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Studies of the mesocorticolimbic reward system (MCLS) and its relationship with
impulsivity and substance use disorders (SUD) have largely focused on individuals from
non-minority backgrounds. This represents a significant gap in the literature particularly
for minority populations who are disproportionately affected by the consequences
of SUD. Using resting-state functional MRI (fMRI), we examined the coherence of
neural activity, or functional connectivity, within the brain’s MCLS in 28 young adult
Puerto Ricans (ages 25–27) who were part of a population-based cohort study. Half
of the sample lived in San Juan, Puerto Rico; the other half lived in the South
Bronx, New York. At each of the two sites, half of the sample had a history
of a SUD. Relative to those without SUD, individuals with SUD had decreased
connectivity between the nucleus accumbens (NAcc) and several regions within the
MCLS. This finding was true irrespective of study site (i.e., San Juan or South
Bronx). Reduced connectivity within the MCLS was also associated with higher self-
reported levels of impulsivity. Path analysis suggested a potential mechanism linking
impulsivity, the MCLS, and SUD: impulsivity, potentially by chronically promoting
reward seeking behaviors, may contribute to decreased MCLS connectivity, which
in turn, may confer vulnerability for SUD. Expanding upon prior studies suggesting
that alterations within the MCLS underlie SUD, our findings suggest that such
alterations are also related to impulsivity and are present in a high-risk young minority
population.

Keywords: functional MRI, mesocorticolimbic system, connectivity, substance use disorder, nucleus accumbens,
impulsivity

INTRODUCTION

MRI studies suggest that substance use disorders (SUD) and impulsivity are both associated
with atypical neural connections within the brain’s mesocorticolimbic reward system (MCLS;
Gu et al., 2010; Tomasi et al., 2010; Upadhyay et al., 2010), which includes the midbrain’s
ventral tegmental area (VTA), the nucleus accumbens (NAcc), and the orbitofrontal cortex (OFC).
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However, the inter-relationships between theMCLS, impulsivity,
and SUD remain poorly characterized.

Substance use is associated with increased extracellular
dopamine (DA) within the MCLS (Volkow et al., 2007).
Increased dopaminergic outflow from the VTA to the NAcc is
thought to encode stimuli associated with novel and unexpected
outcomes, such as illicit drugs and their related euphoric effects.
Encoding stimuli (e.g., a drug of abuse) with a reinforcer (e.g.,
the euphoric response to the drug), at least in part, underlies
reinforcement learning and motivates behaviors to obtain more
of the desired outcome. Because of the relationship between
the MCLS and reinforcement learning, numerous neuroimaging
studies have examined the MCLS in individuals with SUD.

Despite the many advances made by prior neuroimaging
studies of the MCLS, important questions persist. Altered
connectivity of the MCLS has been associated both with SUD
and impulsivity, and behavioral research similarly indicates an
association between SUD and impulsivity (Volkow et al., 1999;
Lejuez et al., 2002; Posner et al., 2009, 2014b). However, the
inter-relationships across these three variables need to be better
understood. As suggested elsewhere, by chronically promoting
reward-seeking behavior, impulsivity may alter the MCLS and
these alterations in the MCLS may, in turn, confer risk for SUD
(Posner et al., 2013; Plichta and Scheres, 2014). However, to
develop a clearer mechanistic understanding, further clarity is
still needed on how impulsivity, SUD, and MCLS connectivity
are inter-related.

Also of relevance, knowledge about connectivity within the
MCLS and its relationship with SUD are based on studies
focused on non-minority, highly selected populations in the
US (Pierce and Kumaresan, 2006; Gu et al., 2010; Tomasi
et al., 2010; Upadhyay et al., 2010). MCLS connectivity and its
relationship with SUD has never been examined in a minority
population. Given that the determinants (Clark et al., 2015)
and consequences (Kakade et al., 2012) of SUD may differ
depending on one’s racial/ethnic and socio-cultural background,
the neural underpinnings of SUD could arguably differ
across racial/ethnic groups. For example, processes underlying
reinforcement learning and substance use may differ when the
use of illegal substances can have dramatic consequences (e.g.,
arrest), as is more common among minorities relative to White
youth (Kakade et al., 2012). Puerto Ricans, the second largest
Latino subgroup in the US, have the highest rates of SUD among
all US Latino subgroups (Alegria et al., 2006, 2007; Caetano et al.,
2009). However, MCLS connectivity in Puerto Rican individuals
with SUD has not been studied and it has scarcely been examined
in Latinos in general.

We examined the MCLS and its relationship with SUD in
individuals of Puerto Rican descent by studying participants
from a large, epidemiological cohort study of Puerto Ricans
living in the South Bronx, New York and the metropolitan area
in San Juan, Puerto Rico. Toward this end, resting fMRI scans
were obtained and analyzed from 28 young adult Puerto Ricans
(ages 25–27). Half of the sample, living in San Juan metropolitan
area, was scanned at the University of Puerto Rico (UPR). The
other half of the sample, living in the Bronx, New York, was
scanned at the New York State Psychiatric Institute (NYSPI).

Both sites used the same GE 3-Tesla MRI platform (see below,
‘‘MRI Sequences’’ Section). At each site, half of the sample had
a history of SUD. We hypothesized that relative to individuals
without SUD (SUD−), those with SUD (SUD+) would have
altered functional connectivity within the MCLS. Lastly, we
conducted exploratory analyses to broaden our understanding
of the relationship between MCLS connectivity, impulsivity, and
SUD. Given the well-documented relationship between SUD and
impulsivity (de Wit, 2009), we explored whether self-reported
measures of impulsivity were associated withMCLS connectivity.
Lastly, we used path analysis to explore a potential mechanism
relating impulsivity, MCLS connectivity, and SUD.

MATERIALS AND METHODS

The Institutional Review Boards of theNYSPI andUPR approved
the study procedures. All participants provided written informed
consent.

Participants
MRI data were obtained and analyzed from 28 young adults
between the ages of 25 and 27 years (mean = 25.70 ± 0.67)
who were recruited from a large, epidemiological study of Puerto
Ricans in the South Bronx, New York and San Juan, Puerto
Rico (Bird et al., 2006). Participants across the two sites were
group-matched on age, sex, and presence of SUD and comorbid
psychiatric disorders (Table 1). Diagnostic interviews, including
assessments of SUD and comorbid psychiatric conditions, were
conducted using the English or Spanish schedules of the
World Health Organization (WHO) Composite International
Diagnostic Interview Version (CIDI; Kessler and Ustün, 2004;
Tobacco, Alcohol Use and Illegal SU (includes prescription
drugs) modules). Clinical and demographic data are provided in
Table 1.

MRI Sequences
Images were acquired at NYSPI and UPR. Both sites
used the same MRI platform: GE MR750 3.0 Tesla whole
body scanner. T1-weighed sagittal localizing images were
acquired, followed by a high-resolution anatomical image for
coregistration with axial echoplanar images. Axial echoplanar
images (TR = 2200 ms, TE = 30 ms, 90◦ flip angle, receiver
bandwidth = 62.5 kHz, single excitation per image, slice
thickness = 3.5 mm, no gaps, 24 × 24 cm field of view,
64 × 64 matrix) were obtained to provide an effective resolution
of 3.75 × 3.75 × 3.5 mm and whole-brain coverage. For
resting-state image acquisition, participants were instructed to
remain still with their eyes closed and to let their minds wander
freely. Two 5-min resting-state scans were obtained for each
participant.

Image Processing
Standard image preprocessing methods were used, employing
SPM8 Software1 with the conn_toolbox2 for functional

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.nitrc.org/projects/conn
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TABLE 1 | Sample demographics.

SUD+ SUD− Test Statistic p
(n = 15) (n = 13) (df, n) value

Age 25.60 ± 0.63 25.77 ± 0.73 t(26,28) = 0.660 p = 0.515
Sex 10 M 7 M X2

(1,28)
= 0.480 p = 0.700

5 F 6 F
Scan site 8 NYSPI 7 NYSPI X2

(1,28)
= 0.001 p = 1.000

7 Puerto 6 Puerto
Rico Rico

Types of SUD 1 AlD N/A N/A N/A
8 AlA
4 DrD
1 DrA

1 AlA and DrD
Comorbidity 8 No 9 No X2

(1,28)
= 0.738 p = 0.460

7 Yes 4 Yes
Types of comorbid 1 MDD 2 MDD N/A N/A
disorders 3 BAD 1 GAD

1 GAD 1 PTSD
1 PTSD

1 BAD and
PTSD

Education 14 HS or 13 HS or X2
(1,28)

= 0.912 p = 1.000
equivalent equivalent

BIS total impulsivity 63.47 ± 8.84 60.92 ± 12.91 t(26,28) = −0.615 p = 0.544

M, male; F, female; NYSPI, New York State Psychiatric Institute; AlD, alcohol

dependence; AlA, alcohol abuse; DrD, drug dependence; DrA, drug abuse; MDD,

Major depressive disorder; BAD, Bipolar affective disorder; GAD, Generalized

anxiety disorder; PTSD, Post-traumatic stress disorder; HS, high school; BIS,

Barratt impulsivity scale; N/A, not applicable.

connectivity analysis (Posner et al., 2013, 2014c). The functional
images were slice time and motion corrected, coregistered with a
high-resolution anatomical scan, normalized into the Montreal
Neurological Institute (MNI) space, resampled at 2 mm3,
and smoothed with a Gaussian kernel of 6 mm3 full width at
half maximum (FWHM; Friston et al., 1995). Connectivity
preprocessing procedures followed the component-based
noise correction method described elsewhere (Behzadi et al.,
2007) to minimize non-neural influences on fMRI signal. Four
participants were removed from the MRI analyses because of
technical issues (e.g., excessive head motion, unable to tolerate
MRI scan) leaving a sample of 28 participants for the MRI
analyses.

Following preprocessing, the resting-state fMRI time series
data were correlated voxel by voxel for each participant
across the complete resting-time series. Fisher z transformation
was applied. We generated connectivity maps for each subject
with the seed region in the nucleus accumbens (NAcc) bilaterally.
For the NAcc seeds, we created bilateral spherical masks
(radius = 4 mm) centered on the stereotactic coordinates
(MNI coordinates: Left NAcc: x, y, z = −9, 9, −8; Right
NAcc: x, y, z = 9, 9, −8) as delineated in prior resting state-
functional connectivity MRI (rs-fcMRI) studies (Di Martino
et al., 2008; Posner et al., 2014a). We chose the NAcc as the
seed region because it is a central node within the MCLS, and
because prior research indicates that this seed is effective in
assessing MCLS connectivity (Posner et al., 2013; Cha et al.,
2015).

Hypothesis Testing
To test our hypothesis that relative to SUD− individuals, SUD+
individuals would have altered functional connectivity within
the MCLS, we entered the seed-based connectivity maps into
second-level, random-effects general linear models (GLM) with
Group as the single factor with two levels (SUD+ and SUD−),
and comorbid disorders as a covariate (dummy coded 1 or 0).
Given our a priori hypothesis regarding MCLS connectivity,
we anatomically restricted these group comparisons to the
following MCLS regions: OFC, amygdala, hippocampus, NAcc,
and midbrain/VTA. Masks of these regions were derived
from the WFU_pickatlas (Maldjian et al., 2003). Exploratory
whole-brain analyses were also conducted (see Supplementary
Material).

To test whether the relationship between SUD and altered
MCLS connectivity differed at the two sites, we conducted
a moderator analysis. The dependent variable was MCLS
connectivity, and the independent variables were Group (SUD+
and SUD−), Site (South Bronx and San Juan), and a Group by
Site interaction term.

Exploratory Analyses
All exploratory analyses were limited to MCLS regions in which
significant differences in functional connectivity were detected
between SUD+ and SUD− participants during hypothesis
testing.

Relationship with Impulsivity
We examined associations between a self-report measure
of impulsivity (Barratt Impulsiveness Scale, BIS-11(Barratt,
1994)) and MCLS connectivity. For regions in which MCLS
connectivity differed between SUD+ and SUD− participants, we
calculated partial correlations between: (i) MCLS connectivity
and (ii) impulsivity, while controlling for site and group (SUD+
and SUD−).

Path Analysis
We used path analysis (Hayes, 2013) to further explore
associations between MCLS connectivity, impulsivity, and SUD.
Although path analyses can imply causal relationship between
the variables of interest, our cross-sectional study cannot impute
causality. Thus these analyses and results should only be
interpreted as supportive, or preliminary, in nature.

Correction for Multiple Statistical
Comparisons
We corrected for multiple statistical comparisons. We used the
small volume correction function within SPM with the following
regions derived from WFU_pickatlas (Maldjian et al., 2003):
OFC, amygdala, parahippocampal gyrus, and midbrain. Clusters
with a family wise error corrected alpha of <0.05 (pfwe < 0.05)
were considered statistically significant.

Head Motion during fMRI Scanning
As recommended elsewhere (Power et al., 2011), we examined
the potential confounding influence of head motion to our
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FIGURE 1 | Resting-state functional connectivity maps with the seed in the left nucleus accumbens (NAcc). In individuals with and without a substance
use disorder (SUD+ and SUD−), the NAcc seed was positively correlated with regions within the mesocorticolimbic system, including the medial orbitofrontal cortex
(OFC), amygdala and parahippocampal gyrus (Amy/PG), and midbrain/ventral tegmental area (MB). Relative to SUD− participants, SUD+ participants showed
decreased connectivity between the NAcc and the OFC and Amy/PG (pfwe < 0.05). Red indicates positive connectivity. Blue indicates connectivity that is reduced in
SUD+ relative to SUD−.

resting state fMRI data by calculating root mean square (RMS)
and peak/average (across volumes) Framewise Displacement
(FD). These calculations were based on each individual’s
six head alignment parameters generated by SPM during
its realignment procedure. We differentiated the six head
realignment parameters across frames, and then calculated
instantaneous head motion as a scalar in each frame, using
the following formula: FDi = |∆dix| + |∆diy| + |∆diz| +
|∆αi| + |∆βi| + |∆γi|, where ∆dix = d(i − 1)x − dix, and
similarly for the other rigid body parameters [dix diy diz αi
βi γi]. We converted rotational displacements from degrees
to millimeters by calculating displacement on the surface of
a sphere of radius 50 mm. Group differences in the head
motion parameters were tested using the non-parametric Mann-
Whitney U test. There were no group differences in any of the
head motion parameters (p’s > 0.2; Supplementary Figure 1)
and head motion was minimal in both groups: RMS in SUD+
group = 0.44 ± 0.3 mm; RMS in SUD− group = 0.42 ± 0.5 mm;
mean peak FD in SUD+ group = 0.29 ± 0.2 mm; mean peak

FD in SUD− group = 0.23 ± 0.4 mm). Motion parameters were
included as nuisance regressors both at the subject- and group-
level.

RESULTS

Hypothesis Testing
In participants with and without SUD, the seed-based
connectivity maps generated from the left and right NAcc
showed connectivity with regions within the MCLS including
the medial OFC, midbrain/VTA, parahippocampal gyrus, and
amygdala (Figure 1).

Left NAcc
Relative to SUD− participants, SUD+ participants showed
significantly reduced connectivity of the left NAcc with
the left OFC, left amygdala, and left parahippocampal
gyrus (Figure 1; Table 2). SUD+ participants also showed
reduced connectivity between the left NAcc and the right
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TABLE 2 | MCLS connectivity.

MNI coordinates

Seed Region x y z Hemisphere Cluster size (voxels) peak t pfwe

Left nucleus accumbens SUD(−) > SUD(+)
Amygdala −28 0 −28 L 276 4.49 0.003

Orbitofrontal cortex −2 38 −20 L 75 3.69 0.04
Parahippocampal gyrus −24 −34 −16 L 226 4.27 0.02
Parahippocampal gyrus 30 −36 −6 R 155 3.67 0.08∗

SUD(+) > SUD(−)
N/A

Right nucleus accumbens SUD(−) > SUD(+)
Parahippocampal gyrus −20 −42 −2 L 331 5.04 0.003
Parahippocampal gyrus 24 −36 −8 R 133 3.97 0.04

Midbrain/VTA −4 −26 −8 R/L 154 3.48 0.1∗

Amygdala −30 0 −26 L 323 5.21 0.1∗

SUD(+) > SUD(−)
N/A

MCLS, mesocorticolimbic system. L, left; R, right; R/L bilateral; N/A, not applicable; MNI, Montreal Neurological Institute. ∗Did not meet statistical threshold of pfwe < 0.05.

parahippocampal gyrus, but this effect was subthreshold
(pfwe = 0.08). There were no regions in which SUD+ participants
showed increased MCLS connectivity relative to SUD−

participants.

Right NAcc
Relative to SUD− participants, SUD+ participants showed
reduced connectivity of the right NAcc with left and right
parahippocampal gyrus (Table 2). SUD+ participants also
showed reduced connectivity, though subthreshold (p’sfwe = 0.1),
between the right NAcc and the left amygdala, as well as between
the right NAcc and the midbrain/VTA. There were no regions in
which SUD+ participants showed increased MCLS connectivity
relative to SUD− participants.

Effects of Site
For regions identified during hypothesis testing as differing
between SUD+ and SUD− participants, we examined potential
effects of site (i.e., South Bronx and San Juan). Neither a
main effect of site, nor the group (SUD+ vs. SUD−) by
site interaction was significant (p > 0.3). For each site, bar
graphs and statistical tests are provided in the Supplemental
Materials.

Exploratory Analyses
All exploratory analyses were restricted to regions identified
during hypothesis testing as differing significantly between
SUD+ and SUD− participants.

Relationship with Impulsivity
While controlling for site and group (SUD+ or SUD−),
we found that impulsivity correlated inversely with the
connection strength between the left NAcc and the left
OFC (r = −0.45 p = 0.02, Figure 2). The finding was
significant based on Pearson and Spearman rank correlations,
and remained significant after excluding a participant
with an impulsivity score of 95 (2 SD greater than the

group mean). We did not find significant associations
between impulsivity and the other MCLS regions for
which connectivity differed between SUD+ and SUD−

participants.

Path Analysis
Using path analysis (Hayes, 2013), we found support for a
potential mechanism relating impulsivity, MCLS connectivity,
and SUD. This analysis was consistent with a model suggesting
that impulsivity may contribute to the development of SUD
through its effects on the MCLS (Posner et al., 2013; Plichta
and Scheres, 2014). In the first linear regression model,
we found that impulsivity was significantly associated with
low MCLS connectivity (left NAcc − left OFC connection
strength; beta = −0.006, t = −2.13, p = 0.043). In the second
linear regression model, we found that while controlling for
impulsivity, MCLS connectivity was a significant predictor of
SUD (−14.37, z = −2.27, p = 0.024, Wald = 5.13). Lastly,
we used bias corrected bootstrapping (Hayes, 2013) to confirm
the significance of the indirect effect of impulsivity on SUD
as mediated by MCLS connectivity (coefficient = 0.081; 95%
CI = 0.013–0.522, Figure 3).

DISCUSSION

This is the first MRI study to examine neural correlates of SUD
within a population-based sample of Puerto Rican young adults
(South Bronx, NY and San Juan, Puerto Rico). First, we found
that relative to those without SUD, individuals with SUD have
decreased connectivity between the NAcc and several regions
within the MCLS. Second, we found that reduced connectivity
between specific MCLS regions (the left NAcc and the left
OFC) was associated with higher levels of impulsivity. Lastly,
path analysis offered initial support for a mechanistic account
of these findings: impulsivity may contribute to decreased
MCLS connectivity, which in turn, may confer vulnerability for
developing SUD.
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FIGURE 2 | (A) The cluster in blue depicts the region within the OFC, in which connectivity with the left NAcc is reduced in participants with a SUD+ vs. SUD−.
(B) The connection strength between the left NAcc and the OFC correlated with impulsivity, as measured by the Barratt Impulsiveness Scale, BIS-11 (Barratt, 1994;
r = −0.45 p = 0.02). This partial correlation controlled for site and group (SUD+ or SUD−). In the scatterplot, blue and red diamonds represent SUD− and SUD+
participants, respectively.

FIGURE 3 | Path analysis indicated that impulsivity is related to the
likelihood of participants having a SUD and to the mesocorticolimbic
system (MCLS) connectivity. In the first linear regression model, we found
that impulsivity was significantly associated with decreased MCLS connectivity
(beta = −0.006, t = −2.13, p = 0.043). In the second linear regression model,
we found that while controlling for impulsivity, MCLS connectivity was
significantly associated with SUD (beta = −14.37, z = −2.27, p = 0.024,
Wald = 5.13). Lastly, we used bias corrected bootstrapping to confirm the
significance of the indirect effect of impulsivity on SUD in the presence of
decreased MCLS connectivity (coefficient = 0.081; 95% CI = 0.013–0.522).

Animal studies using microdialysis techniques indicate that
addictive drugs increase extracellular concentrations of DA in
the NAcc (Hurd et al., 1989; Pontieri et al., 1995). Human
neuroimaging similarly suggests that addictive drugs, such as
cocaine, increase extracellular DA within the MCLS, as indexed
by decreases in striatal [11C]raclopride binding (Volkow et al.,
2009). Cocaine-induced increases in striatal DA correlate with

subjective reports of the euphoric effects of the drug (Volkow
et al., 2004). Over time, persistent drug abuse disrupts the
MCLS DA pathways. For example, individuals with SUD show
attenuated DA responses to rewarding stimuli that are not drug-
related, and a concomitant reduction in MCLS DA receptors
(Volkow et al., 2004). Consistent with reports of attenuated
MCLS DA responses in individuals with SUD, we found that
individuals with SUD have reduced functional connectivity
within theMCLS. Similar findings of reducedMCLS connectivity
in SUD have been reported elsewhere (Gu et al., 2010; Tomasi
et al., 2010; Upadhyay et al., 2010; Wang et al., 2010), although
increased MCLS connectivity has also been reported (Ma et al.,
2010; Wilcox et al., 2011). Youth at high risk for SUD based on
family history may also have disrupted MCLS connectivity with
some research suggesting decreased connectivity (Cservenka
et al., 2014), and others suggesting increased connectivity
(Weiland et al., 2013). Differences in findings (increased vs.
decreased connectivity) could reflect heterogeneous effects of
chronic vs. acute drug intake, differences in substances of abuse,
and/or MRI methodologies (e.g., seed-based vs. independent
component analysis; Sutherland et al., 2012). These disparate
findings notwithstanding, our data are consistent with prior
studies suggesting that altered connectivity within MCLS may
represent an important neural correlate of SUD.

Our findings add to the growing literature on MCLS
connectivity and SUD in important ways. Ours is the first study
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to examine functional connectivity from a non-referred sample
of Puerto Rican young adults. Consistent with prior reports from
selected, non-minority populations, for whom the substance
use experience may involve different reward and motivational
processes, we found evidence of widespread reductions in MCLS
connectivity in SUD+ individuals. MCLS connectivity may
therefore represent a neural correlate of SUD that is generalizable
to a high-risk minority population. In addition, we found that
reduced MCLS connectivity in SUD participants was consistent
irrespective of the site (i.e., South Bronx, NY or San Juan, Puerto
Rico, USA). The consistency of the findings across the two
study sites suggests that detecting altered MCLS connectivity in
individuals with SUD is robust to differences inMRI sites, at least
when both sites use the same MRI platform.

Our path analysis provides initial support for a mechanistic
account of the relationship between SUD, MCLS connectivity,
and impulsivity. Our findings suggest that impulsivity, possibly
by chronically prompting behaviors aimed at obtaining short-
term rewards, may contribute over time to reduced MCLS
connectivity. Reduced MCLS connectivity, in turn, may increase
the likelihood of developing SUD. A similar hypothesis relating
the chronic effects of impulsivity to the functioning of the
MCLS has been put forward with regards to ADHD (Plichta
and Scheres, 2014), an impulse-control disorder that confers risk
for the development of SUD. It is worth noting, however, that
our data were cross-sectional in nature, and thus we cannot
exclude hypotheses with alterative causal implications. In other
words, our data are equally supportive of one model (Impulsivity
leads to decreased MCSL connectivity and thereby contributes
to SUD) as of a second model (SUD leads to decreased MCLS
connectivity and thereby contributes to impulsivity). Although
our cross-sectional data are agnostic regarding the relative
validity of either model, we maintain that the first model is
more likely based on theoretical grounds. Impulsivity is a trait
that typically begins in childhood, predating the onset of SUD
(de Wit, 2009). It is thus more parsimonious to hypothesize
that impulsivity contributes to the development of SUD, than
the reverse: SUD contributes to impulsivity. This theoretical
rationale aside, subsequent research using a longitudinal design
could more directly test these alternative hypotheses. Also,
animal models could use techniques such as optogenetics to
probeMCLS connectivity, while examining subsequent effects on
impulsivity and the self-administration of addictive drugs.

Limitations of the study are important to consider. First,
we stratified participants by SUD+ vs. SUD−, irrespective of
different types of SUD. It is possible that different substances,
when abused, confer unique connectivity disturbances; likewise,
it is also possible that the quantity or frequency of substance
use begets greater disruptions in MCLS connectivity. Subsequent
research might test these hypotheses by comparing connectivity
in individuals with different types of SUD and/or including
a detailed assessment of the quantity and frequency of
substance use. Second, several of the participants (n = 11)
had a comorbid disorder. Though controlling for psychiatric
comorbidities strengthened our hypothesis testing, we cannot
entirely exclude potential residual confounding effects. The
heterogeneity of our study sample in terms of comorbid disorders

and types of SUD limits its specificity. However, the sample
was selected from a large, population-based cohort. While this
sampling strategy invariably introduces heterogeneity, it also
promotes generalizability. Third, we used a subjective, self-
report measure of impulsivity (BIS-11) and not an objective,
neurocognitive measure. Although self-report measures may
be subject to reporting biases, they nonetheless may provide
a more robust assessment of trait-aspects of impulsivity than
do state-dependent neurocognitive measures (Stanford et al.,
2009). Fourth, our path analysis suggests that reduced MCLS
connectivity may represent a mechanism by which increased
impulsivity confers risk for SUD. However, we did not find
a direct relationship between increased impulsivity and SUD
(p > 0.5), though this relationship has been reported elsewhere
(Perry and Carroll, 2008). It is possible that additional variables,
such as access to illicit drugs, obscure a direct association between
impulsivity and SUD, while a mediation effect is still detectable
(Baron and Kenny, 1986). Fifth, the study involved two MRI
sites. Although both sites used the same MRI scanner and pulse
sequences, and comparable effects were seen at both sites, subtle
differences in MRI parameters cannot be entirely excluded. Last,
our sample was small, and as noted above, subtle effects of
socio-cultural context on MCLS connectivity may have gone
undetected.

In sum, our findings suggest that MCLS connectivity
may represent an important neurobiological correlate of
SUD not only among selected, non-minority populations, as
demonstrated previously, but also in a high-risk, community-
based, minority sample. Our findings also offer a potential
heuristic elucidating the relationship between SUD, MCLS
connectivity, and impulsivity. Although our study takes an
initial step toward examining potential ethnic differences in
relationship to the neurobiology of SUD, future studies with
larger and potentially more diverse samples might continue this
important line of inquiry.
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