 3failure = organ failure ≥3 organs within one day of admission to hospital, death14d = death within 14 days of
admittance to hospital), 38 ECOR strains of human origin with main phylogroup, 30 E. coli isolates from bivalves, and four HUS-associated EHEC
strains. The distance between circles are indicated by the thickness and dotting of lines, hence a thicker line indicate a closer relation than a thin line, and a thin line
indicate a closer relation than a dotted line. Shared MLVA-profiles are shown as shared circles.

Norwegian monitoring program for antimicrobial resistance in
human pathogens, and in bacteria from food, feed and animals
(NORM/NORM-VET, 2015), Norway is a low prevalence
country in terms of antimicrobial resistance and it is therefore
surprising to detect a high rate of resistant Enterobacteriaceae
in marine bivalves, including the ESBL-producing E. coli strains.
Notably, this should be taken into account in order to determine
if bivalves should be included in annual monitoring of ABR in the
coastal environment.

The majority of resistant isolates (n = 75) examined in
the current work were resistant to the extended-spectrum
penicillins ampicillin and/or amoxicillin (83%) (Figure 1),
which is interesting since the use of antimicrobial agents
in Norway is dominated by narrow-spectrum penicillins
(NORM/NORM-VET, 2015). However, an increase in the use
of penicillins with extended spectrum have been reported lately
(NORM/NORM-VET, 2015). The increased use of ampicillin
and amoxicillin in humans and/or food-producing animals may

have led to the development of resistance within the bacterial
species observed in this study. Moreover, it is well-known
that the blaTEM-1 gene conferring resistance against extended-
spectrum penicillins has been widely distributed in bacterial
populations for decades (Hedges et al., 1974). All 10 E. coli
isolates subjected to in-depth characterization by WGS harbored
the blaTEM-1 gene, whereas two isolates had blaCTX-M genes,
the latter conferring ESBL-production (Table 1). The various
TEM enzymes are mutant derivatives of plasmid-mediated beta-
lactamases conferring resistance to penicillins, while the CTX-M
enzymes confer resistance to penicillins and cephalosporins and
have their origin in environmental bacteria (Cantón et al., 2012).
The CTX-M enzymes have become the most prevalent ESBLs
in bacteria causing human infection, both in hospital and in
community settings (Cantón and Coque, 2006; Cantón et al.,
2008). The presence of ESBL-positive E. coli is of great concern
due to possible lack of therapeutic success in the treatment
of serious infections, hence defined as critically important by
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the World Health Organization [WHO] (2014). ESBL-positive
E. coli have also been recovered from food products for human
consumption, as well as from wildlife (Li et al., 2007; Smet
et al., 2010; Guenther et al., 2011). A fraction of the bacterial
isolates were resistant to aminoglycosides (16%), and six of
the 10 sequenced E. coli isolates harbored resistance genes.
Resistance toward trimethoprim and sulfonamides were seen
in 13 and 11% of the isolates, respectively, and five of the 10
sequenced E. coli isolates harbored genes conferring resistance
toward trimethoprim and sulfonamides. All isolates expressing
resistance to trimethoprim and sulfonamides contained genes
responsible for the resistance phenotype, except isolates B53
and B160. This indicates that resistance among the bacterial
isolates could be a result of selection by increased use, since
these agents are synthetic and thus not commonly found in the
natural environment. However, observations of resistance toward
quinolones and sulfonamides have been seen in the intestinal
microbiota of an 11th Century pre-Columbian Andean mummy,
showing that resistance even to some synthetic agents may date
back to Ancient times (Santiago-Rodriguez et al., 2015).

Among the 10 E. coli isolates subjected to conjugation
experiments, transferable resistance was detected in six isolates
(Table 2). The transfer of genes conferring resistance toward
third-generation cephalosporins (cefotaxime and ceftazidime)
are especially alarming, since the spread of these genes to
clinically relevant E. coli strains will dramatically reduce the
possible choice of antibacterial agents for medical treatment.
Moreover, transfer of multiple resistance genes may occur with
a higher frequency when the bacteria are exposed to antibacterial
agents. ABR among, e.g., enteric bacteria may form reservoirs,
in which resistance determinants could transfer to non-resistant
bacteria, including those responsible for diseases (Salyers et al.,
2004; Stecher et al., 2012). Intestinal bacteria from the human
microbiota may, in addition to sharing resistance genes among
themselves, also exchange resistance genes to other bacteria that
are temporary passing through the intestine (Teuber et al., 1999;
Salyers et al., 2004). Thus, commensal bacteria may function as
a vector in transferring resistance genes between environmental
and pathogenic bacteria.

Whole-genome sequencing and subsequent analysis showed
that two isolates belonged to ST-95, while two isolates belonged
to ST-38 and to ST-69, respectively (Table 1). These STs are
associated with bacteremia and urinary tract infection in humans
(Adams-Sapper et al., 2012; Alghoribi et al., 2015; Hertz et al.,
2016). The MLVA-profiles of the bivalve E. coli isolates displayed
a seemingly high degree of diversity (Figure 2). Furthermore,
they scattered among BSI-causing, including those leading to
death within 14 days of admission to hospital, as well as among
representatives of all E. coli main phylogroups. Both instances
indicate no common source, but also that the bacteria have the
potential for causing serious infection in humans. Consequently,
the presence of pathogenic E. coli isolates in the coastal
environment represent a risk to human health, especially in areas
use for aquaculture or recreational activities. This is supported by
the findings of Balière et al. (2015) who reported that a few E. coli
strains of EHEC and Enteropathogenic E. coli (EPEC) isolated
from bivalve mollusks harbored resistance toward amoxicillin,

cefotaxime, and imipenem. The World Health Organization
[WHO] (2014) have stated that infections with E. coli strains,
e.g., EHEC and EPEC, are among the most frequent foodborne
causative agents worldwide.

Allochthonous bacteria from different sources (e.g., urban,
industrial, and agriculture waste), and residues of antimicrobial
agents, will ultimately be transported to the marine environment
through waste water effluents, rivers, or streams, and mixed
with the indigenous bacterial population (Baquero et al., 2008;
Wellington et al., 2013). This can result in the rise of resistance
due to selection pressure, and/or genetic exchange between
environmental and intestinal bacteria. Bivalves may promote
gene transfer among bacteria in the marine environment, by
collecting bacteria from various sources and concentrate them
within a stable micro-environment at a high density (Taylor et al.,
2011). The increasing pressure exerted by antimicrobial agents
affects the acquisition, selection, and transmission of resistance
determinants among a wide range of bacteria.

CONCLUSION

Our study indicates that marine bivalves may represent an
important tool for monitoring antibacterial resistant E. coli
and other members of the Enterobacteriaceae family in coastal
environments. Bivalves may furthermore act as a “hot spot” for
resistance transfer between Enterobacteriaceae and indigenous
bacteria, as the conditions they offer may facilitate the
conjugational frequency. As continuous EU programs for the
detection of E. coli from bivalves are currently implemented, an
additional characterization of their ABR profile would represent
a good cross-compartment added value indicator of spatial and
temporal trends in resistance rates.
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