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MAGE-A antigens are expressed in a variety of cancers of diverse histological origin 
and germinal cells. Due to their relatively high tumor specificity, they represent attractive 
targets for active specific and adoptive cancer immunotherapies. Here, we (i) review past 
and ongoing clinical studies targeting these antigens, (ii) analyze advantages and disad-
vantages of different therapeutic approaches, and (iii) discuss possible improvements in 
MAGE-A-specific immunotherapies.
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MAGe-A tUMOr-AssOciAteD ANtiGeNs

MAGE-A were the first human tumor-associated antigens identified at the molecular level (1). 
They belong to the larger family of cancer/testis antigens (CTA), whose expression is consistently 
detected in cancers of different histological origin and germinal cells (2). The MAGE-A sub-family 
includes 12 highly homologous genes located on chromosome Xq28 (3, 4). Specific gene products 
have been identified by immunohistochemistry in cancers of different histological origin, includ-
ing high percentages of non-small cell lung cancers (NSCLC), bladder cancers, esophageal and 
head and neck cancers, and sarcomas (5). These antigens are also frequently expressed in triple 
negative breast cancers (6), myeloma (7), and Reed–Sternberg cells (8) in Hodgkin’s disease, with 
the highest frequency being detected in synovial sarcoma (9). Among healthy tissues, the expres-
sion of specific members of the family has been observed in spermatogonia, placenta (10), and 
fetal ovary (11). However, recently, MAGE-A1 and -A12 genes have been shown to be expressed 
in CNS as well, as discussed below (12).

FUNctiONAL AsPects OF MAGe-A ANtiGeNs

Preferential intracellular location may be different for different antigens, e.g., mostly cytoplasmic for 
MAGE-A1, -A3, and -A4, but mostly nuclear for MAGE-A10 (13–16).

Functions are still unclear, although different studies have associated MAGE-A2, -A3/6, and -A9 
expression with pro-tumorigenic activities such as p53 dysregulation (17–19), enhanced tumor cell 
proliferation potential, or maintenance of a cancer-stem cell-like functional profile (20).

In a variety of tumors of different histological origin, a clear correlation between expression 
of MAGE-A antigens and poor prognosis has been observed. In this context, data on bladder 
cancer (21, 22), NSCLC (23, 24), head and neck cancers (25–27), and ovarian cancer (28, 29) 
have consistently been reported. Indeed, MAGE-A antigen expression, at the gene and protein 
level, has repeatedly been shown to be associated with widespread DNA demethylation frequently 
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observed in advanced cancers. On the same line, it has been 
shown to be inducible by demethylating agents, including 
chemotherapeutic compounds widely used in cancer treatment 
such as 5-aza-2′-deoxycytidine (30, 31), thus realistically envis-
aging the possibility of treatments combining chemotherapy and 
specific vaccination (32).

iMMUNOGeNicitY OF MAGe-A 
ANtiGeNs

Although peptides restricted by both HLA classes I and II have 
been identified (33), naturally occurring adaptive immune 
responses to MAGE-A antigens are usually characterized by a 
very low frequency of specific precursors (34) in both healthy 
donors and patients bearing cancers expressing them (35). 
However, responses to MAGE-A10 have been more frequently 
detected (36, 37). Responses in tumor-associated lymphocytes 
(TIL) have seldom been explored, but we have observed that 
MAGE-A10-specific CTL could be expanded from TIL infiltrat-
ing NSCLC displaying a high expression of the target antigen 
(38). On the other hand, CTL recognizing peptide motifs 
shared by multiple MAGE-A proteins may be generated from 
peripheral blood from patients and healthy donors (39). Most 
recently, tumor reactive CD8+ T  cells, isolated based on their 
expression of activation marker (PD-1) from peripheral blood 
of melanoma patients, have been shown to relatively frequently 
target MAGE-A antigens (40).

cLiNicAL triALs tArGetiNG MAGe-A 
ANtiGeNs

In the past 10  years (2006–2016), a total of 44 clinical trials 
could be identified in “https://clinicaltrials.gov” database using 
“MAGE-A” as keyword: a total of 16 phase 0 or I, 13 phase I/
II, 13 phase II, and 2 phase III studies. Regarding immunogen 
formulations, 16 studies utilized entire proteins in the presence 
or absence of adjuvants (41, 42), 11 used peptides (43–45), 6 used 
mRNA-transfected DC (46, 47), 1 was based on tumor cell lysate-
pulsed DC, 2 took advantage of recombinant viral vectors (48, 
49), and more recently, 6 and 2 trials, respectively, have focused 
on adoptive treatments by using specific T cell receptor (TCR)-
transduced T cells (12) or expanded CTL (50).

Efficacy clinical data published so far, from patients immu-
nized in the context of the 15 larger studies (phase II or III, 
Table S1 in Supplementary Material) mainly using MAGE-A 
protein (n = 11), do not appear to support significant clinical 
effectiveness (51).

Of interest, a chronological analysis of these 44 studies clearly 
underlines a strategy shift in the most recent years. Indeed, in 
the past 4  years, among the (only) 10 clinical studies initiated 
and including MAGE-A as antigens, there are no phase II or 
III studies. Moreover, the majority of the phase I or I/II studies 
are based on adoptive cell transfer. This “shift” in MAGE-A 
translational research strategy clearly results from the combined 
effect of “protein/peptide” efficacy failure and from the confi-
dence generated by new approaches focusing on personalized 

effector T-cell treatment. In addition, one should also mention 
the shift in target paradigm from classical TAA to neo-antigens 
also contributing to the decreased use of MAGE-A antigens.

MAGe-A3 PrOteiN As iMMUNOGeN

One of the most important clinical trials ever performed in 
MAGE-A cancer immunotherapy, involving thousands of 
patients with NSCLC, was focusing on the administration of 
recombinant MAGE-A3 protein together with adjuvants (52, 
53). Despite promising initial data and the proven ability of the 
immunization protocol to induce detectable humoral responses 
in vaccinated patients (54), disease-free interval in patients with 
completely resected stage IB, II, and IIIA NSCLC did not appear 
to be significantly prolonged, as compared to patients of control 
group, in phase III studies in the context of an adjuvant therapy 
setting (41).

Why did these trials fail to reach efficacy? First, similar to 
MAGE-A antigens, a large majority of classical TAA-specific 
cancer vaccines clinically tested so far have been shown to induce 
heterogeneous immune responses rarely resulting in significant 
clinical effects.

However, specific issues should be considered for CTA-
specific immunization. For instance, MAGE-A CTA expres-
sion, a pre-requisite for the eligibility of patients for treatment 
in these studies, has usually been assessed at the gene level by 
quantitative RT-PCR (RT-qPCR) (41, 54), which cannot provide 
insights into the actual numbers of CTA-positive tumor cells. 
Immunohistochemical studies using available MAGE-A-specific 
mAbs consistently underline that expression of these antigens 
might be highly heterogeneous in cancerous tissues with high 
expression often only detectable in relatively low percentages of 
tumor cells (10, 55). Remarkably, due to the high homology of 
sequences from different components of the MAGE-A family, 
a majority of currently available reagents do recognize multiple 
antigens. Our own experience based on the use of a MAGE-A10 
highly specific mAb (Figure 1) suggests that expression of these 
antigens may be highly heterogeneous in a variety of tumors of 
different histological origin, with percentages of “positive” cells 
ranging between 5 and >60% (16). One could speculate that 
criteria based on the expression of target antigen(s), at the protein 
level, in high percentages of tumor cells and in multiple areas 
of primary and metastatic cancers could be applied for a more 
stringent selection of patients potentially eligible for MAGE-A-
targeted antitumor immunization. Additionally, it might be of 
interest to verify the expression of the target MAGE-A antigen in 
recurrent tumors following specific immunization protocols, to 
verify possible selective immune editing (56). It is worth noting, 
however, that successful antigen-specific vaccination has also 
been shown to be able to promote responsiveness against unre-
lated antigens, the so-called “antigen spreading” phenomenon 
(57), thus potentially overcoming the requirement for a uniform 
expression of target antigens in tumors to be treated.

Importantly, the recombinant protein used in most efficacy 
studies was shown to induce humoral response and HLA class 
II-restricted lymphoproliferation, as expectable (41, 53, 54). 
However, the ability of these antigen formulations to promote 
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tAbLe 1 | MAGe-A gene expression, as detected by rt-qPcr in primary 
non-small cell lung cancers (NscLc) and in corresponding lymph nodes 
(LN) showing evidence of metastatic outgrowth by standard clinical 
pathology techniques.
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Tissues obtained from surgical resections from patients with NSCLC were tested 
by RT-qPCR for Mage-A1, -A2, -A3, -A4, -A10, and -A12 gene expression. 
Positivity (+) was defined by expression of at least one target gene above threshold 
(threshold = delta Ct to β-actin < 10). LN were similarly assessed by RT-qPCR and 
standard clinical pathology scoring.

FiGUre 1 | Heterogeneity of MAGe-A10 expression at the protein level. Melanoma tissues from a multi-tumor tissue microarray were stained with a 
MAGE-A10-specific reagent by standard techniques, as previously detailed (16). Antigen expression displays a high heterogeneity, regarding both percentages of 
antigen-positive tumor cells and staining intensity.
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class I-restricted responses appears to be more limited. One 
could speculate that libraries of overlapping “long” peptides (58), 
or highly immunogenic recombinant vectors (38, 59), could be 
more effective in this regard.

HeterOGeNeOUs eXPressiON OF 
MAGe-A GeNes iN PriMArY AND 
MetAstAtic cANcers

Studies from our group clearly document the heterogeneity of 
MAGE-A antigens expression at the gene expression level as well. 
We tested by RT-qPCR the expression of Mage-A1, -A2, -A3, 
-A4, -A10, and -A12 genes in primary NSCLC from 33 patients 
(Table 1). In keeping with published data (23, 24), a total of 22 
tumors (66%) showed evidence of expression of at least one of the 
antigens under investigation. Similar to recently published data in 
oral cancer (60), out of these patients with MAGE-A+ NSCLC, 10 
(45%) had lymph nodes (LN) showing evidence of tumor metas-
tasis, as compared with only 2 (18%) from the 11 MAGE-A(−) 
primary tumors. Interestingly, among the 10 metastatic LN 
from MAGE-A+ primary cancers, only half showed evidence of 
MAGE-A gene expression. Furthermore, in four LN, classified 
as non-metastatic, based on pathological evidence, expression 
of MAGE-A genes could be observed by RT-qPCR. Intriguingly, 
among LN associated with MAGE-A− primary cancers, 1/2 and 

1/8 metastatic and non-metastatic samples, respectively, showed 
evidence of MAGE-A gene expression.

Taken together, these data suggest a higher sensitivity of 
RT-qPCR as compared to standard techniques for the detec-
tion of cancer cells within LN draining primary tumor tissues. 
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Most importantly, however, they confirm the dynamic nature 
of MAGE-A antigens expression during cancer progression and 
may support the concept of combination therapies including 
treatments promoting MAGE-A antigen expression together 
with specific immunization procedures (61).

ADOPtive iMMUNOtHerAPies

In recent clinical studies, effector T cells, transduced with vectors 
encoding for specific TCRs recognizing peptides from MAGE-A3 
or MAGE-4, have been adoptively transferred into patients bear-
ing tumors expressing these antigens. Unfortunately, upon anti-
MAGE-A3, HLA-A0201-restricted TCR gene therapy, despite 
measurable clinical responses in some patients, treatment-related 
severe adverse events and deaths were also reported. These 
events may possibly be due to the high affinity of these TCRs (see 
below) and to the recognition (“on-target/off-tumor”) of highly 
homologous peptide(s) from other MAGE-A proteins expressed 
in the CNS (12, 62). Similarly, myocardial toxicity, resulting in 
treatment related death, has also been observed following gene 
therapy with a MAGE-A3-specific HLA-A0101-restricted TCR 
(63, 64). In the latter case, the “off-target” effect was attributed to 
the high homology between the target peptide and a peptide from 
Titin muscle protein.

It is worth noting that the TCR transduced into T cells in the 
first study originally derived from “humanized” mice expressing 
HLA-A0201 and its affinity toward the target antigen was further 
improved by site-directed mutagenesis (65), thus increasing the 
chances of “on-target_off-tumor” adverse events affecting tis-
sues characterized by low but detectable expression of defined 
MAGE-A antigens (12). The affinity of the TCR used in the 
second study, originally derived from a patient immunized with a 
recombinant viral vector (66), was also enhanced by site-directed 
mutagenesis.

By contrast, T cells expressing a MAGE-A4-specific TCR have 
been safely used in adoptive immunotherapy of patients with 
recurrent esophageal cancer (67).

Taken together, these data suggest that the clinical use of 
enhanced TCR effectors targeting MAGE-A antigens for cancer 
immunotherapy should be carefully evaluated in order to mini-
mize potential “off-tumor” side effects.

However, natural MAGE-A-specific TCRs, from clones 
derived from tumor bearing patients or healthy donors, might 
also be of interest. Such CTLs would probably be characterized 
by a lower affinity for cognate HLA–class I peptide complex and 
possibly by a lower antitumor effector potential, but they would 
also likely have less toxic side effects. Considering the cumulative 
potency related to the high numbers of transduced cells usually 
infused into treated patients, and their ability to proliferate and 
generate “memory,” the effectiveness of this type of treatment 
should reasonably be further tested.

cONcLUsiONs

Taken together, published data may suggest that therapeutic 
strategies targeting MAGE-A antigens have so far failed to fulfill 
the promise of representing effective tools for cancer treatment. 

However, the understanding of mechanisms controlling immune 
response as a whole and cancer-specific immune responses in 
the tumor microenvironment in particular has made enormous 
progress in the past decade, generating an unprecedented 
“momentum” for cancer immunotherapy.

Successful utilization of therapeutic mAbs recognizing 
“immunological checkpoints” is currently generating enormous 
interest in clinical oncology. Their mechanisms of actions (MoA) 
are not fully clarified (68, 69). However, one of the main MoA is 
arguably represented by the “release of brakes” hampering T cell 
responses specific for tumor-specific or associated antigens. This 
hypothesis is supported, for instance, by the higher effectiveness 
of treatment with anti CTLA-4 therapeutic mAbs in cancers 
characterized by a high mutational load, likely to result in a 
higher expression of mutated proteins potentially recognized as 
“non-self ” by the adaptive immune system (70). It is therefore 
reasonable to postulate that adequately timed combinations 
of vaccination procedures and administrations of therapeutic 
“checkpoint inhibitor” specific mAbs could be of high clinical 
relevance. Within this framework, a critical point might be 
represented by the choice of antigens of potential clinical use. 
Neo-antigens, e.g., tumor-specific mutated proteins have been 
successfully identified by whole exome sequencing (71–73), 
and the expression of defined antigenic “non-self ” peptides 
associated with restricting HLA class I determinants may be 
detected by mass spectrometry techniques (74). Although highly 
appealing, the “personal” nature of neo-antigens might possibly 
also represent their Achilles’ heel, not only because of regulatory 
hurdles (75) but also because it would likely prevent the perfor-
mance of conventional randomized trials, thereby complicating 
a reliable assessment of the effectiveness of innovative treatment 
procedures.

Based on these considerations, vaccination with tumor-asso-
ciated or CTA could still realistically find an important place in 
cancer immunotherapy in the era of “immunological checkpoint” 
inhibitors (76). Considering that MAGE-A antigens are expressed 
in tumors with poor prognosis and a scarcity of therapeutic 
options, such as TNB, and lung and esophageal cancers, it is easy 
to predict that the interest of the scientific community in CTA 
might actually be revived in the light of the enormous advances 
in cancer immunotherapy of the last years.

AUtHOr cONtribUtiONs

All authors participated in writing the manuscript and/or revis-
ing it critically for important intellectual content or providing the 
data mentioned in the manuscript.

FUNDiNG

Part of this work was funded by the Swiss National Science 
Foundation; grant number: 310030_149745.

sUPPLeMeNtArY MAteriAL

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fmed.2017.00018/
full#supplementary-material.

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive
http://journal.frontiersin.org/article/10.3389/fmed.2017.00018/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fmed.2017.00018/full#supplementary-material


5

Zajac et al. MAGE-A Antigens

Frontiers in Medicine | www.frontiersin.org March 2017 | Volume 4 | Article 18

reFereNces

1. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den 
Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lym-
phocytes on a human melanoma. Science (1991) 254:1643–7. doi:10.1126/
science.1840703 

2. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis 
antigens, gametogenesis and cancer. Nat Rev Cancer (2005) 5:615–25. 
doi:10.1038/nrc1669 

3. Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, Lucas S. An 
overview of the MAGE gene family with the identification of all human 
members of the family. Cancer Res (2001) 61:5544–51. 

4. De PE, Arden K, Traversari C, Gaforio JJ, Szikora JP, De SC, et al. Structure, 
chromosomal localization, and expression of 12 genes of the MAGE family. 
Immunogenetics (1994) 40:360–9. doi:10.1007/BF01246677 

5. Juretic A, Spagnoli GC, Schultz-Thater E, Sarcevic B. Cancer/testis 
tumour-associated antigens: immunohistochemical detection with 
monoclonal antibodies. Lancet Oncol (2003) 4:104–9. doi:10.1016/
S1470-2045(03)00982-3 

6. Curigliano G, Viale G, Ghioni M, Jungbluth AA, Bagnardi V, Spagnoli GC, 
et al. Cancer-testis antigen expression in triple-negative breast cancer. Ann 
Oncol (2011) 22:98–103. doi:10.1093/annonc/mdq325 

7. Van BN, Brasseur F, Godelaine D, Hames G, Ferrant A, Lehmann F, et  al. 
Genes encoding tumor-specific antigens are expressed in human myeloma 
cells. Blood (1999) 94:1156–64. 

8. Chambost H, Van Baren N, Brasseur F, Godelaine D, Xerri L, Landi SJ, 
et  al. Expression of gene MAGE-A4 in Reed-Sternberg cells. Blood (2000) 
95:3530–3. 

9. Antonescu CR, Busam KJ, Iversen K, Kolb D, Coplan K, Spagnoli GC, et al. 
MAGE antigen expression in monophasic and biphasic synovial sarcoma. 
Hum Pathol (2002) 33:225–9. doi:10.1053/hupa.2002.31295 

10. Jungbluth AA, Silva WA Jr, Iversen K, Frosina D, Zaidi B, Coplan K, et al. 
Expression of cancer-testis (CT) antigens in placenta. Cancer Immun (2007) 
7:15. 

11. Nelson PT, Zhang PJ, Spagnoli GC, Tomaszewski JE, Pasha TL, Frosina 
D, et  al. Cancer/testis (CT) antigens are expressed in fetal ovary. Cancer 
Immun (2007) 7:1. 

12. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng 
Z, et  al. Cancer regression and neurological toxicity following anti-
MAGE-A3 TCR gene therapy. J Immunother (2013) 36:133–51. doi:10.1097/
CJI.0b013e3182829903 

13. Kocher T, Schultz-Thater E, Gudat F, Schaefer C, Casorati G, Juretic A, et al. 
Identification and intracellular location of MAGE-3 gene product. Cancer 
Res (1995) 55:2236–9. 

14. Landry C, Brasseur F, Spagnoli GC, Marbaix E, Boon T, Coulie P, et  al. 
Monoclonal antibody 57B stains tumor tissues that express gene MAGE-A4. 
Int J Cancer (2000) 86:835–41. doi:10.1002/(SICI)1097-0215(20000615)86:6 
<835::AID-IJC12>3.0.CO;2-N 

15. Schultz-Thater E, Juretic A, Dellabona P, Luscher U, Siegrist W, Harder F, 
et  al. MAGE-1 gene product is a cytoplasmic protein. Int J Cancer (1994) 
59:435–9. doi:10.1002/ijc.2910590324 

16. Schultz-Thater E, Piscuoglio S, Iezzi G, Le MC, Zajac P, Carafa V, et  al. 
MAGE-A10 is a nuclear protein frequently expressed in high percentages 
of tumor cells in lung, skin and urothelial malignancies. Int J Cancer (2011) 
129:1137–48. doi:10.1002/ijc.25777 

17. Marcar L, Maclaine NJ, Hupp TR, Meek DW. Mage-A cancer/testis antigens 
inhibit p53 function by blocking its interaction with chromatin. Cancer Res 
(2010) 70:10362–70. doi:10.1158/0008-5472.CAN-10-1341 

18. Monte M, Simonatto M, Peche LY, Bublik DR, Gobessi S, Pierotti MA, et al. 
MAGE-A tumor antigens target p53 transactivation function through histone 
deacetylase recruitment and confer resistance to chemotherapeutic agents. 
Proc Natl Acad Sci U S A (2006) 103:11160–5. doi:10.1073/pnas.0510834103 

19. Yang B, O’Herrin SM, Wu J, Reagan-Shaw S, Ma Y, Bhat KM, et al. MAGE-A, 
mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress 
p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res (2007) 
67:9954–62. doi:10.1158/0008-5472.CAN-07-1478 

20. Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, 
stem cells, and cancer. Stem Cells (2007) 25:707–11. doi:10.1634/stemcells. 
2006-0469 

21. Bergeron A, Picard V, LaRue H, Harel F, Hovington H, Lacombe L, et  al. 
High frequency of MAGE-A4 and MAGE-A9 expression in high-risk bladder 
cancer. Int J Cancer (2009) 125:1365–71. doi:10.1002/ijc.24503 

22. Kocher T, Zheng M, Bolli M, Simon R, Forster T, Schultz-Thater E, et  al. 
Prognostic relevance of MAGE-A4 tumor antigen expression in transitional 
cell carcinoma of the urinary bladder: a tissue microarray study. Int J Cancer 
(2002) 100:702–5. doi:10.1002/ijc.10540 

23. Bolli M, Kocher T, Adamina M, Guller U, Dalquen P, Haas P, et al. Tissue 
microarray evaluation of melanoma antigen E (MAGE) tumor-associated 
antigen expression: potential indications for specific immunotherapy and 
prognostic relevance in squamous cell lung carcinoma. Ann Surg (2002) 
236:785–93. doi:10.1097/01.SLA.0000036266.09823.6C 

24. Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnjatic S, et  al. 
Cancer-testis genes are coordinately expressed and are markers of poor 
outcome in non-small cell lung cancer. Clin Cancer Res (2005) 11:8055–62. 
doi:10.1158/1078-0432.CCR-05-1203 

25. Cuffel C, Rivals JP, Zaugg Y, Salvi S, Seelentag W, Speiser DE, et al. Pattern 
and clinical significance of cancer-testis gene expression in head and neck 
squamous cell carcinoma. Int J Cancer (2011) 128:2625–34. doi:10.1002/
ijc.25607 

26. Figueiredo DL, Mamede RC, Spagnoli GC, Silva WA Jr, Zago M, Neder 
L, et  al. High expression of cancer testis antigens MAGE-A, MAGE-C1/
CT7, MAGE-C2/CT10, NY-ESO-1, and gage in advanced squamous cell 
carcinoma of the larynx. Head Neck (2011) 33:702–7. doi:10.1002/hed. 
21522 

27. Laban S, Atanackovic D, Luetkens T, Knecht R, Busch CJ, Freytag M, et al. 
Simultaneous cytoplasmic and nuclear protein expression of melanoma 
antigen-A family and NY-ESO-1 cancer-testis antigens represents an inde-
pendent marker for poor survival in head and neck cancer. Int J Cancer 
(2014) 135:1142–52. doi:10.1002/ijc.28752 

28. Daudi S, Eng KH, Mhawech-Fauceglia P, Morrison C, Miliotto A, Beck A, 
et al. Expression and immune responses to MAGE antigens predict survival 
in epithelial ovarian cancer. PLoS One (2014) 9:e104099. doi:10.1371/journal.
pone.0104099 

29. Xu Y, Wang C, Zhang Y, Jia L, Huang J. Overexpression of MAGE-A9 is 
predictive of poor prognosis in epithelial ovarian cancer. Sci Rep (2015) 
5:12104. doi:10.1038/srep12104 

30. De SC, De BO, Faraoni I, Lurquin C, Brasseur F, Boon T. The activation 
of human gene MAGE-1 in tumor cells is correlated with genome-wide 
demethylation. Proc Natl Acad Sci U S A (1996) 93:7149–53. doi:10.1073/
pnas.93.14.7149 

31. Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N, et  al. 
Expression of the MAGE-1 tumor antigen is up-regulated by the demethyl-
ating agent 5-aza-2’-deoxycytidine. Cancer Res (1994) 54:1766–71. 

32. Karpf AR. A potential role for epigenetic modulatory drugs in the 
enhancement of cancer/germ-line antigen vaccine efficacy. Epigenetics (2006) 
1:116–20. doi:10.4161/epi.1.3.2988 

33. Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens 
recognized by T  cells: March 2004 update. Cancer Immunol Immunother 
(2005) 54:187–207. doi:10.1007/s00262-004-0560-6 

34. Chaux P, Vantomme V, Coulie P, Boon T, van der Bruggen P. Estimation of 
the frequencies of anti-MAGE-3 cytolytic T-lymphocyte precursors in blood 
from individuals without cancer. Int J Cancer (1998) 77:538–42. doi:10.1002/
(SICI)1097-0215(19980812)77:4<538::AID-IJC11>3.0.CO;2-2 

35. Marchand M, Weynants P, Rankin E, Arienti F, Belli F, Parmiani G, et  al. 
Tumor regression responses in melanoma patients treated with a peptide 
encoded by gene MAGE-3. Int J Cancer (1995) 63:883–5. doi:10.1002/
ijc.2910630622 

36. Bricard G, Bouzourene H, Martinet O, Rimoldi D, Halkic N, Gillet M, et al. 
Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses 
in patients with hepatocellular carcinoma. J Immunol (2005) 174:1709–16. 
doi:10.4049/jimmunol.174.3.1709 

37. Valmori D, Dutoit V, Rubio-Godoy V, Chambaz C, Lienard D, Guillaume P, 
et al. Frequent cytolytic T-cell responses to peptide MAGE-A10(254-262) in 
melanoma. Cancer Res (2001) 61:509–12. 

38. Groeper C, Gambazzi F, Zajac P, Bubendorf L, Adamina M, Rosenthal R, 
et al. Cancer/testis antigen expression and specific cytotoxic T  lymphocyte 
responses in non small cell lung cancer. Int J Cancer (2007) 120:337–43. 
doi:10.1002/ijc.22309 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive
https://doi.org/10.1126/science.1840703
https://doi.org/10.1126/science.1840703
https://doi.org/10.1038/nrc1669
https://doi.org/10.1007/BF01246677
https://doi.org/10.1016/S1470-2045(03)00982-3
https://doi.org/10.1016/S1470-2045(03)00982-3
https://doi.org/10.1093/annonc/mdq325
https://doi.org/10.1053/hupa.2002.31295
https://doi.org/10.1097/CJI.0b013e3182829903
https://doi.org/10.1097/CJI.0b013e3182829903
https://doi.org/10.1002/(SICI)1097-0215(20000615)86:6 < 835::AID-IJC12 > 3.0.CO;2-N
https://doi.org/10.1002/(SICI)1097-0215(20000615)86:6 < 835::AID-IJC12 > 3.0.CO;2-N
https://doi.org/10.1002/ijc.2910590324
https://doi.org/10.1002/ijc.25777
https://doi.org/10.1158/0008-5472.CAN-10-1341
https://doi.org/10.1073/pnas.0510834103
https://doi.org/10.1158/0008-5472.CAN-07-1478
https://doi.org/10.1634/stemcells.2006-0469
https://doi.org/10.1634/stemcells.2006-0469
https://doi.org/10.1002/ijc.24503
https://doi.org/10.1002/ijc.10540
https://doi.org/10.1097/01.SLA.0000036266.09823.6C
https://doi.org/10.1158/1078-0432.CCR-05-1203
https://doi.org/10.1002/ijc.25607
https://doi.org/10.1002/ijc.25607
https://doi.org/10.1002/hed.21522
https://doi.org/10.1002/hed.21522
https://doi.org/10.1002/ijc.28752
https://doi.org/10.1371/journal.pone.0104099
https://doi.org/10.1371/journal.pone.0104099
https://doi.org/10.1038/srep12104
https://doi.org/10.1073/pnas.93.14.7149
https://doi.org/10.1073/pnas.93.14.7149
https://doi.org/10.4161/epi.1.3.2988
https://doi.org/10.1007/s00262-004-0560-6
https://doi.org/10.1002/(SICI)1097-0215(19980812)77:4 < 538::AID-IJC11 > 3.0.CO;2-2
https://doi.org/10.1002/(SICI)1097-0215(19980812)77:4 < 538::AID-IJC11 > 3.0.CO;2-2
https://doi.org/10.1002/ijc.2910630622
https://doi.org/10.1002/ijc.2910630622
https://doi.org/10.4049/jimmunol.174.3.1709
https://doi.org/10.1002/ijc.22309


6

Zajac et al. MAGE-A Antigens

Frontiers in Medicine | www.frontiersin.org March 2017 | Volume 4 | Article 18

39. Graff-Dubois S, Faure O, Gross DA, Alves P, Scardino A, Chouaib S, et al. 
Generation of CTL recognizing an HLA-A*0201-restricted epitope shared by 
MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 tumor antigens: implication 
in a broad-spectrum tumor immunotherapy. J Immunol (2002) 169:575–80. 
doi:10.4049/jimmunol.169.1.575 

40. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et  al. 
Prospective identification of neoantigen-specific lymphocytes in the periph-
eral blood of melanoma patients. Nat Med (2016) 22:433–8. doi:10.1038/
nm.4051 

41. Vansteenkiste JF, Cho BC, Vanakesa T, De Pas TM, Zielinski M, Kim MS, 
et  al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant 
therapy in patients with resected MAGE-A3-positive non-small-cell 
lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, 
phase 3 trial. Lancet Oncol (2016) 17:822–35. doi:10.1016/S1470-2045(16) 
00099-1 

42. Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, 
et  al. Selection of immunostimulant AS15 for active immunization with 
MAGE-A3 protein: results of a randomized phase II study of the European 
Organisation for Research and Treatment of Cancer Melanoma Group 
in Metastatic Melanoma. J Clin Oncol (2013) 31:2413–20. doi:10.1200/
JCO.2012.43.7111 

43. Germeau C, Ma W, Schiavetti F, Lurquin C, Henry E, Vigneron N, et al. High 
frequency of antitumor T  cells in the blood of melanoma patients before 
and after vaccination with tumor antigens. J Exp Med (2005) 201:241–8. 
doi:10.1084/jem.20041379 

44. Marchand M, Van BN, Weynants P, Brichard V, Dreno B, Tessier MH, 
et  al. Tumor regressions observed in patients with metastatic mela-
noma treated with an antigenic peptide encoded by gene MAGE-3 and 
presented by HLA-A1. Int J Cancer (1999) 80:219–30. doi:10.1002/
(SICI)1097-0215(19990118)80:2<219::AID-IJC10>3.3.CO;2-J 

45. Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, 
Jonuleit H, et  al. Mage-3 and influenza-matrix peptide-specific cytotoxic 
T  cells are inducible in terminal stage HLA-A2.1+ melanoma patients by 
mature monocyte-derived dendritic cells. J Immunol (2000) 165:3492–6. 
doi:10.4049/jimmunol.165.6.3492 

46. Russo V, Pilla L, Lunghi F, Crocchiolo R, Greco R, Ciceri F, et  al. Clinical 
and immunologic responses in melanoma patients vaccinated with MAGE-
A3-genetically modified lymphocytes. Int J Cancer (2013) 132:2557–66. 
doi:10.1002/ijc.27939 

47. Wilgenhof S, Corthals J, Heirman C, Van Baren N, Lucas S, Kvistborg P, 
et  al. Phase II study of autologous monocyte-derived mRNA electropo-
rated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with 
pretreated advanced melanoma. J Clin Oncol (2016) 34:1330–8. doi:10.1200/
JCO.2015.63.4121 

48. Batchu RB, Gruzdyn OV, Moreno-Bost AM, Szmania S, Jayandharan G, 
Srivastava A, et al. Efficient lysis of epithelial ovarian cancer cells by MAGE-
A3-induced cytotoxic T  lymphocytes using rAAV-6 capsid mutant vector. 
Vaccine (2014) 32:938–43. doi:10.1016/j.vaccine.2013.12.049 

49. Lin L, Wei J, Chen Y, Huang A, Li KK, Zhang W. Induction of antigen-spe-
cific immune responses by dendritic cells transduced with a recombinant 
lentiviral vector encoding MAGE-A3 gene. J Cancer Res Clin Oncol (2014) 
140:281–9. doi:10.1007/s00432-013-1552-8 

50. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et  al. 
Combination immunotherapy after ASCT for multiple myeloma using 
MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of 
vaccine-primed and costimulated autologous T cells. Clin Cancer Res (2014) 
20:1355–65. doi:10.1158/1078-0432.CCR-13-2817 

51. Connerotte T, Van PA, Godelaine D, Tartour E, Schuler-Thurner B, Lucas 
S, et  al. Functions of Anti-MAGE T-cells induced in melanoma patients 
under different vaccination modalities. Cancer Res (2008) 68:3931–40. 
doi:10.1158/0008-5472.CAN-07-5898 

52. Brichard VG, Lejeune D. GSK’s antigen-specific cancer immunotherapy 
programme: pilot results leading to Phase III clinical development. Vaccine 
(2007) 25(Suppl 2):B61–71. doi:10.1016/j.vaccine.2007.06.038 

53. Brichard VG, Godechal Q. MAGE-A3-specific anticancer immunotherapy 
in the clinical practice. Oncoimmunology (2013) 2:e25995. doi:10.4161/
onci.25995 

54. Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski 
W, et  al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell 

lung cancer: phase II randomized study results. J Clin Oncol (2013) 
31:2396–403. doi:10.1200/JCO.2012.43.7103 

55. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis anti-
gens: an expanding family of targets for cancer immunotherapy. Immunol 
Rev (2002) 188:22–32. doi:10.1034/j.1600-065X.2002.18803.x 

56. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer 
immunoediting and its three component phases – elimination, equilib-
rium and escape. Curr Opin Immunol (2014) 27:16–25. doi:10.1016/j.
coi.2014.01.004 

57. Corbiere V, Chapiro J, Stroobant V, Ma W, Lurquin C, Lethe B, et al. Antigen 
spreading contributes to MAGE vaccination-induced regression of mela-
noma metastases. Cancer Res (2011) 71:1253–62. doi:10.1158/0008-5472.
CAN-10-2693 

58. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer 
D, Vloon AP, et  al. Vaccination against HPV-16 oncoproteins for vulvar 
intraepithelial neoplasia. N Engl J Med (2009) 361:1838–47. doi:10.1056/
NEJMoa0810097 

59. Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, et  al. 
Intranodal immunization with a vaccinia virus encoding multiple antigenic 
epitopes and costimulatory molecules in metastatic melanoma. Mol Ther 
(2010) 18:651–9. doi:10.1038/mt.2009.275 

60. Brisam M, Rauthe S, Hartmann S, Linz C, Brands RC, Kubler AC, et  al. 
Expression of MAGE-A1-A12 subgroups in the invasive tumor front and 
tumor center in oral squamous cell carcinoma. Oncol Rep (2016) 35:1979–86. 
doi:10.3892/or.2016.4600 

61. Weiser TS, Ohnmacht GA, Guo ZS, Fischette MR, Chen GA, Hong JA, 
et al. Induction of MAGE-3 expression in lung and esophageal cancer cells. 
Ann Thorac Surg (2001) 71:295–301. doi:10.1016/S0003-4975(00)02421-8 

62. Brichard VG, Louahed J, Clay TM. Cancer regression and neurological 
toxicity cases after anti-MAGE-A3 TCR gene therapy. J Immunother (2013) 
36:79–81. doi:10.1097/CJI.0b013e3182829747 

63. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et  al. 
Identification of a Titin-derived HLA-A1-presented peptide as a cross-reac-
tive target for engineered MAGE A3-directed T cells. Sci Transl Med (2013) 
5:197ra103. doi:10.1126/scitranslmed.3006034 

64. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, 
et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced 
T cells in myeloma and melanoma. Blood (2013) 122:863–71. doi:10.1182/
blood-2013-03-490565 

65. Chinnasamy N, Wargo JA, Yu Z, Rao M, Frankel TL, Riley JP, et  al. A 
TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes 
multiple epitopes of the MAGE-A antigen superfamily in several types of 
cancer. J Immunol (2011) 186:685–96. doi:10.4049/jimmunol.1001775 

66. Karanikas V, Lurquin C, Colau D, VanBaren N, DeSmet C, Lethe B, et  al. 
Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying 
tumor regression after vaccination with a recombinant canarypox virus. 
J Immunol (2003) 171:4898–904. doi:10.4049/jimmunol.171.9.4898 

67. Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, et  al. 
Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lympho-
cytes in patients with recurrent esophageal cancer. Clin Cancer Res (2015) 
21:2268–77. doi:10.1158/1078-0432.CCR-14-1559 

68. Furness AJ, Vargas FA, Peggs KS, Quezada SA. Impact of tumour microenvi-
ronment and Fc receptors on the activity of immunomodulatory antibodies. 
Trends Immunol (2014) 35:290–8. doi:10.1016/j.it.2014.05.002 

69. Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immu-
notherapy. Adv Immunol (2006) 90:297–339. doi:10.1016/S0065-2776(06) 
90008-X 

70. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, 
et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. 
N Engl J Med (2014) 371:2189–99. doi:10.1056/NEJMoa1406498 

71. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann 
J, et al. Mutant MHC class II epitopes drive therapeutic immune responses 
to cancer. Nature (2015) 520:692–6. doi:10.1038/nature14426 

72. Mennonna D, Maccalli C, Romano MC, Garavaglia C, Capocefalo F, Bordoni 
R, et al. T cell neoepitope discovery in colorectal cancer by high throughput 
profiling of somatic mutations in expressed genes. Gut (2017) 66(3):454–63. 
doi:10.1136/gutjnl-2015-309453 

73. Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, 
Andersen RS, et  al. Neoantigen landscape dynamics during human 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive
https://doi.org/10.4049/jimmunol.169.1.575
https://doi.org/10.1038/nm.4051
https://doi.org/10.1038/nm.4051
https://doi.org/10.1016/S1470-2045(16)00099-1
https://doi.org/10.1016/S1470-2045(16)00099-1
https://doi.org/10.1200/JCO.2012.43.7111
https://doi.org/10.1200/JCO.2012.43.7111
https://doi.org/10.1084/jem.20041379
https://doi.org/10.1002/(SICI)1097-0215(19990118)80:2 < 219::AID-IJC10 > 3.3.CO;2-J
https://doi.org/10.1002/(SICI)1097-0215(19990118)80:2 < 219::AID-IJC10 > 3.3.CO;2-J
https://doi.org/10.4049/jimmunol.165.6.3492
https://doi.org/10.1002/ijc.27939
https://doi.org/10.1200/JCO.2015.63.4121
https://doi.org/10.1200/JCO.2015.63.4121
https://doi.org/10.1016/j.vaccine.2013.12.049
https://doi.org/10.1007/s00432-013-1552-8
https://doi.org/10.1158/1078-0432.CCR-13-2817
https://doi.org/10.1158/0008-5472.CAN-07-5898
https://doi.org/10.1016/j.vaccine.2007.06.038
https://doi.org/10.4161/onci.25995
https://doi.org/10.4161/onci.25995
https://doi.org/10.1200/JCO.2012.43.7103
https://doi.org/10.1034/j.1600-065X.2002.18803.x
https://doi.org/10.1016/j.coi.2014.01.004
https://doi.org/10.1016/j.coi.2014.01.004
https://doi.org/10.1158/0008-5472.CAN-10-2693
https://doi.org/10.1158/0008-5472.CAN-10-2693
https://doi.org/10.1056/NEJMoa0810097
https://doi.org/10.1056/NEJMoa0810097
https://doi.org/10.1038/mt.2009.275
https://doi.org/10.3892/or.2016.4600
https://doi.org/10.1016/S0003-4975(00)02421-8
https://doi.org/10.1097/CJI.0b013e3182829747
https://doi.org/10.1126/scitranslmed.3006034
https://doi.org/10.1182/blood-2013-03-490565
https://doi.org/10.1182/blood-2013-03-490565
https://doi.org/10.4049/jimmunol.1001775
https://doi.org/10.4049/jimmunol.171.9.4898
https://doi.org/10.1158/1078-0432.CCR-14-1559
https://doi.org/10.1016/j.it.2014.05.002
https://doi.org/10.1016/S0065-2776(06)90008-X
https://doi.org/10.1016/S0065-2776(06)90008-X
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1038/nature14426
https://doi.org/10.1136/gutjnl-2015-309453


7

Zajac et al. MAGE-A Antigens

Frontiers in Medicine | www.frontiersin.org March 2017 | Volume 4 | Article 18

melanoma-T  cell interactions. Nature (2016) 536:91–5. doi:10.1038/
nature18945 

74. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. 
Multipeptide immune response to cancer vaccine IMA901 after single-dose 
cyclophosphamide associates with longer patient survival. Nat Med (2012) 
18:1254–61. doi:10.1038/nm.2883 

75. Britten CM, Singh-Jasuja H, Flamion B, Hoos A, Huber C, Kallen KJ, et al. 
The regulatory landscape for actively personalized cancer immunotherapies. 
Nat Biotechnol (2013) 31:880–2. doi:10.1038/nbt.2708 

76. Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, et al. 
The Human Vaccines Project: a roadmap for cancer vaccine development. 
Sci Transl Med (2016) 8:334s9. doi:10.1126/scitranslmed.aaf0685 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Copyright © 2017 Zajac, Schultz-Thater, Tornillo, Sadowski, Trella, Mengus, 
Iezzi and Spagnoli. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these  
terms.

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive
https://doi.org/10.1038/nature18945
https://doi.org/10.1038/nature18945
https://doi.org/10.1038/nm.2883
https://doi.org/10.1038/nbt.2708
https://doi.org/10.1126/scitranslmed.aaf0685
http://creativecommons.org/licenses/by/4.0/

	MAGE-A Antigens and Cancer Immunotherapy
	MAGE-A Tumor-Associated Antigens
	Functional Aspects of MAGE-A Antigens
	Immunogenicity of MAGE-A Antigens
	Clinical Trials Targeting MAGE-A Antigens
	MAGE-A3 Protein as Immunogen
	Heterogeneous Expression of MAGE-A Genes in Primary and Metastatic Cancers
	Adoptive Immunotherapies
	Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References


