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Hypoxia-Inducible Factors (HIFs) and
Phosphorylation: Impact on Stability,
Localization, and Transactivity
Thomas Kietzmann*, Daniela Mennerich and Elitsa Y. Dimova

Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland

The hypoxia-inducible factor α-subunits (HIFα) are key transcription factors in the

mammalian response to oxygen deficiency. The HIFα regulation in response to hypoxia

occurs primarily on the level of protein stability due to posttranslational hydroxylation

and proteasomal degradation. However, HIF α-subunits also respond to various growth

factors, hormones, or cytokines under normoxia indicating involvement of different

kinase pathways in their regulation. Because these proteins participate in angiogenesis,

glycolysis, programmed cell death, cancer, and ischemia, HIFα regulating kinases are

attractive therapeutic targets. Although numerous kinases were reported to regulate HIFα

indirectly, direct phosphorylation of HIFα affects HIFα stability, nuclear localization, and

transactivity. Herein, we review the role of phosphorylation-dependent HIFα regulation

with emphasis on protein stability, subcellular localization, and transactivation.
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INTRODUCTION

An adaequate supply of oxygen ismandatory for aerobic life. To cope with an inadequate O2 supply,
commonly termed hypoxia, mammals have developed response mechanisms which are crucial for
their survival.

To achieve responsiveness toward hypoxia on the molecular level, cells integrate a complex
biochemical system involving short-term reactions/modifications with no changes in gene
expression and a long-term programme including changes in gene expression. Both processes
can be interlinked; in particular, when the short-term response includes changes in the activity of
enzymes which initiate a series of posttranslational signaling events that often regulate the activity
of transcription factors and thus gene expression. On the level of gene expression the response to
hypoxia is crucially dependent on the α-subunits of hypoxia-inducible transcription factors (HIFα)
(Semenza, 2003; Kaelin, 2011; Masson and Ratcliffe, 2014).

As such, HIF α-subunit proteins contribute to proper embryonic development and to the
pathology ofmany diseases associated with hypoxia like anemia, myocardial infarction, thrombosis,
atherosclerosis, diabetes mellitus, or cancer (Semenza, 2003; Kaelin, 2011; Masson and Ratcliffe,
2014).

To achieve adaequate function, HIFα levels, subcellular distribution and activity need to be
tightly regulated. Although regulation at the transcriptional and translational level was shown to
play a role, posttranslational stabilization of HIFα proteins in response to hypoxia appears to be of
major importance (Wenger, 2002; Gross et al., 2003; Gorlach, 2009; Kietzmann, 2009).

Interestingly, the HIFα proteins are not only regulated by hypoxia, but also in response
to various stresses, growth and coagulation factors, hormones, or cytokines under normoxic
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conditions (reviewed by Dimova et al., 2009). These “normoxic”
HIFα stimuli often use different protein kinase regulated
pathways for signal transduction indicating an important role
of different kinases in HIFα regulation. Indeed, different kinases
have been identified to regulate HIFα in a direct or indirect
fashion (Figure 1). This review will primarily discuss the role
of the kinases using HIFα proteins as a direct substrate and
the impact of these modifications on HIFα stabilization, nuclear
translocation, and transactivation.

HYPOXIA-INDUCIBLE TRANSCRIPTION
FACTORS: α- AND β-SUBUNITS

Three O2-sensitive HIFα proteins (HIF-1α, HIF-2α -also known
as EPAS (Tian et al., 1997), HLF (Ema et al., 1997), HRF (Flamme
et al., 1997), or MOP2 (Hogenesch et al., 1998)—and HIF-
3α) are known today. Together with HIF β-subunits, primarily
represented by the stable nuclear and ubiquitously found ARNT
(arylhydrocarbon receptor-nuclear translocator) protein, they
form heterodimeric transcription factors binding to hypoxia
response elements (HRE) with the core DNA sequence 5′-
RCGTG-3′ (Wenger et al., 2005).

The best studied HIFα isoforms are HIF-1α andHIF-2αwhich
share a number of structural and functional similarities but
also show some differences with respect to cell type expression
pattern, embryonic deletion phenotypes, target genes, and effects
during carcinogenesis (Hu et al., 2003; Scortegagna et al., 2003;
Sowter et al., 2003). Not much is known about HIF-3α from
which several splice variants exist in humans (Pasanen et al.,
2010) and where some variants as well as a mouse splice variant
termed inhibitory PAS protein (IPAS) appear to act as negative
regulators of the hypoxic response (Makino et al., 2007; Heikkila
et al., 2011) while others appear to act as an oxygen-regulated
transcription activator (for review see Duan, 2015).

Like the ARNT proteins, the HIF α-proteins belong to the
basic helix-loop-helix (bHLH) PAS (Per-ARNT-Sim) protein

FIGURE 1 | Scheme of kinases involved in regulating HIF-1α either

direcly or indirectly. AMPK, AMP-activated kinase; ATM, ataxia and

teleangiectasia mutated; CK1, casein kinase1; CDK1, cyclin-dependent

kinase-1; ERK; extracellular regulated kinase; GSK3β, glycogen synthase

kinase-3β; PKA, protein kinase A; PKB/Akt, protein kinase B or Akt kinase;

p38, p38 mitogen activated protein kinase; Plk3, polo-like kinase-3.

family (Wang et al., 1995a); HIF-1α and HIF-2α show the
highest degree of sequence identity in the bHLH (∼85%), PAS-A
(∼68%), and PAS-B (∼73%) domains. Both contain also two
conserved nuclear localization sequences (NLS) responsible for
translocation to the nucleus; they are localized in the N-terminus
(aa 17–33 in HIF-1α; aa 1–50 in HIF-2α) and in the C-terminus
(aa 718–721 in HIF-1α; aa 689–870 in HIF-2α) (Kallio et al.,
1998). Except for the full length HIF-3α which does not contain
a C-terminal transactivation domain but a unique LZIP (leucine
zipper) C-terminal domain (Hara et al., 2001; Kietzmann et al.,
2001), HIF α-subunits contain also a N-terminal transactivation
domain (N-TAD) and a C-terminal transactivation domain
(C-TAD). An oxygen-dependent degradation domain (ODDD,
aa 401–603 in HIF-1α; aa 517–682 in HIF-2α) is overlapping the
N-TAD and is important for the oxygen-dependent regulation of
all vertebrate HIFα proteins (Huang et al., 1998; Duan, 2015). The
residues between the N-TAD and C-TAD constitute an inhibitory
domain (ID) (Jiang et al., 1997) (Figure 2).

HYPOXIA-INDUCIBLE REGULATION OF
α-SUBUNITS

The levels of the HIF α-subunits increase exponentially with
declining O2 concentration as a result of reduced hydroxylation,
ubiquitylation and proteasomal degradation (Semenza, 2003;
Kaelin, 2011; Masson and Ratcliffe, 2014). To date, four
HIF specific prolyl 4-hydroxylase domain containing enzymes
(PHDs) have been identified from which PHD2 appears to be
of major importance for HIFα degradation (Berra et al., 2003).
All HIF hydroxylases belong to a family of dioxygenases which
depend on the presence of O2 for their action. Thus, in the
presence of O2, i.e., normoxia, PHDs are able to hydroxylate
crucial proline residues in the HIFα ODDDs (P402/P564 in HIF-
1α; P405/P531 in HIF-2α; P492 in HIF-3α). This event recruits
the von Hippel-Lindau tumor suppressor protein (pVHL) which
together with Elongin C, Elongin B, RBX1, Cullin 2, and an
E2 ubiquitin-conjugating enzyme forms an ubiquitin E3 ligase
complex. As a consequence, HIFα proteins become ubiquitylated
and degraded by the proteosome (Semenza, 2003; Kaelin, 2011;
Masson and Ratcliffe, 2014).

Another hydroxylase called factor-inhibiting HIF (FIH-1)
hydroxylates an asparagine in the C-TADs of HIF-1α and HIF-
2α (N803 in HIF-1α and N847 in HIF-2α) with the result that the
interaction of the HIFα proteins with the co-activators CBP/p300
is inhibited (Mahon et al., 2001; Hewitson et al., 2002; Lando
et al., 2002). Thus, a limited O2 supply decreases the activities
of HIF hydroxylases and allows HIFα stabilization, followed
by nuclear translocation, dimerization, and transactivation (for
review see Kaelin, 2005).

REGULATION OF HIF α-SUBUNITS BY
PHOSPHORYLATION

Phosphorylation is a crucial posttranslational modification which
regulates the activity and stability of various proteins including
transcription factors. However, the extent to which transcription
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FIGURE 2 | Kinases and amino acid residues in HIF-1α involved in regulation of HIF-1α stability. Scheme of HIF-1α and its domain organization with specific

amino acid residues which can be phosphorylated; all have been shown to contribute to the regulation of HIF-1α protein stability. HIF-1α is phosphorylated on specific

residues (T498, S502, S505, T506, and S510 or S551, T555, and S589) by GSK3β; Plk3 can phosphorylate S576 and S657; ATM can phosphorylate S696 and

CDK1 can phosphorylate S668. ATM, ataxia and teleangiectasia mutated; CDK1, cyclin-dependent kinase-1; GSK3β, glycogen synthase kinase-3b; Plk3, polo-like

kinase 3; bHLH, basic helix loop helix domain; NLS, nuclear localization sequence; PAS, Per-ARNT-Sim domain; N-TAD, N-terminal transactivation domain; ID,

inhibitory domain; C-TAD, C-terminal transactivation domain; numbers indicate the amino acid residue range of the respective domain.

factors including HIFα proteins are phosphorylated may vary
according to the signal, cell-type, or tissue. Thus, it is plausible
that a modulation of HIFα action due to phosphorylation may
be a cell type specific event which could be explained by different
layers of regulations where kinases are affected depending on the
cellular context.

The first evidence indicating that phosphorylation plays a
role in HIFα regulation came from electrophoretic mobility
shift assay experiments where addition of calf intestinal alkaline
phosphatase to hypoxic nuclear extracts led to a loss of HIF-1
DNA-binding activity (Wang et al., 1995b). In the meantime a
panel of protein kinases was reported to affect HIFα regulation,
mainly HIF-1α, indirectly or directly (for review see Dimova
et al., 2009). Thereby it appeared that direct phosphorylation
of HIFα has an immediate impact on HIFα stability, nuclear
localization, transactivity, and protein-protein interactions.

Phosphorylation of HIFα Proteins: Role for
Subunit Stabilization
A number of findings indicated that the PI3K/PKB(Akt) pathway
can induce HIFα, transcription, stabilization (Mazure et al.,
1997; Zhong et al., 2000; Zundel et al., 2000; Hirota and
Semenza, 2001), translation (Koritzinsky et al., 2006), and
coactivator recruitment (Kallio et al., 1998). So far, no evidence
has been presented showing that HIFα proteins are directly
phosphorylated by PKB(Akt); rather its action is indirect
involving other PKB/Akt targets. Although a number of PKB/Akt
targets are known, so far only the human homolog of mouse
double minute-2 (HDM2) (Bardos et al., 2004; Skinner et al.,
2004), mammalian target of rapamycin (mTOR) (Treins et al.,
2002), and glycogen synthase kinase-3 (GSK3) (Flügel et al., 2007,
2012) were shown to affect HIF-1α levels with most evidence
indicating that only GSK3 acts directly on HIF-1α.

Although the name GSK3 implies that this is a specific
kinase acting only on glycogen synthase, it is rather pleiotropic
with a number of substrates through which GSK3 may affect
various signaling pathways often associated with hypoxia like

developmental processes, stem cell renewal, cell proliferation,
and apoptosis (reviewed in Cohen and Frame, 2001; Grimes and
Jope, 2001; Force and Woodgett, 2009).

Mammals possess two GSK3 isoforms, GSK3α (51 kDa) and
GSK3β (47 kDa) which are structurally similar, but not entirely
functionally overlapping (reviewed in Force and Woodgett,
2009). This became evident from the different phenotypes of
GSK3 knockout mice. GSK3β−/− mice are embryonically lethal
and die around day 16 because of hepatic apoptosis and a cardiac
pattern defect (Hoeflich et al., 2000; Kerkela et al., 2008). By
contrast, GSK3α−/− mice are viable, and fertile (MacAulay et al.,
2007). Interestingly, it exists also a minor spliced GSK3β variant
called GSK3β2 that contains a 13-amino acid residue insert
within the kinase domain. This isoform was shown to be neuron-
specific and has reduced kinase activity toward the microtubule-
associated protein, tau, compared to GSK3β (Mukai et al., 2002;
Saeki et al., 2011).

GSK3 is a target of the PKB/Akt pathway and it is unusual
that its protein kinase activity tends to be high in resting
cells. Furthermore, its inhibition is mediated by various stimuli,
such as growth factors, cytokines, and hormones. PKB/Akt can
phosphorylate both GSK3 isoforms (S21 of GSK3α and S9 of
GSK3β), leading to an inhibition of GSK3 activity (Cross et al.,
1995). Several other kinases are also able to phosphorylate
these serine residues like ERK1/2, a downstream kinase of the
MAPK pathway (Brady et al., 1998), p70 ribosomal S6 kinase-
1 (Armstrong et al., 2001), cAMP-dependent protein kinase A
(PKA) (Li et al., 2000), and PKC (Ballou et al., 2001).

Findings showing that inhibition of GSK3, siRNA-mediated
depletion of GSK3β and absence of GSK3β inMEFs inducedHIF-
1α protein levels (Schnitzer et al., 2005; Flügel et al., 2007, 2012)
were in line with the notion that GSK3 can phosphorylate at
least HIF-1α. Indeed, GSK3βwas found to directly phosphorylate
HIF-1α in the ODDD andN-TAD (Sodhi et al., 2001; Flügel et al.,
2007, 2012; Cassavaugh et al., 2011). The residues phosphorylated
in HIF-1α by GSK3β were reported to be S551, T555, and
S589 in one study (Flügel et al., 2007) whereas another study
showed involvement of T498, S502, S505, T506, and S510
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(Cassavaugh et al., 2011) (Figure 2). The difference between
studies may have resulted from different oxygen concentrations
(8% O2 compared to 2% O2) and the different cell types
(HepG2 compared to SK-OV-3) used. Despite the different
phosphorylation sites, both studies show that regulation of HIF-
1α by GSK3β is independent of O2, hydroxylation, and VHL-
mediated proteasomal degradation (Flügel et al., 2007, 2012;
Cassavaugh et al., 2011). Thereby, phosphorylation of HIF-
1α by GSK3β recruits the F-box and WD protein Fbw7 (also
known as hCdc4 in yeast, hSel10 in Caenorhabditis elegans, or
Ago in Drosophila) as the substrate-recognition component of
a multi-subunit E3 ubiquitin ligase and forms together with
SKP1 (S-phase kinase-associated protein 1), CUL1 (cullin 1), and
RBX1 (RING box 1, also called ROC1 or HRT1) the so called
SCF complex which then contributes to HIF-1α degradation
(Cassavaugh et al., 2011; Flügel et al., 2012).

Similar to pVHL, Fbw7 is also a tumor suppressor; 6%
from 1500 investigated human tumors showed mutations in
the Fbw7 coding region. Strikingly, nearly half (43%) of these
were missense mutations within the WD40 domain (Arg465
and Arg479), shared by all three alternatively spliced Fbw7
isoforms. In line, all three Fbw7 isoforms could target HIF-1α
for proteasomal degradation and loss of the Fbw7 WD domain
abolished GSK3β initiated HIF-1α degradation (Flügel et al.,
2012).

Together, the findings showing that two different E3 substrate
recognition proteins which both are tumor suppressors can
contribute to HIFα degradation indicates the importance of the
highly dynamic HIF system for carcinogenesis.

Ubiquitylation of proteins is reversible and the reversion is
mediated by a family of deubiquitylating enzymes (DUBs). About
100 DUBs encoded by the human genome are supposed to
counteract the action of around 600 E3 ligases (Nijman et al.,
2005; Scheel and Hofmann, 2005). DUBs can be divided into five
groups: ubiquitin-specific proteases (USPs), ubiquitin C-terminal
hydrolases (UCHs), ovarian tumor proteases (OTUs), Josephins,
and JAMMs. The USP, UCH, OUT, and Josephins are papain-
like cysteine proteases, whereas the JAMM members are zinc
metalloproteases (reviewed in Love et al., 2007).

Based on this, it appears plausible that the normoxia and
pVHL-mediated ubiquitylation as well as the GSK3β and Fbw7-
mediated ubiquitylation can be opposed by DUBs. Indeed, two
VHL-interacting deubiquitylating enzymes, VDU1 (USP33) and
VDU2 (USP20) were identified (Li et al., 2002a,b). However, by
using in vitro pull down assays with GST-HIF-1α (amino acid
530–826) and co-immunoprecipitation experiments in COS-7
cells it was shown that only VDU2 but not VDU1 could interact
with HIF-1α (Li et al., 2005). In addition, it was shown that
VDU2 but not VDU1 can deubiquitylate HIF-1α and increase it’s
half-life (Li et al., 2005).

Experiments with GSK3β and Fbw7-deficient cells revealed
that the GSK3β and Fbw7-dependent HIF-1α degradation can
be antagonized by the ubiquitin specific protease 28 (USP28)
(Flügel et al., 2012). In contrast to VDU2 which directly interacts
with HIF-1α, USP28 forms a ternary complex with HIF-1α via its
association with HIF-1α bound Fbw7 (Flügel et al., 2012).

Together, degradation of HIF-1α by the GSK3/Fbw7/USP28
system appears to be an additional mode to regulate HIF-1α

function in response to various physiologic and non-physiologic
signals affecting cell division, cell growth, differentiation, and
apoptosis independent of the O2 tension.

While GSK3 provides a metabolic link to cell growth and
differentiation, p38 MAP kinases link different stress stimuli,
such as ultraviolet irradiation, heat shock, and osmotic shock
with cell differentiation, apoptosis, and autophagy (Olson
and Hallahan, 2004; Raman et al., 2007; Tormos et al.,
2013; Sabio and Davis, 2014). Indeed, p38 was supposed to
regulate HIF-1α stability during ischemic stress and in line,
the p38 inhibitors SKF86002 and SB203580 decreased HIF-
1 dependent gene expression (Sodhi et al., 2001). Further,
treatment of theMiaPaca2 pancreatic cancer cell line with the p38
inhibitor SB203580 caused an increase in VHL-HIF-1α binding
(Kwon et al., 2005) suggesting that p38 contributes to HIF-1α
stabilization, though no half-life measurements were performed.
Two members of the p38 MAPK family, p38α and p38γ, were
then shown to possess the ability to phosphorylate HIF-1α (Sodhi
et al., 2000). Altogether, this implies that p38 can contribute to
HIF-1α stabilization, the phosphorylation by p38 occurred in the
inhibitory domain (aa 576–785) (Sodhi et al., 2001) which has not
yet been shown to be involved in VHL-dependent degradation.
Moreover, the exact localization of the eight serine residues which
could serve as putative p38 phosphorylation sites in the HIF-
1α inhibitory domain as well as their contribution to HIFα
degradation remains still to be determined (Figure 2).

Another kinase linking HIFα function with regulation of
cell division is cyclin-dependent kinase 1 (CDK1). Although
about 20 CDKs known to date can contribute to cell cycle
control, CDK1 was found to be the only one essential for
the cell cycle in all eukaryotic cells (Malumbres et al., 2009).
CDK1 belongs to a highly conserved family of heterodimeric
serine/threonine kinases which require a regulatory cyclin
subunit for their activity. As such, the CDK1-cyclin B complex
constitutes a serine/threonine protein kinase composed of the
catalytic subunit CDK1 and its positive regulatory subunit cyclin
B (B1 isoform) (Malumbres et al., 2009).

Activation of CDK1 promotes entry into theM phase
of the cell cycle. This is achieved in the late G2 phase
by phosphorylation mediated by the CDK activating kinase
(CAK) phosphorylating T161 in its kinase-activation loop
(Russo et al., 1996) as well as Cdc25C phosphatase mediated
dephosphorylation of T14 and Y15 within CDK1. The inactive
state of CDK1 throughout the S and G2 phases of the cell cycle
is achieved by phosphorylation at two negative regulatory sites,
T14 and Y15, by the CDK1 inhibitory protein kinases, Myt1
and Wee1 respectively (Watanabe et al., 2005) for review see
(Malumbres, 2014, 2015).

A recent report showed that siRNA-mediated knockdown or
Ro-3306-mediated inhibition of CDK1 reduced HIF-1α half-life
whereas overexpression of CDK1 enhanced HIF-1α levels. In
vitro kinase assays revealed that S668 in HIF-1α is the CDK1
target site (Figure 2). Accordingly, a construct of HIF-1α with
a phospho-site mimicking mutation (S668E) was more stable
under both normoxia and hypoxia. Moreover, phosphorylation
of HIF-1α at S668 lead to an expression of HIF-1 target genes
and promoted tumor angiogenesis, proliferation, and tumor
growth (Warfel et al., 2013). Together, these findings underlie
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the importance of HIF-1α for the M-phase of the cell cycle since
it can be stabilized by CDK1-mediated phosphorylation already
under normoxia.

Genotoxic stress represents a burden under which cell cycle
progression and cell cycle checkpoints need to be tightly
controlled. A kinase participating in the response to genotoxic
stresses is Polo-like kinase 3 (Plk3) (Barr et al., 2004). Plk3
is a member of a family consisting of four proteins (Plk1,
Plk2, Plk3, and Plk4) not only involved in the stress response,
but also strongly involved in tumorigenesis with an abnormal
expression found in multiple tumors (Archambault and Glover,
2009; Degenhardt and Lampkin, 2010). The role of Plk3 in the
development of tumors remains controversial. While one study
showed a non-tumorigenic phenotype in Plk3 deficient mice
(Myer et al., 2011), another study reported that mice deficient
in Plk3 develop highly vascularized tumors in multiple organs
suggesting a tumor-suppressing activity in particular via HIF
driven angiogenesis (Yang et al., 2008). The latter finding is in
line with the finding that Plk3 can regulate HIF-1α stability
(Xu et al., 2010). Plk3 immunoprecipitation and pulldown
analyses revealed interaction between HIF-1α and Plk3 which
was able to phosphorylate S576 and S657 of HIF-1α (Xu et al.,
2010) (Figure 2). Further, Plk3−/− murine embryonic fibroblasts
contained increased HIF-1α levels. In line with that, half-life
measurements demonstrated that the half-life of wild-type HIF-
1α was <10min, whereas the half-lives of the HIF-1α-S576A,
HIF-1α-S657A, and HIF-1α-S576A/S657A mutants were about
37, 49, and 51min, respectively (Xu et al., 2010). Together, these
studies indicate that Plk3-mediated phosphorylation destabilizes
HIF-1α.

In contrast to the above mentioned kinases, the knowledge
about the involvement of the Jun N-terminal kinases (c-JNK) in
regulating HIF-1α is quite limited and inconsistent. One study
reported that c-JNK contributes to the activation of HIF-1α
(Comerford et al., 2004) whereas other studies showed that HIF-
1α is not phosphorylated by c-JNK (Richard et al., 1999; Sodhi
et al., 2001).

Links between Hypoxia and Kinases in the

Regulation of HIFα Stabilization
In addition to hormones or growth factors, hypoxia may also
have an impact on the activity of certain kinases and thus
activation of the hypoxia signal chain and a kinase pathway at
the same time may lead to interference at the level of HIFα.

It has been shown that hypoxia is capable to induce GSK3β
phosphorylation and thus its inactivation in different cell types
such as PC-12 cells (Beitner-Johnson et al., 2001), HT1080
cells (Chen et al., 2001), and HepG2 cells (Mottet et al., 2003;
Flügel et al., 2007) as well as in vivo (Roh et al., 2005).
Further, early/acute hypoxia also enhanced PI3K/Akt activity,
inhibited GSK3, and increased HIF-1α protein levels whereas
prolonged/chronic hypoxia increased GSK3β activity which led
to decreased HIF-1α protein levels in HepG2 cells (Mottet et al.,
2003; Flügel et al., 2007). This indicates that hypoxia can also
be a signal for the PI3K/Akt/GSK3 pathway and depending on
the duration of hypoxia it is possible to induce a biphasic HIF-
1α response. This would imply that GSK3β inhibition could

reverse the negative effect of prolonged hypoxia on HIF-1α
accumulation; however, these effects may be cell type specific
since the hypoxia effects on GSK3β phosphorylation were not
observed in other cell types including some different breast
cancer cell lines (Blancher et al., 2000), PC-3 prostate cancer cells
(Zhong et al., 2000), and 3T3 cells (Laughner et al., 2001).

GSK3 appears not to be the only kinase which may regulate
HIFα stability by phosphorylation under normoxia and hypoxia.
Recently it was found that the protein kinase ataxia-telangiectasia
mutated (ATM) may be involved in the hypoxia-dependent
modulation of HIF-1α function. Although ATM is best known
for its role as an upstream activator of the DNA damage response
due to DNA double-strand breaks (DSBs) (Shiloh and Ziv, 2013),
it was described that ATM-deficient cells failed to accumulate
HIF-1α under hypoxic conditions. In addition, ATM activity—
but not protein—was found to be increased by about two-fold
when NHFB cells were exposed to 0.2% oxygen; an increase
in activity similar to that seen after ionizing irradiation. ATM
was also able to phosphorylate HIF-1α at S696 in the ID and
a HIF-1α S696A mutant was found to be less stable than wild-
type HIF-1α under hypoxic conditions suggesting that S696
phosphorylation stabilizes HIF-1α (Cam et al., 2010) (Figure 2).
However, not only stability but also activity of the HIF-1α S696A
mutant was reduced with the consequence of reduced DNA-
damage-inducible transcript 4 (DDIT4; also known as Dig2,
HIF-1-responsive RTP801, REDD-1) expression (Shoshani et al.,
2002). These features integrate the ATM DNA damage response
pathway with the hypoxia signaling pathway.

In addition to hypoxia, reactive oxygen species (ROS) are also
an important trigger of the DNA damage response and have been
shown to be involved in the regulation of HIFα levels (Kietzmann
and Gorlach, 2005; Gorlach and Kietzmann, 2007; Kietzmann,
2010). Although their major effects on HIFα stabilization are
exerted via regulation of the proline hydroxylation- and VHL-
dependent degradation pathway (Kietzmann and Gorlach, 2005;
Gorlach and Kietzmann, 2007), also the PI3K/Akt and ERK1/2
pathway contributed to the ROS mediated HIFα regulation
(Gorlach et al., 2001, 2003; Diebold et al., 2010). Recent studies in
the roundworm C. elegans indicated that another kinase, namely
AMP-activated protein kinase (AMPK) couples ROS and HIF-
1α regulation in a direct manner. AMPK is a key sensor of the
cellular energy status (Hardie et al., 2015) and considered to
act downstream of reduced mitochondrial respiration. In their
studies the authors demonstrated that mutations in the AMPK
ortholog of C. elegans led to increased levels of HIF-1α indicating
that AMPK is required for reducing HIF-1α. Further analyses
revealed that AMPK regulates HIF-1α post-transcriptionally and
by combining in vitro kinase assays with LC-MS analyses it
was shown that AMPK phosphorylates S419 in C. elegans HIF-
1α (Hwang et al., 2014) (Figure 2). Although, these data raise
the possibility that AMPK down-regulates HIF-1α via direct
phosphorylation, that study did not address to which extent this
phosphorylation involves or requires VHL.

Although the C. elegans study also left open whether the
direct regulation of HIFα is conserved among other species, it is
known from studies with cancer cells that ROS-dependent HIF-
1α activation requires AMPK (Jung et al., 2008). Interestingly and
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opposite to the regulation of HIF-1α by AMPK in C. elegans a
recent study showed a link between AMPK function and HIF-
1α regulation in the human hepatic cancer cell line Hep3B
(Irigoyen et al., 1999; Chen et al., 2015). In these cells, the
link between AMPK and HIF-1α appeared to be rather indirect
involving histone deacetylase 5 (HDAC5) activity which can
be phosphorylated by AMPK at S259 and S498. Since this
phosphorylation of HDAC5 by AMPK promotes its shuttling
from the nucleus to the cytosol (McKinsey et al., 2001) the
authors examined whether cytosolic HDAC5 activity is involved
in HIF-1α stabilization. They found that activation of AMPK
by AICAR enhanced cytosolic presence of HDAC5 and levels
of HIF-1α whereas the AMPK inhibitor compound C blocked
HDAC5 nuclear export andHIF-1α accumulation (Irigoyen et al.,
1999; Chen et al., 2015). Compound C, has also been shown
to prevent hypoxia-dependent HIF-1α activation in DU145 cells
(Lee et al., 2003; Hwang et al., 2004); however, this could be an
independent effect since the inhibition of HIF-1α by compound
C was also seen in AMPK−/− cells (Emerling et al., 2007).
Together, it appears that AMPK can be involved in regulation of
HIF-1α in a direct and indirect manner where the extent may be
also depending on the species.

Altogether, these findings indicate that the HIFα system
displays an enormous plasticity since its protein stabilization can
be induced by hydroxylation and phosphorylation events either
alone or in combination.

Regulation of HIF α-Subunit Nuclear
Localization and Transactivity by
Phosphorylation
Activation of multiple oncogenic pathways including growth
factor signaling coupled with enhanced MAPK signaling is
a common event in tumors (Raman et al., 2007). From
the conventional MAP kinases the extracellular regulated
kinases, ERK1 and ERK2 (p44/p42), c-Jun NH2-terminal kinase
(JNK1/2/3), p38 MAPK (p38α/β/γ/δ) are known to be of
importance for regulating cellular processes like proliferation,
differentiation, development, stress responses, and apoptosis
(Morrison andDavis, 2003; Olson andHallahan, 2004; Coulombe
and Meloche, 2007; Raman et al., 2007; Rincon and Davis,
2009; Gaestel, 2013; Serviddio et al., 2013; Tormos et al., 2013).
Therefore, up-regulation of HIFα activity by MAPK signaling
may play an essential role during tumor growth and metastasis.

To be able to act as transcription factor, stabilized HIFα
proteins need to be translocated to the nucleus. This nuclear
translocation was shown to be independent of ARNT and
to be a dynamic process where nuclear import is commonly
counterbalanced by nuclear export. Thus, the degree of nuclear
HIFα accumulation depends on the relative nuclear import
and export rates. In the case of HIFα, nuclear translocation
was shown to involve its N-terminal and C-terminal NLS,
respectively, as well as its interaction with importin 4 and 7
(Depping et al., 2015). The nuclear presence was then further
shown to be regulated by ERK1 (p44)—and ERK2 (p42)-
dependent phosphorylation. Thereby, mass spectroscopy with
in vitro phosphorylated recombinant HIF-1α revealed that HIF-
1α S641 and S643 (within the ID) served as p42/p44 MAPK

targets (Mylonis et al., 2006; Triantafyllou et al., 2006) (Figure 3).
Intriguingly, inhibition of these phosphorylation sites impaired
HIF-1α nuclear accumulation and transcriptional activity by
favoring nuclear export (Mylonis et al., 2006; Triantafyllou
et al., 2006). This implies that ERK1/2 regulates rather the
ability of HIFα to exit the nucleus rather than the import.
Indeed, an atypical but CRM1 (exportin 1 or chromosome region
maintenance)-dependent nuclear export signal (NES) (within
aa 616–658 in HIF-1α) (Mylonis et al., 2008) was found to be
phosphorylation-sensitive. Phosphorylation of S641 and S643
within the NES by ERK1/2 inhibited interaction between HIF-1α
and the exporting CRM1 and facilitated nuclear accumulation.

In line with the nuclear accumulation are findings reporting
that enhanced transcriptional activity of both HIF-1α and HIF-
2α can be observed after direct phosphorylation of the HIFα
isoforms by ERK1/2 in vitro and in vivo (Richard et al., 1999;
Conrad et al., 2000; Minet et al., 2000; Sang et al., 2003; Mylonis
et al., 2008). In line, the MEK1 inhibitor PD98059 and MKK
inhibitor U0126 decreasedHIF-target gene expression (Hur et al.,
2001; Sodhi et al., 2001; Comerford et al., 2004; Dimova et al.,
2005; Kaluz et al., 2006).

While the C-TAD of HIF-1α and HIF-2α is important for
recruitment of the coactivator CBP/p300, phosphorylation sites
within the C-TAD (Minet et al., 2000; Sodhi et al., 2001;
Lee et al., 2002) and within the ID (Sodhi et al., 2001; Lee
et al., 2002; Sang et al., 2003) of HIFα may also contribute to
induction of transactivity. Indeed, the first functionally relevant
phosphorylation sites were reported to be T796 in HIF-1α and
T844 in HIF-2α (Gradin et al., 2002). Although the kinases
phosphorylating these sites were not defined, phosphorylation of
these residues increased interaction between the HIFα-C-TAD
and CBP/p300. Moreover, it was shown that the MEK1 inhibitor
PD98059 affected the transactivity of CBP/p300 and that ERK1
could also phosphorylate the transactivation domain of p300 (aa
1751–2414) which subsequently facilitated interaction between
the HIF-1α C-TAD and p300 (Sang et al., 2003). Together
with the finding that phosphorylated HIF-1α is the major form
binding to ARNT (Suzuki et al., 2001), it appears plausible that
HIF-1 transcriptional activity increases in response to induction
of the MAPK pathway.

All together, these reports indicate that direct phosphorylation
of HIF-1α and HIF-2α by ERK1/2 can affect their nuclear
localization and transactivity.

Links between Hypoxia and Kinases in the

Regulation of HIF-1α Transactivity
A number of findings have indicated that ERK1/2 can also serve
as additional transmitter of the hypoxic signal since hypoxia
has been shown to moderately activate ERK1/2 in different
cell lines (Salceda et al., 1997; Conrad et al., 1999; Minet
et al., 2000). Thereby cell type specific variations may appear as
shown for HMEC-1 cells where involvement of ERK1 but not
ERK2 in hypoxia-mediated HIF-1 transactivation was reported
(Minet et al., 2000). In addition, by using PD98059 and by
employing a mammalian two-hybrid assay, it was shown that
the ERK pathway is also involved in hypoxia-dependent HIF-1α
transactivation (Lee et al., 2002; Sang et al., 2003). By contrast,
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FIGURE 3 | Kinases involved in nuclear accumulation of HIF-1α. Scheme of HIF-1α and its domain organization with specific amino acid residues

phosphorylation of which affects nuclear translocation. ERK2, extracellular regulated kinase2; bHLH, basic helix loop helix domain; NLS, nuclear localization

sequence; PAS, Per-ARNT-Sim domain; N-TAD, N-terminal transactivation domain; ID, inhibitory domain; C-TAD, C-terminal transactivation domain; numbers indicate

the amino acid residue range of the respective domain.

ERK1/2 activity was not increased in hypoxic growth-arrested
Chinese hamster fibroblast CCL39 cells (Richard et al., 1999)
implying that an activation of either ERK1 or ERK2 in response
to hypoxia as well as their involvement in HIFα regulation may
be cell type specific. Accordingly, the MEK1 inhibitor PD98059
suppressed hypoxia-mediated HIF-1α transcriptional activity in
Hep3B and HMEC-1 cells (Salceda et al., 1997; Minet et al.,
2000) whereas the same inhibitor was ineffective in fibroblasts
exposed to hypoxia (Agani and Semenza, 1998). However, in
all these studies direct mapping of the involved residues within
HIFα proteins were not performed; thus only an approximate
localization can be given (Figure 4).

In addition to ERK1/2, protein kinase CK2 (formerly known
as casein kinase II) has important functions in the regulation
of various cellular processes (Niefind et al., 2009; St-Denis and
Litchfield, 2009; Montenarh, 2010). CK2 was shown to affect
HIF-1α transcriptional activity (Mottet et al., 2005; Hubert et al.,
2006); however, the exact mechanisms and CK2 phosphorylation
sites in HIF-1α were not determined; likely CK2-mediated
HIF-1α phosphorylation prevents recruitment of cofactors like
CBP/p300 or stimulates HIF-1α degradation in an indirect
manner (see below).

Together, these findings indicate an interrelation between
hypoxia, ERK1/2, and CK2 signaling pathways in particular for
the regulation of HIF-1α transactivity.

KINASES REGULATING HIFα ABUNDANCE
IN AN INDIRECT MANNER

In addition to being a direct substrate for kinases, HIFα appears
to be regulated via phosphorylation of HIFα regulating proteins
in an indirect manner.

The protein kinase A (PKA) is among the best characterized
kinases and was suggested to be involved in HIF-1α
phosphorylation under intermittent hypoxia in EAhy926
endothelial cells (Toffoli et al., 2007). However, from that study
it remained open whether or not HIFα proteins can be direct
substrates for that kinase since no functional phosphorylation
site(s) was identified yet.

As mentioned above, protein kinase CK2, a constitutive
serine/threonine kinase which interestingly shows high CK2
activity in most human cancers can indirectly contribute to HIF-
1α degradation. Thereby, CK2 phosphorylates S33, S38, and S43

within VHL. Mutation of the CK2 sites within VHL or inhibition
of VHL phosphorylation with CK2 inhibitors increased VHL
protein half-life and promoted degradation of HIF-1α (Ampofo
et al., 2010). At the same time inhibited CK2 could also sequester
p53 and reduce the transcriptional activity of p53. Together, this
indicates that the indirect action of CK2 on HIF-1α and p53 can
contribute to the survival of tumor cells (Figure 5).

One of the best known kinase pathways affecting HIFα
in an indirect manner by regulating HIFα protein synthesis
involves the mammalian target of rapamycin (mTOR). The
mTOR is a serine/threonine protein kinase [also known as FK506
binding protein 12-rapamycin associated protein 1 (FRAP1)]
(Brown et al., 1994; Moore et al., 1996) that apart from
cell growth, cell proliferation, cell motility, cell survival, and
transcription contributes to the regulation of protein synthesis
in response to nutrients, hormones, growth factors, cytokines,
and stress (for review see Hay and Sonenberg, 2004; Beevers
et al., 2006; Dunlop and Tee, 2009). Thereby mTOR regulates
translation primarily via phosphorylation of eukaryotic initiation
factor 4E-binding protein 1 (4E-BP1) and ribosomal S6 kinase
(S6K) (reviewed by Hay and Sonenberg, 2004; Inoki et al.,
2005). By binding to translation initiation factor 4E (eIF4E)
4E-BP1 prevents interaction of eIF4E with other members
of the translation initiation complex and inhibits ribosomal
complex formation at the 5′-cap mRNAs. The phosphorylation
of 4E-BP1 by mTOR results in its dissociation from eIF4E
and in activation of mRNA translation (reviewed by Hay and
Sonenberg, 2004; Inoki et al., 2005). In addition, phosphorylation
of ribosomal S6K promotes translation of mRNAs containing
a terminal oligopyrimidine tract (5′TOP) in their 5′-UTR
(Figure 5).

Two major multiprotein complexes can be distinguished in
whichmTOR contributes to signaling; (i) the rapamycin-sensitive
mTOR complex 1 (mTORC1) and (ii) the rapamycin-insensitive
mTOR complex 2 (mTORC2) (Wullschleger et al., 2006). Several
excellent reviews discussing in detail the composition of the
TOR complexes and the impact of the participating proteins
for signaling are available (see Hay and Sonenberg, 2004;
Dunlop and Tee, 2009) and therefore we limit ourselves to
the issue of HIFα regulation. While mTORC1 appears to be
involved in nutrient/energy/redox sensing, mTORC2 seems to
be mainly regulated by insulin, growth factors, serum and
nutrients (Kim et al., 2003; Sarbassov et al., 2004; Frias et al.,
2006).
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FIGURE 4 | Kinases involved in regulating HIF-1α transactivity. Scheme of HIF-1α and its domains in which phosphorylation has been shown to affect

transactivity. P, represents a phosphorylated amino acid, no specific single residues sites have been mapped. ERK1/2, extracellular regulated kinase1/2; bHLH, basic

helix loop helix domain; NLS, nuclear localization sequence; PAS, Per-ARNT-Sim domain; N-TAD, N-terminal transactivation domain; ID, inhibitory domain; C-TAD,

C-terminal transactivation domain; numbers indicate the amino acid residue range of the respective domain.

FIGURE 5 | Kinases contributing to HIF-1α regulation in an indirect manner. In response to various hormones, growth factors, cytokines, oncogenes, and

stress phosphorylation events can be initiated which contribute to the regulation of HIF-1α in an indirect manner. These can influence HIF-1α mRNA translation, the

interaction with cofactors or components of the protein degradation machinery like HDM2 and VHL. Some kinases may act in both ways, however, the knowledge

about the exact mechanisms is limited. See text for more details.

The participation of mTOR in the regulation of HIF-1α
protein translation was first shown in a study with breast cancer
cells where stimulation with heregulin and HER2 signaling
increased the rate of HIF-1α synthesis in a rapamycin-dependent
manner (Laughner et al., 2001). Other studies in HUVEC and

HeLa cells (Kim et al., 2009) supported that view and also showed
that not only HIF-1α but also HIF-2α was found to be regulated
by mTOR signaling, though HIF-1α expression seems to be
regulatable by TORC1 and TORC2 whereas HIF-2α expression
is primarily dependent on TORC2 (Toschi et al., 2008).
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Hypoxia has been reported to inhibit mTOR (Arsham
et al., 2003) via induction of the hypoxia-responsive gene
DDIT4 (Dig2/RTP801/REDD1) and subsequent formation of a
complex consisting of the tuberous sclerosis tumor suppressor
proteins TSC1 (hamartin) and TSC2 (tuberin) (Brugarolas et al.,
2004). The TSC1/TSC2 complex inhibits primarily mTORC1
signaling; destruction/inhibition of the TSC1/2 complex due
to growth factors leads to activation of mTORC1 signaling
(Hay and Sonenberg, 2004). For removal of TSC2 different
kinase pathways, including PI3K/AKT, and ERK1/2 appear to
be important (Hay and Sonenberg, 2004). Once phosphorylated,
TSC2 can be captured by 14-3-3 proteins, thus leaving the
complex with TSC1 and rendering mTORC1 active (Li et al.,
2003).

Reciprocally, the hypoxia mediated inhibition of mTORC1
signaling (Brugarolas et al., 2004) appeared to be the result of a
dissociation of TSC2 from the growth factor stimulated TSC2/14-
3-3 complex. Thereby, hypoxic induction of DDIT4 seemed to
be critical. Due to the ability of DDIT4 to bind 14-3-3 proteins
this resulted in a release of TSC2 with formation of TSC1/2
complexes which subsequently inhibited of mTORC1 (DeYoung
et al., 2008).

Thus, DDIT4 and TSC1/TSC2 formation could decrease
mTOR activity and would reduce HIF-1α translation under
hypoxia. However, under hypoxia when the cellular protein
translation is generally suppressed, HIF-1α is still translated.
This occurs likely by a mechanism involving the 5′-UTR of the
HIF-1α mRNA which contains a terminal oligopyrimidine tract
that enables HIF-1α translation even when mTOR is inhibited
(Laughner et al., 2001; Thomas et al., 2006). Like with mTOR,
ATR (for ataxia telangiectasia and Rad3 related kinase) appeared
also to regulate HIF-1α translation in a region located within the
HIF-1α ORF (Fallone et al., 2013).

The involvement of mTOR in HIF-1α translation was
challenged in studies showing that rapamycin decreased hypoxia-
induced HIF-1α stability at the ODD in PC-3 cells (Hudson
et al., 2002; Dayan et al., 2009). Further, mTORC1 appeared
to act also directly on HIF-1α since an mTOR signaling motif
(FVMVL) modulating recruitment of CBP/p300 was found
immediately C-terminal of the PAS-A domain in HIF-1α (Land
and Tee, 2007). Thus, although mTOR signaling appears to affect
HIFα abundance in a more indirect manner, it appears that
also direct interactions are possible which may depend on the
stimulus.

Growth factor stimulation and hence kinase signaling is
not only important for mTOR signaling but also for crosstalk
between the HIF-1α and the p53 network (Fukuda et al., 2002;
Bardos et al., 2004). The murine double minute-2 (mdm2)
and its human ortholog HDM2 protein are negative regulators
of the p53 tumor suppressor protein (for review see Eischen
and Lozano, 2009; Kruiswijk et al., 2015). In addition to p53,
HDM2, which is a direct target of PKB/Akt (Ashcroft et al.,
2002), was shown to regulate HIF-1α expression in response
to IGF-1 in p53-null mouse embryo fibroblasts (p53−/− MEFs)
(Bardos et al., 2004). Moreover, this appeared to involve protein
synthesis and HDM2 phosphorylation at S166 by PKB/Akt
(Bardos et al., 2004) suggesting that the PKB/Akt pathway also

affects HIF-1α synthesis via HDM2 in a p53 independent manner
(Figure 5).

Altogether, kinases regulating HIFα synthesis or degradation
by acting on critical regulators of these processes are important
mediators which interlink growth factor controlled pathways
with hypoxia signaling.

EXPLOITING KINASES AS UPSTREAM
REGULATORS OF HIF-1α IN CANCER
THERAPY

An impaired regulation of kinase signaling is associated with a
number of systemic diseases including cardiovascular diseases,
pulmonary diseases, Alzheimer’s disease, type 2 diabetes mellitus,
and last but not least cancer. In particular, intermittent
hypoxia in pre-malignant lesions and HIF-1α were proposed
to contribute to the reprogramming of metabolism toward
permanent conversion of glucose to lactate even in aerobic
conditions (Gatenby and Gillies, 2004) known as the “Warburg
effect,” mitochondrial suppression as well as to acidosis. This
provides a growth advantage, and an altered response to
growth factors which are major actors on kinase signaling
pathways. Thus, the interconnection of kinase signaling pathways
and hypoxia signaling, i.e., HIFα regulation, is of high
therapeutic interest. This is most obvious in cancer therapy
where different kinase inhibitors are in clinical use and where
severe hypoxic tumors are more resistant to chemotherapy and
radiation. Interestingly the most successful kinase inhibitors
currently used in cancer therapy are tyrosine kinase inhibitors
like imatinib, gefitinib, and erlotinib. Tyrosine kinases are
often found to act as receptors for hormones and growth
factors and therefore they appear often to have an effect
also on HIF-1α which is either direct or indirect (Figure 5).
In addition to the tyrosine kinase inhibitors, other small
molecules with the potential to act on MAPK, mTOR, or
Akt pathways are under heavy investigation. Interestingly, the
inhibitor of pyruvate dehydrogenase kinase II, dichloroacetate,
has been shown to reactivate mitochondria via inhibition of
HIF1α involving a PHD-dependent mechanism and a PHD-
independent mechanism, involving activation of p53 and GSK3β
(Sutendra et al., 2013).

However, these inhibitors are often not entirely specific
but rather selective which explains their variety of actions as
well as their effectiveness also in other disorders, including
immunological, neurological, metabolic, and infectious diseases.
Although this is already an advantage, it is difficult to predict to
which extent kinase inhibitors could be made selective or even
specific to target the HIF pathway. This is not only complicated
by the fact that the respective kinase having a dominant role in
HIFα regulation needs to have a role in the particular tumor
entity. Thus, significant challenges remain. In addition to quick
evolvement of tumors resistant to kinases inhibitors, appropriate
multi-targeted inhibitors or combinations appear currently to be
of advance in clinical therapy. Further, more understanding of the
kinase inhibitor specificities toward HIF-1α, metabolic and toxic
side effects would be needed to optimize cancer therapy.
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CONCLUSION

Detailed knowledge about the kinase pathways and their effect
on HIFα regulation is essential to optimize and to develop highly
efficient cancer therapies. It is now especially necessary to gather
more knowledge about the involvement of kinase pathways for
the regulation of HIF-2α and HIF-3α since most of the data so
far, with respect to kinases andHIFα regulation, have been gained
from studies on HIF-1α. Given that certain aspects between HIF-
1α and HIF-2α as well as the occurrence of several splice variants
of HIF-3α point to more different roles of each HIFα protein in a
number of processes, it is obvious that this knowledge would be
beneficial for therapeutic purposes.

Overall, the HIFα system appears to be a central integrator
of various signals coming from different pathways. Thereby it
displays an enormous plasticity being regulated by a number of

post-translational modifications, among them phosphorylation,
either alone or in combination.
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