
ORIGINAL RESEARCH ARTICLE
published: 09 July 2013

doi: 10.3389/fncom.2013.00091

A soft body as a reservoir: case studies in a dynamic model
of octopus-inspired soft robotic arm
Kohei Nakajima1,2*, Helmut Hauser 1, Rongjie Kang3,4, Emanuele Guglielmino3, Darwin G. Caldwell 3

and Rolf Pfeifer1

1 Artificial Intelligence Laboratory, Department of Informatics, University of Zurich, Zurich, Switzerland
2 Bio-inspired Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
3 Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy
4 Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, P.R. China

Edited by:

Tamar Flash, Weizmann Institute,
Israel

Reviewed by:

Vladimir Brezina, Mount Sinai School
of Medicine, USA
Dimitris Tsakiris, Institute for
Computer Science - FORTH, Greece

*Correspondence:

Kohei Nakajima, Department of
Informatics, University of Zurich,
Andreasstrasse 15, 8050 Zurich,
Switzerland
e-mail: nakajima@ifi.uzh.ch

The behaviors of the animals or embodied agents are characterized by the dynamic
coupling between the brain, the body, and the environment. This implies that control,
which is conventionally thought to be handled by the brain or a controller, can partially be
outsourced to the physical body and the interaction with the environment. This idea has
been demonstrated in a number of recently constructed robots, in particular from the field
of “soft robotics”. Soft robots are made of a soft material introducing high-dimensionality,
non-linearity, and elasticity, which often makes the robots difficult to control. Biological
systems such as the octopus are mastering their complex bodies in highly sophisticated
manners by capitalizing on their body dynamics. We will demonstrate that the structure
of the octopus arm cannot only be exploited for generating behavior but also, in a sense,
as a computational resource. By using a soft robotic arm inspired by the octopus we
show in a number of experiments how control is partially incorporated into the physical
arm’s dynamics and how the arm’s dynamics can be exploited to approximate non-linear
dynamical systems and embed non-linear limit cycles. Future application scenarios as well
as the implications of the results for the octopus biology are also discussed.

Keywords: reservoir computing, octopus, soft robotics, morphological computation

1. INTRODUCTION
Biological systems have certain morphologies1 and material char-
acteristics that improve their adaptivity and increase their proba-
bility to survive. This suggests that control is not only located in
the brain, but that there is a tight coupling between the brain,
the body, and the environment, an idea that is usually termed
embodiment (Pfeifer and Bongard, 2006; Pfeifer et al., 2007, 2012;
Li et al., 2011b; Nakajima et al., 2011c, 2012a,b). Recently, moti-
vated by the fact that soft material is ubiquitous in the body
structures of living creatures, a new family of robots, soft robots,
has been constructed with the aim of incorporating flexible ele-
ments (Trivedi et al., 2008; Steltz et al., 2009; Brown et al., 2010;
Shepherd et al., 2011; Pfeifer et al., 2012). These robots have sig-
nificant advantages over traditional articulated robots in terms of
morphological flexibility and interactional safety (Trivedi et al.,
2008; Li et al., 2011b). However, controlling them with conven-
tional techniques is difficult because of their high-dimensional
body structures and their diverse body dynamics, which are due to
their non-linearity and elasticity. In this context, the octopus has
been a good source of inspiration for roboticists to learn a control
strategy for soft robots. An octopus has hyper-redundant limbs
with a virtually unlimited number of degrees of freedom (DOF),
and its movements are known to be highly sophisticated (Sumbre

1By morphology, we do not only refer to the shape, but also sensor and
actuator distributions, and physical properties, such as stiffness, etc.

et al., 2001, 2005; Trivedi et al., 2008). From a conventional
control perspective, the octopus’s method of controlling move-
ment and harnessing its non-linear body dynamics is outstanding
and far-reaching.

It is well known that the nervous system of the octopus is
highly distributed throughout the entire body. It has a relatively
small central brain (about 50 million neurons), a central nervous
system (CNS), which controls the large peripheral nervous sys-
tem (PNS) of the arms (about 300 million neurons), integrates
information from the visual system, and then issues commands
to lower motor centers controlling the elaborate neuromuscular
system of the arms. A typical example showing the effectiveness
of this distribution of the nervous system is the reaching behav-
ior (Gutfreund et al., 1996; Gutfreund, 1998; Sumbre et al., 2001;
Yekutieli et al., 2005a,b). Reaching behavior consists of a bend
propagation along the arm toward the tip in a highly stereotypical
and invariant way. Sumbre et al. showed that the arm extensions
can be evoked in arms whose connection with the brain have
been severed (Sumbre et al., 2001). Because the evoked motions
in denervated octopus arms were qualitatively and kinematically
identical to natural bend propagations, an underlying motor pro-
gram appears to be embedded in the neuromuscular system of
the arm, which does not require continuous central control (Li
et al., 2011a, 2012, 2013; Nakajima et al., 2011a,b; Kuwabara et al.,
2012). In addition, the muscular organization of the octopus’s
arm has a characteristic structure called muscular-hydrostats (Kier
and Smith, 1985; Smith and Kier, 1989; Taylor and Kier, 2003;

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2013.00091/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KoheiNakajima&UID=59029
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=HelmutHauser&UID=82758
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RongjieKang&UID=79512
http://community.frontiersin.org/people/EmanueleGuglielmino/100172
http://community.frontiersin.org/people/DarwinCaldwell/100173
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RolfPfeifer&UID=2514
mailto:nakajima@ifi.uzh.ch
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

Feinstein et al., 2011). In such structures, the volume of the organ
remains constant during all movements, enabling the muscles
themselves to perform all the functions usually performed by the
skeleton (Sumbre et al., 2001, 2005; Taylor and Kier, 2003). This
suggests that the body of the octopus arm is highly involved in the
production of movements. Accordingly, in robotics, there have
been several attempts to characterize the role of the muscular-
hydrostat system in terms of its anatomical structure (Mazzolai
et al., 2007; Laschi et al., 2009, 2012; Vavourakis et al., 2012a,b)
and functionality (Nakajima et al., 2013).

In this paper, along the lines of these biological findings, we
aim to provide one quantitative evidence that the structure of the
octopus’s arm has the potential to embed multiple motor pro-
grams without any support from the external controller. Recently,
it has been shown that non-linear mass-spring networks can be
used as a computational resource (Caluwaerts and Schrauwen,
2011; Hauser et al., 2011, 2012; Sumioka et al., 2011; Caluwaerts
et al., 2013; Nakajima et al., 2013). These works imply that the
non-linear and elastic body dynamics of soft robots are not
drawbacks for control, but rather can be directly exploited as a
computational resource. In this paper, we build on theoretical
models (Hauser et al., 2011, 2012) that have been proposed in
the context of reservoir computing.

The term reservoir computing has been proposed by
Schrauwen et al. (2007) for a set of machine learning tech-
niques used to emulate complex, non-linear computations. The
idea is to drive a high-dimensional, non-linear dynamical system
(which has been randomly initialized, but afterwards fixed) with
a low-dimensional input stream. This dynamical system, typically
referred to as the reservoir, provides highly complex, but repro-
ducible responses in its state space to the input. It operates as a
type of temporal and finite “kernel” by projecting non-linearily
the low-dimensional input into the high-dimensional state space
of the reservoir. Furthermore, since a reservoir consists of dynam-
ical systems, it exhibits a memory, which fades out exponentially
(i.e., fading memory)2. A remarkable property of the approach
is, if the reservoir is complex enough (i.e., high-dimensional
and non-linear), it can been shown that it is sufficient to add
a simple linear, static readout from the high-dimensional state
space to emulate non-linear complex computations. Such reser-
voir computing setups have been proven to outperform other
machine learning techniques in a number of difficult tasks; see
Jaeger (2003) for example. Another remarkable property of this
setup is that the requested properties for computationally pow-
erful reservoirs turn out to be rather general. Hence, a number
of different implementations for reservoirs have been proposed
(Schrauwen et al., 2007). For example, simple, abstract dynamical
systems are used for echo state networks (Jaeger, 2002; Verstraeten
et al., 2007; Lukoševičius and Jaeger, 2009), or models of neurons
are used in liquid state machines (Maass et al., 2002). Lately, it
has been demonstrated that complex, compliant bodies of bio-
logical systems and robots have the potential to serve as such
a reservoir as well, see Hauser et al. (2011) and Hauser et al.
(2012).

2The memory is due to the integration capability of dynamical systems (i.e.,
It accumulates information over time).

Here, we demonstrate that the soft robotic arm inspired by the
octopus can be used as a reservoir. This means, by simply attach-
ing a static, linear readout from the high-dimensional non-linear
dynamics of the octopus arm, one can emulate complex, non-
linear computation without altering the physical system itself.
That is, we employ the physical body as part of a computational
device. In this paper, a 3D dynamic model of this soft robotic
arm is used as a test platform. Compared with the model used
in Hauser et al. (2011) and Hauser et al. (2012), our model is
more biologically inspired and physically feasible. It is a mass-
spring-damper system, where the springs are aligned to emulate
the octopus’s muscular organization, and embeds the characteris-
tic properties of a muscular-hydrostat. The arm is also assumed
to be immersed in an underwater environment, in which the
water friction constants are approximated by the computational
fluid dynamics (CFD) simulations. As a result, the arm reveals
highly non-linear body dynamics when actuated. By using this
platform, we demonstrate that its body dynamics can be exploited
as a computational resource. To test its power, we defined two
types of tasks: first, to emulate complex non-linear dynamical
systems, where we investigate whether the body dynamics are
exploited as a computational resource; second, to implement a
closed-loop control. We used several non-linear limit cycles to
see how they can be embedded directly into the soft robotic arm
without any support from an external controller. The choice of
example functions adopted for each type of task is motivated to
evaluate the non-linearity and memory that the body dynamics
contains.

This paper is organized as follows. In section 2, we start
by explaining the overall setting of the 3D dynamic model of
the soft robotic arm platform and show how the arm emulates
the muscular organization of the octopus in detail. The input–
output relations adopted and the experimental procedures are
also provided in detail. In section 3, we explain the results for
a series of tasks in detail, and in section 4, we give concluding
remarks, including future extension scenarios of our proposed
approach.

2. MATERIALS AND METHODS
In this section, we provide a detailed description of the soft
robotic arm simulator model and explain how to exploit the sys-
tem as a computational resource by introducing input–output
relations. The experimental procedure is also explained in detail.

2.1. DYNAMIC MODEL OF A SOFT ROBOTIC ARM INSPIRED BY THE
OCTOPUS

In this paper, we use a 3D dynamic model of a soft robotic arm
inspired by the octopus (Kang et al., 2011, 2012). The model is
currently applied for testing purposes for control architectures of
soft robotic arms (Kuwabara et al., 2012; Nakajima et al., 2012a),
and has been validated to have good agreement with a physical
soft robotic arm platform (Zheng et al., 2012). The overall struc-
ture of the entire arm is shown in Figure 1F. It is assumed to be
immersed in an underwater environment, and the base of the arm
is able to rotate in any direction. It consists of 20 compartments,
and each compartment implements the unique characteristics of
octopus muscles, called muscular-hydrostats. In an octopus arm,

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 1 | (A) Histological transverse section of an octopus arm, showing
the longitudinal muscles (L), the transverse muscles (T), the nerve fibers (N),
and the oblique muscles (O). (B) Overall structure of the muscular-hydrostat
system (a single compartment) used in this paper. (C) Schematics showing a
longitudinal spring, a transverse spring (D), and a ceiling plane (E). In (C),
fdamp = Clij l̇ lij , fstiff = Klij (l lij − l l0ij), and ξij = ξcij + ξvij . In (D), fdamp = Crij l̇ rij ,

fstiff = Krij (lrij − lr0ij), and δij = δcij + δvij . See the text for details. (F) The entire
soft robotic arm inspired by the octopus. It consists of 20 compartments,
which are numbered from 1 to 20 from the base to the tip. Each
compartment contains four longitudinal springs and one transverse disk. The
blue line represents the line connecting the centers of each transverse disk.
The base of the arm is able to rotate in any direction. See the text for details.

muscles are organized into transverse, longitudinal, and obliquely
oriented groups (Figure 1A). This special muscular organization
forms the structures of the muscular-hydrostats. Their main
property is that their volume remains constant during muscle
contractions. The result is that if the diameter of the muscular-
hydrostats decreases, then their length increases, and vice versa.
Several proposed models deal with the muscular-hydrostat sys-
tem of the octopus [e.g., See Yekutieli et al. (2005a,b) and Kang
et al. (2012)]. The overall structure of the muscular-hydrostat

system adopted in this paper is shown in Figure 1B. We begin our
description by focusing on the model of a single compartment,
and then progress to describing an entire arm.

A single compartment is a mass-spring-damper system,
shaped like a circular truncated cone, consisting of a base plane,
a ceiling plane with four transverse springs, a central strut, and
four longitudinal springs, which emulate the anatomical struc-
ture of the muscle alignment in a real octopus arm. (Note that,
although we use the term “spring,” it is a model for a muscle,

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

so it has mass and damping.) The longitudinal springs con-
trol the position and orientation of the ceiling plane, while
the transverse springs control the radius of the ceiling plane.
The central strut provides kinematic constraints to guarantee
the unique position of the ceiling plane. It is considered as
an ideal prismatic joint without mass, damping, and stiffness.
The system has an isovolmetric structure, which provides forces
constantly aiming to maintain its volume and is an expression
of the property of the muscular-hydrostats, and thus, all the
springs are assumed to be implicitly or explicitly coupled with
each other. The values for all the parameters of the model (e.g.,
spring coefficients, damping, etc.) are either inspired by the octo-
pus or directly drawn from biological data (Kier and Curtin,
2002; Lieber, 2002; Shinohara et al., 2010). Standard SI units
are used for the variables, and all of the ordinal differential
equations presented are solved using the 4th order Runge–Kutta
method, where dt is set to 0.001 s for the system throughout this
paper.

Coordinates are defined on a base plane and a ceiling
plane, denoted by Aj(xj, yj, zj) and Bj(uj, vj, wj), respectively
(Figure 1B), where j is the index number of the compartment.
A vector expressing a longitudinal spring (dij) is: dij = pj + bij −
aij, where pj = AjBj = [0 0 hj]T is the position vector of the cen-
ter of the ceiling plane, bij is the position vector of joint Bij,
and aij = AjAij is the position vector of joint Aij. The length of

the ith spring in compartment j is llij and can then be obtained

by llij =
√

dT
ij · dij. The dynamics of a longitudinal spring is

expressed by:

ξcij + ξvij − fBLzij = Mlij l̈
l
ij + Clij l̇

l
ij + Klij

(
llij − ll0ij

)
, (1)

where ξcij is the control force, ξvij is the isovolumetric constraint
force, which will be also explained further in Equation (7), fBLzij is
the component force of joint Bij acting along the spring i of com-

partment j, ll0ij is the initial length of the spring, Mlij is the mass of
the spring, Clij is the damping coefficient, and Klij is the stiffness
coefficient (Figure 1C). Then, the rotation of the longitudinal
springs can be formulated in frame A by:

Iijω̇lij = dij × fBLxyij , (2)

where fBLxyij is the component force of joint Bij acting perpendic-
ular to the spring, Iij is the inertia moment of the spring about
Aij, and ωlij is the angular velocity of the spring about Aij, where

ωlij = (dij/llij) × (vBij/llij), and vBij is the velocity of Bij.
To interlink several compartments serially the reaction forces

between the longitudinal springs and the base, FALij, need to be
calculated. These reaction forces are obtained by:

FALij = Mlijd̈ij − FBLij, (3)

where FALij is the joint force on Aij, and FBLij = fBLxyij + fBLzij is
the joint force on Bij.

The four transverse springs spread around the central point of
the ceiling plane. Figure 1D shows the illustration of a transverse

spring. The dynamics of the length of the transverse spring are
described as:

δcij + δvij − FCLij · ubij = Mrij l̈
r
ij + Crij l̇

r
ij

+ Krij

(
lrij − lr0ij

)
, (4)

where δcij is the control force, δvij is the isovolumetric constraint
force (which will be discussed in detail later), FCLij = −FBLij is
the joint force of Bij acting on the ceiling plane, ubij is the unit
vector of bij, Mrij is the mass of the spring, lr0ij is the initial radius
of the ceiling plane, Crij is the damping coefficient, and Krij is the
stiffness coefficient (Figure 1D). Figure 1E shows the illustration
of the ceiling plane. The equation for the motion of the ceiling
plane is:

Mceilj
[
0 0 ḧj

]T = FCL1j + FCL2j + FCL3j

+ FCL4j + FCCj + Fexj, (5)

where hj is the height of the ceiling plane of compartment j,
FCCj = −FBCj is the joint force on Bj acting on the ceiling plane,
and Fexj is the external force. The rotation is formulated as:

Bj Iceilj
[
β̈j α̈j 0

]T =
4∑

i = 1

Bj bij × Aj RT
Bj

FCLij

+ Bj TCCj + Bj Texj, (6)

where Bj TCCj is the constraint torque of joint Bj acting on the ceil-

ing plane, Aj RT
Bj

is the Euler rotation matrix, Bj bij is the position

vector of Bij expressed in frame Bj, and Bj Iceilj is the inertia matrix
of the ceiling plane.

As explained previously, the system is isovolumetric due to
its muscular hydrostat structure. This means that an increase in
the longitudinal length will result in a reduction in the cross-
sectional area and vice versa. A pair of antagonistic forces are
applied to the longitudinal and transverse springs to guarantee
the isovolumetric constraints. These are expressed as:

ξvij = −Klv × |δcij| × (Vcj − V0j), (7)

δvij = −Krv ×
∣∣∣∣∣

4∑
i = 1

ξij + Fexj · pj/hj

∣∣∣∣∣× (Vcj − V0j), (8)

where Vcj is the actual volume of compartment j, V0j is the
initial volume of the compartment, Klv is the constraint force
gain for the longitudinal springs, and Krv is the constraint force
gain for the transverse springs. From Equation (7), it can be seen
that the constraint force ξvij is a function of the transverse spring
force, δcij, and the compartment volume change, Vcj − V0j. By
applying ξvij to Equation (1), the longitudinal springs will act
against the transverse springs to drive the volume change to zero.
Similarly, another constraint force δvij is obtained by Equation
(8) and applied to Equation (4) for the transverse springs to can-
cel the volume change induced by the longitudinal springs. Note
that the external force, Fexj, is included in Equation (8) because

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

it is acting on the compartment on joint Bj, which may also
change the length of the longitudinal springs and the volume of
the compartment.

In addition to the forces generated by the muscles, typical
external forces applied to the soft robotic arm in an underwa-
ter environment are gravity, buoyancy, and hydrodynamic forces.
These are considered as distributed forces acting on each com-
partment as:

Fexj = Fgj + Fbj + Fhydj

= Fgj + Fbj + (
FhydDj + FhydLj

)
, (9)

where Fexj is the total external force acting on compartment j, Fgj

is the gravity force, Fbj is the buoyancy force, and Fhydj is the
hydrodynamic force composed of the water drag force, FhydDj,
and the water lift force, FhydLj.

The direction of buoyancy always opposes gravity. Thus, the
resulting force due to gravity and buoyancy is:

Fgj + Fbj = (ρo − ρw)Vcjgugj = ρoVcjgeugj, (10)

where ρw is the density of water, ρo is the density of the octo-
pus arm, Vcj is the volume of compartment j, ugj is the unit
vector indicating the direction of gravity for compartment j, g
is the gravity constant, and ge is the equivalent gravity constant
defined as:

ge =
(

1 − ρw

ρo

)
g. (11)

By adjusting the value of ge, both gravity and buoyancy forces are
included in the model.

The hydrodynamic forces applied to an octopus arm during
a movement through a fluid medium are shown in Figure 2. For
compartment j, the drag force FhydDj is parallel to the velocity vec-
tor Vj of the fluid (or the uniform arm velocity in a stationary
fluid) and the lift force FhydLj is perpendicular to Vj, according to

FhydDj = 1

2
CDjArjρw||Vj||2uvj, (12)

FhydLj = 1

2
CLjArjρw||Vj||2u⊥

vj , (13)

where CDj and CLj are the drag and lift coefficients, respectively,
Arj is the reference area of compartment j, uvj is the unit vector
indicating the direction of Vj, and u⊥

vj is the unit vector of nor-
mal direction for Vj. The hydrodynamic force coefficients, CDj

and CLj, for a segmented arm are obtained from high fidelity
CFD simulations (Kazakidi et al., 2012). They were found to be
dependent on the flow incidence angle θj, and the configuration
of the arm (e.g., straight vs. bended). As a first approximation of
the hydrodynamic forces common in robotic literature (Ijspeert,
2001; Kazakidi et al., 2012), dependence on arm configuration
was ignored. Therefore, a single value for each coefficient at
specific angles of θj for a straight arm was identified by CFD
simulations and approximated by a 4th order polynomial in the

simulator, expressed as follows:

CDj = eD
1 θ4

j + eD
2 θ3

j + eD
3 θ2

j + eD
4 θj + eD

5 , (14)

CLj = eL
1θ

4
j + eL

2θ3
j + eL

3θ
2
j + eL

4θj + eL
5, (15)

where eD
1−5 and eL

1−5 are the parameters identified by CFD simula-
tions. The hydrodynamic forces for each compartment were then
computed according to Equations (12) and (13), where Vj was
taken as the velocity of Bj. All the parameters used in this study
are shown in Table 1.

This model is intrinsically non-linear. The non-linearities
of the system are partly introduced by its kinematics (Kang

FIGURE 2 | Hydrodynamic forces acting on the soft robotic arm.

Table 1 | Parameters for the soft robotic arm adopted in this paper.

Parameter Value Parameter Value

l l0ij (m) 0.0200 Klij (N/m) 196

l r0ij (m) 0.015-0.0067 Krij (N/m) 1570

Mlij (kg) 1.25 ×10−3 Klv (l/m3) 1.0 ×106

Mrij (kg) 1.25 ×10−3 Krv (l/m3) 1.0 ×106

Clij (N s/m) 1.0 V0j (m3) 1.38 ×10−5

−2.99 × 10−6

Crij (N s/m) 1.0 ρw (kg/m3) 1000

eD
1 −5.5 × 10−9 eL

1 1.8 ×10−9

eD
2 6.3 ×10−7 eL

2 −5.9 × 10−7

eD
3 −7.7 × 10−6 eL

3 2.8 ×10−5

eD
4 0.0015 eL

4 0.0011

eD
5 0.017 eL

5 0.00089

Note that, for lr0ij and V0j , they decrease monotonically, according to the

compartment number in the given range in the table.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

et al., 2012). The relation between the spring length and the
ceiling plane posture (position and orientation) is non-linear.
Therefore, the system dynamics become non-linear as well. Also,
the calculation of the isovolumetric forces and hydrodynamic
forces introduces non-linearities. See Kang et al. (2012) for a
detailed discussion of the model. In the majority of cases, these
non-linearities are undesirable from the viewpoint of classical
control theory. However, as previously mentioned in section 1,
such a complex body could potentially be used as part of a
computational device, if appropriate inputs and readouts are
applied.

2.2. EXPERIMENTAL PROCEDURE
Our aim in this paper is to demonstrate whether a soft robotic
arm can be exploited as a computational resource, as well as a
controller. Accordingly, we need to define inputs (In(t)) to the
system and how to generate corresponding outputs (O(t + 1)).
In this paper, we apply the position control of the base rota-
tion as an input, and an output is generated by the weighted
sum of the longitudinal spring lengths of all 20 compartments
(Figure 3).

Based on this I/O scheme, we set two types of tasks for
our demonstrations. First, we consider the emulation tasks of
non-linear dynamical systems (Figure 3A), which aims to show
whether the soft robotic arm can be exploited as a computa-
tional resource, including sufficient non-linearity and memory.
The second task is to embed closed-loop control onto the soft
robotic arm itself (Figure 3B). In particular, we aim to embed
non-linear limit cycles, which are especially appealing for the
control of robots. Typically, such limit cycles are implemented

using non-linear oscillators, such as central pattern genera-
tors (CPGs), or a network of such oscillators (Righetti and
Ijspeert, 2008). We here aim to demonstrate that the body of
the soft robotic arm itself can be used to generate such limit
cycles.

As explained in section 1, our approach is comparable to a
reservoir computing approach, which normally uses randomly
coupled non-linear elements as a computational resource (Jaeger,
2002; Maass et al., 2002; Jaeger and Haas, 2004). In the conven-
tional reservoir computing approach, since each computational
element is coupled randomly, each element possess a uniform
role in the computation in the statistical sense. On the other
hand, if we exploit the robot’s body as a reservoir, accord-
ing to the intrinsic structure of the body, each part of the
body shows qualitatively different dynamics, which may lead
to specific role distributions corresponding to each body part.
Accordingly, in this paper, we will investigate how the compu-
tational role is distributed through the arm in each task. In
the following subsections, we provide detailed descriptions for
each task.

2.2.1. Task 1: non-linear dynamical system emulation tasks
In order to evaluate the computational power of the system, we
here set non-linear dynamical system emulation tasks, which are
often used as benchmark tasks (Jaeger, 2002; Verstraeten et al.,
2007; Hauser et al., 2011) in the context of recurrent neural
network learning (Atiya and Parlos, 2000) and the reservoir com-
puting approach (Jaeger, 2002; Maass et al., 2002; Jaeger and
Haas, 2004). Each task requires a certain degree of non-linearity
and memory to be performed by the system. As explained above,

FIGURE 3 | Schematics explaining the tasks adopted in this paper.

(A) Schematics showing the nonlinear dynamical system emulation tasks
(Task 1). An input (In(t)) is projected as a base rotation angle, and
accordingly, the soft robotic arm shows passive body dynamics. By
setting a linear readout for each longitudinal spring length in each
compartment, an output (O(t + 1)) is calculated as a weighted sum of all
the spring lengths. By adjusting only the linear readout, we demonstrate

whether the system can emulate complex nonlinear dynamical systems.
(B) Schematics showing the implementation of closed-loop control
(Task 2). Similar to Task 1, by adjusting the linear readouts, two variables
of a nonlinear limit cycle are emulated and fed back as the next input to
the system to generate the base rotation movement. Accordingly, the
nonlinear limit cycle is embedded onto the arm in a closed-loop manner.
See the text for details.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

we first apply position control of the base rotation as an input
(Figure 3A), expressed as follows:

θ(t) = φ(t) = Scale × In(t), (16)

In(t) = 0.2 sin(2πf1t × dt) sin(2πf2t × dt) sin(2πf3t × dt), (17)

where θ(t) and φ(t) are base rotations at timestep t along the x-
axis and y-axis, respectively. The parameter Scale linearly scales
the raw input, In(t), to the specific range of the base angle
[degree], −R ≤ θ(t),φ(t) ≤ R. This scaling parameter can be
freely chosen, but should be fixed throughout the experiment.
The detailed setting will be explained in the section 3. The param-
eters f1, f2, and f3 are set to 2.11, 3.73, and 4.33, respectively.
Similar inputs were adopted in Hauser et al. (2011), Sumioka et al.
(2011), and Nakajima et al. (2013).

According to the base rotation, the arm generates passive body
dynamics. The output of the system is calculated by using the
resulting spring dynamics as follows:

O(t + 1) =
20∑

j = 1

4∑
i = 1

w
ij
outsij(t), (18)

where sij(t) is the length of the longitudinal spring i (i = 1, 2, 3,

and 4) in compartment j (j = 1, 2,, 20) at timestep t. When
the input is projected as the base rotation at timestep t, the corre-
sponding length of the spring, llij , is collected to sij(t). The linear

readout weight, w
ij
out, corresponds to each spring length. Overall,

the dynamics of 80 (= 4 × 20) spring lengths are the expression
of the body dynamics in this paper.

In order to achieve the required computation, we only

train the linear readout (w
ij
out). Since we have 80 nodes,

s11(t), s21(t), s31(t), s41(t), s12(t),, s420(t), for the lengths of
the spring at timestep t, by collecting the lengths of the
springs for M timesteps, we can generate an 80 ×M matrix
L. We also collect the corresponding target outputs for M
in a matrix T. Then, the optimal readout weights, W =
[w11

out, w21
out, w31

out, w41
out, w12

out,, w420
out]T , can be obtained by

W = L∗T, where L∗ is the Moore-Penrose pseudo-inverse, since
L is not a square matrix in general.

According to the sent input, the system should emulate the
following three non-linear dynamical systems as outputs. We pre-
pared three corresponding output nodes to the system whose
linear readouts are trained separately for each task. (This pro-
cedure is often called multitasking.) The first task is a 2nd order
non-linear dynamical system, expressed as follows:

y(t + 1) = 0.4y(t) + 0.4y(t)y(t − 1) + 0.6In3(t) + 0.1, (19)

where y(t) denotes the output of the system. The second task is a
10th order non-linear dynamical system, expressed as follows:

y(t + 1) = 0.3y(t) + 0.05y(t)

(
9∑

i = 0

y(t − i)

)
(20)

+ 1.5In(t − 9)In(t) + 0.1, (21)

where y(t) denotes the output of the system. The third task is a
discrete Volterra series, expressed as follows:

y(t + 1) = A ×
200∑

τ1 = 0

200∑
τ2 = 0

h(τ1, τ2)In(t − τ1)In(t − τ2), (22)

h(τ1, τ2) = exp

(
(τ1 × dt − μ1)

2

2σ2
1

+ (τ2 × dt − μ2)
2

2σ2
2

)
, (23)

where A is a scaling parameter set to 0.0001, y(t) and h(τ1, τ2)

denote the output of the system and a Gaussian kernel, respec-
tively. The parameters, μ1, μ2, σ1, and σ2 are set as μ1 = μ2 =
0.1 and σ1 = σ2 = 0.05. Any computational model that can emu-
late the above dynamical systems should have a certain degree of
memory and non-linearity. Simply put, emulation of a 10th order
system requires more memory and non-linearity than a 2nd order
system, and emulation of the Volterra task requires more than the
10th order system.

For the experimental procedure, the soft robotic arm is first
set in the resting state with θ(t) = φ(t) = 0, and before begin-
ning the experiment, we start to run the arm with Equation (16)
for Tini timesteps. This phase is to set the different initial posi-
tions of the arm for each experimental trial; Tini is randomly
determined from 0 to 1000 timesteps for each trial. The actual
experimental trial consists of 16,000 timesteps, where the first
1000 timesteps are for washout, the following 10,000 timesteps
are for the training phase, and the final 5000 timesteps are for
the evaluation phase. After Tini timesteps, we continue run-
ning the arm with Equation (16) and the actual experiment
begins. By collecting the lengths of the spring and the corre-
sponding target outputs for each task in the training phase, we
train the linear readouts for three outputs by adopting the previ-
ously explained procedure. By using the trained linear readouts,
we evaluate the performance of the system output by calculat-
ing the mean squared error (MSE), MSE = 1

n

∑n
t=1(O(t + 1) −

y(t + 1))2, where n = 5000. We here compare the performance
of the system with outputs generated by simple linear regres-
sion, O(t + 1) = a × In(t) + b, where a and b are trained by
using the same time series as in the training phase. As is clear
from the equation, since the linear regressor only uses the input
to generate the output, which does not contain non-linearity
and memory, any task performance of the system better than
the linear regressor can be said that the required non-linearity
and memory to perform the task is positively exploited from
the system.

2.2.2. Task 2: closed-loop control—embedding non-linear limit
cycles

As previously explained, in this task, we aim to embed non-linear
limit cycles in a closed-loop manner. The major difference from
Task 1 is that the outputs generated by the system are fed back
to the system itself as a motor command (an input) for the next
timestep (Figure 3B). In particular, as will be explained later,
we here aim to embed several limit cycles, which each have two
variables. Accordingly, the outputs generated for the next motor
commands (namely, In1(t) and In2(t) for each variable) are

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

projected to θ(t) and φ(t), respectively. The situation is expressed
as follows: {

θ(t) = In1(t),

φ(t) = In2(t),
(24)

{
In1(t) = O1(t),

In2(t) = O2(t),
(25)

{
O1(t + 1) = ∑20

j = 1

∑4
i = 1 w

ij
out,1sij(t),

O2(t + 1) = ∑20
j = 1

∑4
i = 1 w

ij
out,2sij(t),

(26)

where w
ij
out,1 and w

ij
out,2 are the linear readouts corresponding

to the two outputs, O1(t) and O2(t), respectively. (Note that, in
Equation (24), unlike Equation (16) in Task 1, the scaling param-
eter Scale is not introduced. As will be explained later, this is
because we here aim to emulate the limit cycles, which are already
scaled with a certain parameter value. So the scaling procedure is
already included in the target outputs.)

As in the procedure explained in Task 1, to train the system, we

only adjust the linear readouts, w
ij
out,1 and w

ij
out,2. However, the

procedures differ in two points; first, during the training phase,
we clamp the feedbacks from the system outputs, and provide the
target outputs as inputs, which means, in Equation (25), we set
In1(t) = x1(t), In2(t) = x2(t), where x1(t) and x2(t) are the tar-
get outputs at timestep t. Thus, the training phase is carried out
with an open-loop, where the system was forced into the desired
operative state by the target signals (this is called, teacher forcing)
(Hauser et al., 2012). Second, when collecting the lengths of the
springs in the training phase, we add white noise in the range of
[−ν, ν]. By doing this, we can expect that the obtained optimal
readouts will generate the target outputs even under the influ-
ence of noise (Hauser et al., 2012). The appropriate degree of ν is
determined heuristically for each task.

Here, we aim to embed three non-linear limit cycles. The
first one is the dynamical systems of the Van der Pol equations,
expressed as follows:{

ẋ1 = x2,

ẋ2 = −x1 + (
1 − x2

1

)
x2.

(27)

The second one is a limit cycle, which we call the quadratic limit
cycle (Hauser et al., 2012; Khalil, 2002), expressed as follows:{

ẋ1 = x1 + x2 − 5x1
(
x2

1 + x2
2

)
,

ẋ2 = −2x1 + x2 − x2
(
x2

1 + x2
2

)
.

(28)

The third one is a Lissajous curve with a frequency ratio of
f1/f2 = 2, expressed as follows:{

x1 = sin(f1t),

x2 = sin(f2t).
(29)

Since each limit cycle is symmetric about the point (0, 0), we select
the variable with the larger range, and scale both variables to the

desired range of the base rotation [degree], −R ≤ θ(t),φ(t) ≤
R. As in Task 1, this scaling parameter can be freely chosen,
but should be fixed throughout the experiment. Thus, what
the system should emulate here is x′

1(t + 1) = Scale × x1(t + 1)

and x′
2(t + 1) = Scale × x2(t + 1) as O1(t + 1) and O2(t + 1),

respectively. Further settings on the parameter Scale will be
explained in the section 3. For the Van der Pol system and the
quadratic limit cycle, the ordinal differential equations are solved
for each simulation timestep by using the 4th order Runge–Kutta
method, where dt is set to 0.01. Note that the timescale of the arm
model and these limit cycle is different. When we refer to time s,
we always fixed our expression to the timescale to the arm model,
otherwise we use the expression of simulation timestep to avoid
the confusion.

In the experimental procedure, the soft robotic arm is first
set in the resting state with θ(t) = φ(t) = 0, as in Task 1. We
run the system with the teacher forcing condition for 70,000
timesteps, and by discarding the first 10,000 timesteps, we use
60,000 timesteps as for the training phase with white noise of
degree ν added in the spring lengths. After obtaining the opti-
mal readout weights from these collected data, we initialize the
arm’s state to the resting state and again start to run the system
with the teacher forcing condition. After 5000 timesteps of run-
ning, we switch the inputs to the system output generated by the
trained readout weights (Equations 25 and 26) and check whether
it could embed the target limit cycle. Unlike Task 1, multitasking
cannot be adopted (due to the feedback control), so each limit
cycle is trained separately as a different trial.

3. RESULTS
In this section, we present the results of each task applied to
indicate the performance of our system. We would like to note
again that all the tasks presented in this section is performed with
“one body”, the same soft robotic arm explained in section 2.1,
where all the parameter settings of the arm is fixed throughout
the experiments. In addition, for Task 1, emulations of three non-
linear dynamical systems are simultaneously performed for each
experimental run (i.e., multitasking).

3.1. TASK 1: NON-LINEAR DYNAMICAL SYSTEM EMULATION TASKS
Figure 4 shows a typical example of the time series of In(t), the
lengths of the springs, and the performance of each task during
the evaluation phase. The plots show the case when R is set to 60.
We can clearly see that, according to the input projected to the
base rotation, our soft robotic arm shows diverse passive body
dynamics (Figures 4A,B). Regarding the task performance, the
system output shows better performances than the linear regres-
sor in all the tasks (Figure 4C). In the emulation task for the 2nd
order system, the linear regressor also showed relatively good per-
formance. However, as we can see in the plots, as the degree of
non-linearity and memory of the task increases in the 10th order
system and Volterra task, the performance of the linear regressor
decreases significantly (Figure 4C). On the other hand, our sys-
tem shows relatively good performance even in the Voletrra series
emulation task (Figure 4C). Table 2 shows the statistical compar-
isons between the MSE of the output of the system and that of
the linear regressor for each task. The values show the averaged

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 4 | A typical example of the task performance for Task 1 in

terms of time series in the evaluation phase. (A) The time series of In(t).
(B) Corresponding body dynamics, which are expressed as the time series
of the lengths of springs 1, 2, 3, and 4. The spring dynamics of all 20
compartments are overlaid. (C) Comparisons of the performance of the
system output and the linear regressor for the emulation tasks of the 2nd
order system (upper diagram), 10th order system (middle diagram), and
Volterra task (lower diagram). In the plots, for the 2nd and 10th order
systems, and the Voletrra task, the MSEs of the system output were
1.89 ×10−7, 3.80 ×10−6, and 8.90 ×10−5, respectively, and those of the
linear regressor were 9.96 ×10−7, 4.95 ×10−4, and 9.48 ×10−4,
respectively. For each task, the system output showed better performance
than the linear regressor. Note that the output of the linear regressor is not
a straight line, but a scaled version of the input with an offset (this outcome
is due to the scaling of the figure).

MSEs over 20 trials. In each task, our system showed significantly
low MSE. These results suggest that our system is able to exploit
the non-linearity and memory originates from the passive body
dynamics of the soft robotic arm to perform the task.

Unlike a conventional computational network or device, our
system receives input as a mechanical rotation of the base, which
generates the physical motion of the arm. Thus, we can easily
imagine that, for example, if the input scaling of the base rotation
range, R, is small, then the arm can only vibrate slightly, which
does not generate diverse body dynamics. Moreover, since the

Table 2 | Comparisons of MSE between the output of the system and

that of the linear regressor for each task.

System output Linear regressor p value

(X ± SD) (X ± SD)

2nd order 1.84 ± 0.05 1.01 ± 0.03 p < 0.001

(×10−7) (×10−6)

10th order 3.77 ± 0.03 5.05 ± 0.11 p < 0.001

(×10−6) (×10−4)

Volterra task 8.89 ± 0.18 9.28 ± 0.11 p < 0.001

(×10−5) (×10−4)

input is linearly scaled to the base rotation range in our setting,
the degree of this scaling changes not only the amplitude of the
rotation but also the speed of the rotation. Considering that the
water friction on the arm shows non-linear dependence on the
velocity and the angle of the compartments (Equations 12, 13,
and 14), the property of the body dynamics would change accord-
ing to the degree of input scaling, R. Accordingly, the performance
of our system would also change for each task. In order to validate
this, we varied R from 15 to 90, and observed how the perfor-
mance of the system changed for each R. Figure 5A shows the
results. We can confirm the different individual error profile with
respect to R for each task. First, small R values (around 15) show
the highest errors; errors gradually start to decrease according to
increases in R values in all tasks. But, for example, in the case of
the 2nd order system, the error starts to increase again at around
R = 30 and has a local maximum at around R = 45. In the case
of the 10th order system, the error just decreases monotonically
as the value of R increases. In the case of the Volterra task, the
error shows the minimum at around R = 55 and start to increase
monotonically as the value of R increases. This suggests that, even
if the mechanical structure of the arm is the same, certain behav-
iors of the arm can reveal especially high computational power in
some tasks, but not in others.

As explained in section 1, our system is essentially classi-
fied as a reservoir computing approach, in which a number of
randomly coupled nodes are usually used as a computational
resource, and where each node has a statistically uniform role.
On the other hand, in our system, due to the intrinsic body struc-
ture, we can expect that there is a specific role for each body
part. Here, we aim to investigate this point in two ways. First,
when running the evaluation phase, we take out the readouts
from one compartment and analyze the error. Note that, in this
analysis, we use the readouts, which are trained with 20 com-
partments. By iterating this procedure for each compartment,
we can investigate how each compartment contributed to the
task performance when the readouts were fully connected. We
call this contribution ratio analysis of the compartments. Second,
we perform the entire experiment (i.e., washout, learning and
evaluation phase) with only 19 compartments by skipping one
compartment, and compare the performance with that obtained
using 20 compartments. The difference with the previous contri-
bution ratio analysis is that the readouts are, in the first place,
trained to maximize the performance with 19 compartments
including the entirely new readout weights. Since the readout

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 5 | (A) Dependence of the performance of the system output (MSE)
on the base rotation range, R, for each task. The plots show the averaged
values of MSE over 20 trials. The error bars show the standard deviation. The
averaged value of MSE of the linear regressor was much higher than that of
the system output with respect to each R value (usually an order of
magnitude higher). (B) Results of the contribution ratio analysis for each task.
The horizontal axis shows the number of the compartment discarded in the

evaluation phase, and the vertical axis shows the contribution ratio (CR). The
plots show the averaged CR values over 20 trials, and the error bars show the
standard deviations. (C) Results of the computational power analysis for each
task. The horizontal axis shows the number of the compartment excluded to
train the readout weights, and the vertical axis shows the performance ratio
(PR). The plots show the averaged PR values over 20 trials, and the error bars
show the standard deviations. See text for the details.

weights are optimized without using a specific compartment, we
can infer back the overall computational power of each com-
partment as a deviation from the original 20 compartment case.
We call this computational power analysis of the compartments.
Hereafter, the base rotation range, R, is fixed to 60 for the
analyses.

In the contribution ratio analysis, the experimental procedure
is the same as that explained in section 2.2, except that the eval-
uation phase is performed by taking out the readouts from a
specific compartment (thus, four nodes are excluded). We iter-
ate this procedure for each compartment by using the same input
time series and body dynamics in a trial and calculate the MSE
for each case. After testing all the compartments, we normalize
them with the maximum MSE collected, and obtain contribu-
tion ratio (CR) for each compartment. If the CR is high for the
compartment, then it implies that this compartment was con-
tributing to the task performance largely when the readouts were
fully connected. Figure 5B shows the result of the contribution
ratio analysis for each task over 20 trials. In the case of the 2nd

order system, although compartments 2, 3, 4, 8, and 9 seem to
have high CRs, the standard deviations for these are also high,
while compartments 1, 6, 19, and 20 have low CRs with low stan-
dard deviations. This suggests that specific compartments, such
as 1, 6, 19, and 20 always contribute less to the task performance,
while the computational role for this task is relatively distributed
throughout the resting compartments, and among them, there is
no specific compartment that consistently has a high contribu-
tion. In the case of the 10th order system and the Volterra task,
the situation is different. There seems to be key compartments
that always show high contributions to the task performance.
In the case of the 10th order system, compartments 16, 17, and
18 show high performance, and in the case of the Volterra sys-
tem, compartments 14 and 15 show high performance. Overall,
these results suggest that our system adopts various strategies in
the performance of computational abilities, according to the task.
One strategy is to distribute the computational role throughout
the entire arm, while the other is to always select and rely on the
motion of specific body parts.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

Next, in the computational power analysis, the experiment is
performed both under the default condition (using 20 compart-
ments) and with the exclusion of a specific compartment when
training the readout weights. This is done by using the same
input time series and body dynamics in a trial for each task. We
calculated the MSEs in the evaluation phase for both cases and
divided the MSE of the case without the specific compartment
by that of the default condition and obtained the performance
ratio (PR) for each task in each trial. Thus, if the PR is larger
than 1.0, it implies that the task performance is worse than in
the default condition, and the value indicates the degree of how
the exclusion of the specific compartment affects the overall task
performance in terms of ratio. Figure 5C shows the result of the
computational power analysis for each task over 20 trials. In the
2nd order system task, we can clearly see that there are high
PR values around the base of the arm (in compartments 1, 2,
3, and 4) suggesting that these compartments contain signifi-
cant information for the performance of this task. Similarly, in
the Volterra task, there are high PR values in compartments 14,
15, and 16. On the other hand, in the 10th order system task,
PR values lower than 1.0 are shown around the tip of the arm
(in compartment numbers higher than 15), suggesting that these
compartments have a negative influence on the performance of
this task. We speculate that this is caused by an overfitting effect
produced by the compartments around the tip of the arm. The
network is too specialized for the learning data and is not able
to generalize to the new (evaluation) data. The reason for this
should be explored in more detail in future work. Overall, we
showed that there are specific regions in the body parts that con-
tain positive or negative information for the performance of the
tasks.

In this section, we first demonstrated that our soft robotic
arm can perform the task to emulate non-linear dynamic systems
by positively exploiting the non-linearity and memory originates
from its body dynamics. We also confirmed that the way the input
is applied (in our case, the amplitude range for the arm move-
ment) significantly affects the computational ability, and its body
parts show specialized roles due to their intrinsic morphologi-
cal structure and corresponding diverse body dynamics, unlike
the conventional reservoir computing approach. In the next sec-
tion, we see how these body dynamics can potentially be used to
control the arm’s motion in a closed-loop manner by embedding
non-linear limit cycles.

3.2. TASK 2: CLOSED-LOOP CONTROL—EMBEDDING NON-LINEAR
LIMIT CYCLES

In this section, we show the results for Task 2. By following the
procedure described in section 2.2.2, we conducted a number
of computer simulations to train the readouts with various val-
ues of the base rotation range R and the degree of white noise
ν. As a result, we heuristically found that the system perfor-
mance is extremely sensitive to the setting of these parameters [as
opposed to the results presented for the simpler and abstract net-
works used in Hauser et al. (2012)]. (As for R, we have already
shown in the previous section that R changes the computational
power of the system significantly.) If these parameters were not
set appropriately, we often observed that, when the system was

switched from the teacher forcing condition to the closed-loop
control, the arm gradually approached the resting state or showed
unrealistic behaviors due to numerical problems. For the latter
case, since we adopt the position control of the base angle, if
the output showed much higher values than that of one timestep
before (for example, if |O(t + 1) − O(t)| > 10, then the arm
would have to rotate its base extremely quickly, namely, larger
than 104deg/s, which is unrealistic in the physical platform),
then, as a result, the simulator showed numerical problems. We
carefully discarded these cases from our experiment. Even if the
system has a high computational power as we saw in the previous
section, the closed-loop setting requires additional care due to the
stability issues. Since the output, which includes the error, is fed
back to the system as input, the error may grow larger and larger
in each simulation timestep.

Figures 6–8 show the typical results we obtained when the
arm does not approach the resting state or the unrealistic behav-
iors mentioned above, for closed-loop control of the Van der Pol
limit cycle, the quadratic limit cycle, and the Lissajous curve,

FIGURE 6 | Results for implementing the Van der Pol limit cycle. At
timestep 5000, the system is switched from the teacher forcing condition
to the closed-loop control (black line). (A) The time series of the lengths of
springs 1, 2, 3, and 4 for all 20 compartments. (B) Comparisons between
the system output (O1(t) and O2(t) (blue lines)) and the target output (x1(t)
and x2(t) (red lines)). (C) Comparisons between the system output (blue
lines) and the target output (red lines) in the O1(t) - O2(t) (x1(t) - x2(t))
plane. The time series from timestep 5000 to timestep 70,000 are overlaid.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

respectively. 13 For the parameters (R, ν), we adopted (R, ν) =
(130, 1.5 × 10−6), (90, 1.0 × 10−6), and (10, 1.0 × 10−11), for
the Van der Pol limit cycle, the quadratic limit cycle, and the
Lissajous curve, respectively. For the Van der Pol limit cycle,
we can see that the system is not implementing the target tra-
jectory (Figures 6B,C), but is rather implementing an irregular
one (Figure 6C). We also observed that the behavior of this
trajectory is not as stable, but rather constantly changes its
trajectory for each cycle, and this change remains throughout
the trial. However, the results for the quadratic limit cycle and
the Lissajous curve show almost a complete fit with the target
trajectory (Figures 7B,C, and 8B,C, respectively). We confirmed

3Strictly speaking, to prove that the embedded trajectory is really a “limit
cycle”, we need to analytically show whether the trajectory is an attractor of
the system. In our case, this is unrealistic because the equation governing the
mechanical system is too complex, and we would have to rely on a heuristic
approach. Accordingly, as we see later, we here call the embedded trajectory a
“limit cycle” if and only if the trajectory can stay at the target limit cycle for
1,000,000 timesteps and the trajectory has a certain attraction when perturbed
externally.

FIGURE 7 | Results for implementing the quadratic limit cycle. At
timestep 5000, the system is switched from the teacher forcing condition
to the closed-loop control (black line). (A) The time series of the lengths of
springs 1, 2, 3, and 4 for all 20 compartments. (B) Comparisons between
the system output (O1(t) and O2(t) (blue lines)) and the target output (x1(t)
and x2(t) (red lines)). (C) Comparisons between the system output (blue
lines) and the target output (red lines) in the O1(t) - O2(t) (x1(t) - x2(t))
plane. The time series from timestep 5000 to timestep 70,000 are overlaid.

that these trajectories were stable enough to run for 1,000,000
timesteps without leaving the trajectories of the target limit cycles.
These results suggest that the task performance of the closed-loop
control is not only restricted to the degree of non-linearity or
memory required for the limit cycles but is also dependent on how
the arm is driven. These preferences are caused by the intrinsic
structure of the body. From now on, by using the system embed-
ding the quadratic limit cycle (Figure 7) and the Lissajous curve
(Figure 8), we move on to analyze the stability of the closed-loop
controls and the role of each body part in these limit cycles as we
saw in the previous section.

One important aspect to evaluate the embedded closed-loop
control is its robustness against external perturbations. To test
this, we added white noise, δO1(t) and δO2(t), in the range of
ε (δO1,2(t) ∈[−ε, ε]) to the two motor outputs of the embed-
ded control, such as O1(t) + δO1(t) and O2(t) + δO2(t), during
t = 6000–7000 timesteps for each as an example. Figure 9 shows
the typical results of the performance of the embedded quadratic
limit cycle regarding each noise level (ε = 10.0, 5.0, and 1.0).

FIGURE 8 | Results for implementing the Lissajous curve. At timestep
5000, the system is switched from the teacher forcing condition to the
closed-loop control (black line). (A). The time series of the lengths of
springs 1, 2, 3, and 4 for all 20 compartments. (B) Comparisons between
the system output (O1(t) and O2(t) (blue lines)) and the target output
(x1(t) and x2(t) (red lines)). (C) Comparisons between the system output
(blue lines) and the target output (red lines) in the O1(t) - O2(t) (x1(t) - x2(t))
plane. The time series from timestep 5000 to timestep 70,000 are overlaid.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 9 | Typical examples showing the performance of the embedded

quadratic limit cycle with external noise. The white noises, δO1(t) and
δO2(t), in the range of ε (δO1,2(t) ∈[−ε, ε]) are added to the motor outputs
during t = 6000 − 7000 timesteps. (A) Typical trajectories of O1(t) and O2(t)

compared with the target time series. The upper, middle, and lower
figures show the case with ε = 10.0, 5.0, and 1.0, respectively. (B) The
corresponding plots in the O1(t) - O2(t) (x1(t) - x2(t)) plane. For each noise
level, the trajectories are overlaid from 5000 to 30,000 timesteps.

We can clearly see that even if the noise level is relatively large,
such as ε = 10.0, the trajectories eventually recover to the limit
cycle, which suggests that the embedded quadratic limit cycle is
robust against external noise. We also confirmed that, even if we
elongate the duration of time for the added noise, the system can
successfully recover its performance. Note that, although the per-
turbed trajectories came back toward the limit cycle (Figure 9B),
the oscillation phase was often shifted (Figure 9A). This was
mainly caused by the relatively long duration of time for adding
noise. We observed that by shortening this duration, this phase
shift tendency can be reduced accordingly. Next, let us see the case
for the embedded Lissajous curve. Compared to the quadratic
limit cycle case, the system is less robust. When ε is more than
around 0.3, we often observed that the trajectories go out from
the limit cycle and never come back. Figure 10 shows the typi-
cal results of the performance of the embedded Lissajous curve
for each noise level less than 0.3 (ε = 0.3, 0.15, and 0.1). If the
noise level was less than around 0.3, we observed the system per-
formance recovered toward the limit cycle as in the quadratic

limit cycle case. However, even in this noise range, we some-
times observed an unstable trajectory as shown in Figure 11. In
addition, similarly to the quadratic limit cycle case, even if the per-
turbed trajectories came back toward the limit cycle (Figure 10B),
the oscillation phase was often shifted (Figure 10A).

Now, we move on to see the role of each body part (compart-
ments or springs) as we saw in Task 1. Since the motor outputs
and the body dynamics are reciprocally coupled through the feed-
back loop, the scheme we adopted in the Task 1 case, such as
skipping one compartment, will cause unrealistic behavior of the
arm due to numerical problems, as explained previously, and can-
not always be adopted to appropriately evaluate the contributions
of the body parts. Accordingly, we aim to investigate the contri-
bution of each body part in terms of robustness against noise.
Namely, we evaluate how the noise added to each body part affects
the overall system performance. As is obvious from the system
construction (Equations 24, 25, and 26) for the closed-loop con-
trol, the slight difference in the motor outputs at timestep t can
affect the corresponding sensory time series, i.e., the lengths of the

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 10 | Typical examples showing the performance of the

embedded Lissajous curve with external noise. The white noises, δO1(t)
and δO2(t), in the range of ε (δO1,2(t) ∈[−ε, ε]) are added to the motor
outputs during t = 6000 − 7000 timesteps. (A) Typical trajectories of O1(t)

and O2(t) compared with the target time series. The upper, middle, and
lower figures show the case with ε = 0.3, 0.15, and 0.1, respectively. (B) The
corresponding plots in the O1(t) - O2(t) (x1(t) - x2(t)) plane. For each noise
level, the trajectories are overlaid from 5000 to 30,000 timesteps.

springs, and this effect influences the motor outputs at timestep
t + 1. That is, according to the slight difference in the motor out-
puts, δO1(t) and δO2(t), the sensory time series, sij(t), will deviate
from the original expressed as s′ij(t) = sij(t) + δsij(t), where s′ij(t)
is the actual spring length at timestep t. Then, from Equation (26),
the outputs at timestep t + 1 can be simply expressed as:

O′(t + 1) =
20∑

j = 1

4∑
i = 1

w
ij
outs

′
ij(t), (30)

=
20∑

j = 1

4∑
i = 1

w
ij
out

(
sij(t) + δsij(t)

)
, (31)

= O(t + 1) +
20∑

j = 1

4∑
i = 1

w
ij
outδsij(t), (32)

= O(t + 1) + δO(t + 1), (33)

where O′(t) and O(t) are the actual and original motor outputs at
timestep t, respectively. Note that for simplicity we dropped the
index expressing two outputs. Since the deviation of the motor

outputs is expressed as δO(t + 1) = ∑20
j=1

∑4
i=1 w

ij
outδsij(t), we

can investigate how the noise applied to a single spring at timestep
t can affect the motor outputs at timestep t + 1 by fixing the other
springs as the original. By investigating how δO(t + 1) evolves
through time, we can also evaluate the effect of the noise against
the overall system performance.

Now, let us assume that the noise was applied to the sen-
sory value of the spring i in compartment j at timestep t by
fixing the other sensory values as the original. Then, the deviation
of the motor output at timestep t + 1 can be simply expressed

as δO(t + 1) = w
ij
outδsij(t), which straight-forwardly means that

the degree of δO(t + 1) is only linearly dependent on the read-
out weight of the focused spring. Therefore, we can infer and
compare how the noise added to each sensory value affects the

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 11 | Unstable trajectory of the embedded Lissajous curve with

external noise in the range of ε = 0.2. The plot is in the O1(t) - O2(t)
(x1(t) - x2(t)) plane. The trajectories are overlaid from timestep 5000 to
timestep 30,000. The target trajectory is also shown as a reference.

motor output at timestep t + 1, regarding the fixed noise value,
only by checking the weight distributions. Simply saying, if the

value of |wij
out| is large, then the effect of the noise for spring

i in compartment j at timestep t on the outputs for timestep
t + 1 is also large, which means this spring makes a big con-
tribution to the transition of the outputs for timestep t + 1.
Figure 12 shows the readout weight distributions of wout,1 and
wout,2 for the embedded quadratic limit cycle (Figure 12A) and
Lissajous curve (Figure 12B). We can see that the distributions
show a characteristic pattern for each limit cycle. For exam-
ple, in the embedded quadratic limit cycle case, the value of
the weights often seems to have a symmetric and correspond-
ing distribution over springs in each compartment (e.g., between
spring 1,2 and spring 3,4 in compartment 3–13), and even over
wout,1 and wout,2 (Figure 12A). In the embedded Lissajous curve
case, this type of symmetric and corresponding distribution
can also be found within each weight, but not over wout,1 and
wout,2 (Figure 12B). In addition, for the distribution of wout,1,
the value of the weights is almost zero in compartment 7–20,
which means the external noise applied to these compartments
at timestep t will not affect the motor outputs at timestep t + 1
very much.

To systematically proceed with this line of analysis for the
overall system performance, we need to confirm whether the
large deviation in the sensory value at a specific time also leads
to the large deviation of motor outputs over time. Although this
seems to be trivial in our system, it is not trivial in general because
the transition δO(t) → δsij(t) depends on the construction of
the body (for example, imagine the sensory value that exhibits

a saturation)4. To evaluate this, we added a small white noise in
the degree of ε to the motor outputs only at timestep 6000, and
investigated how the differences in the motor outputs, |δO(t)|,
and the spring lengths, |δsij(t)|, carry on over time according to
the degree of ε by measuring the mean square errors between
the actual and original motor commands, such as MSEO1 =
1
T

∑T
t=1(O′

1(t) − O1(t))2, MSEO2 = 1
T

∑T
t=1(O′

2(t) − O2(t))2,
and between the actual and original sensory time series as

MSEspring = 1
80×T

∑T
t=1

∑20
j=1

∑4
i=1(s′ij(t) − sij(t))2, where

T = 500 throughout this experiment. Note that we consider only
a small range of noise around ε ∈ [0.005, 0.1], since if the noise
level is too large, the trajectories often show phase shifts as we saw
in the previous analysis (Figures 9, 10), which make the measures
miss capturing the intended difference even if the trajectories
were in the original limit cycles. Figure 13A shows the results of
the averaged MSEO1, MSEO2, and MSEspring for each embedded
limit cycle. We can clearly confirm that according to the increase
in the noise level ε, the value of each measure also increases,
which means that the large deviation of the motor outputs at a
specific time also leads to a large deviation in the motor outputs
over time. In addition, in the embedded Lissajous curve case,
MSEO1 is larger than MSEO2 for each ε value, which suggests
that the output O1(t) is more sensitive than O2(t) (Figure 13A
(right)).

Now, we are ready to investigate the role of each body
part. According to the results shown in Figure 13A, the weights
assigned for each spring directly reflect how the noise added
to each sensory value affects the overall system performance.
To correspond to the results in Figure 13A, we first calculated

dw =
√

(w
ij
out,1)

2 + (w
ij
out,2)

2 for each spring i in each compart-

ment j, since the size of the noise to the motor output can be

expressed as δsij

√
(w

ij
out,1)

2 + (w
ij
out,2)

2 = √
δO1(t)2 + δO2(t)2 ≤

ε by scaling the size of δsij in the appropriate range. Thus, the
value of dw directly reflects the contribution of each spring to
the overall system performance regarding the fixed noise value.
Figure 13B shows the value of dw for each spring i accord-
ing to each compartment for the embedded quadratic limit
cycle and Lissajous curve. Interestingly, the value of dw for
each spring is almost the same within each compartment for
both limit cycles, which means that the contribution of each
body part can be expressed at the compartment level. In the
case of the quadratic limit cycle, the value of dw shows almost
a zig–zag pattern and gradually decreases when the compart-
ment number increases from the base toward the tip [Figure 13B
(left)]. In the case of the Lissajous curve, only the compart-
ment around the base shows high values for dw [Figure 13B
(right)]. These results suggest that, according to the limit cycles
embedded, the sensitivity and degree to affect the overall system
performance against the noise show different tendencies for each
body part.

4Theoretically, this is to analyze the basin structure surrounding the original
trajectory. Due to the number of parameters, instead of analyzing the basin
structure according to δO1(t) and δO2(t), we analyzed the basin volume in
terms of the error measures introduced later according to |δO(t)|.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 15

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 12 | (A) Plots showing the readout weight distribution for the quadratic limit cycle. (B) Plots showing the readout weight distribution for the Lissajous
curve. For each figure, the upper and lower graphs show wout,1 and wout,2, respectively.

In this section, we have investigated whether our soft robotic
arm can embed limit cycles in a closed-loop manner, and
have shown that several properties, such as the system perfor-
mance, the robustness against external noise, and the role of
each body part differ according to which limit cycle to embed.
Since we are adjusting only the linear readouts by using the
same body, we can speculate that these specific properties cor-
responding to each limit cycle are caused by the intrinsic body
structure.

4. DISCUSSION
In this paper, by using the dynamic simulator of the soft robotic
arm inspired by the octopus, we demonstrated that the robot’s
body dynamics are already capable of emulating non-linear
dynamical systems and embedding non-linear limit cycles in
a closed-loop manner by only adjusting the fixed linear read-
outs. The arm we used did not contain any rigid components.
Instead, it is soft, including only springs, which are aligned to
mimic the muscular structure of the octopus. This resulted in

several compartments, each of which had a specific muscular-
hydrostat property, which enforced the springs to be coupled
in well-defined, but constrained, manner. In addition, the arm
was assumed to be immersed in an underwater environment,
in which the friction constants were identified via CFD simu-
lations. All these factors, including this intrinsic body structure
and its interaction with the environment, generated diverse body
dynamics, including rich non-linearity and memory. The tech-
nique presented here allowed us to exploit these properties as
computational resources. In addition, it is possible to infer the
amount of non-linearity and memory that can be potentially
exploited for information processing in terms of the task perfor-
mance. For roboticists, this may open up the way to quantitatively
characterize which control is efficient for which body design, as
well as outsourcing the control load to the body parts. Although
we kept the arm’s mechanical structure as bio-inspired as possible
throughout the analyses, it would also be meaningful to inves-
tigate how the information processing capability would change
if the arm’s mechanical properties (such as stiffness, damping,

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

FIGURE 13 | (A) Plots showing the averaged MSEspring, MSEO1, and
MSEO2 according to each noise level ε for the embedded quadratic limit
cycle (left) and Lissajous curve (right). Each MSE value is averaged over 15
trials by adding a randomly chosen value from [−ε, ε] to two outputs at
timestep 6000. Note that both plots are in log-log plots. (B) Plots showing
dw calculated by using the weights wout,1 and wout,2 for each spring i in
each compartment for the embedded quadratic limit cycle (left) and
Lissajous curve (right). See the text for details.

drag parameters) are altered. This line of experimentation will be
included in our future work.

For the emulation tasks of non-linear dynamical systems,
in addition to its high computational power, we showed that
each body part has a specific role according to the task type.
Additionally, for the closed-loop control tasks, we showed that
the arm prefers some limit cycles over others (i.e., the quadratic
limit cycle and the Lissajous curve were possible to embed, while
the Van der Pol limit cycle was not). These obvious and specific
coherencies are usually not observed in conventional reservoir
computing where the reservoir consists of randomly coupled
non-linear computational elements, suggesting that these prop-
erties originate from the intrinsic body structure.

From a biological systems point of view, this result seems
natural. In nature, animals adapt to their respective ecologi-
cal niches, where they evolve their body morphology to survive
within their environment. The octopus is not an exception; its
specific body structure is specialized to permit survival in a com-
plicated underwater environment, enabling it to behave efficiently
in particular ways. In this context, it would be interesting to
investigate whether the arm could embed more biologically plau-
sible behaviors in future work. For example, as we mentioned
earlier, it is well known that the octopus adopts a specific strat-
egy for reaching, called bend propagation (Gutfreund et al., 1996;
Gutfreund, 1998; Sumbre et al., 2001; Yekutieli et al., 2005a,b).
In this specific motion, it is suggested that the CNS only ini-
tiates the motion and all the muscle activations are handled at
the PNS level (Gutfreund et al., 1996; Gutfreund, 1998; Sumbre
et al., 2001). Several researches have investigated this behavior by
directly extracting the muscle contraction patterns from the real
octopus, and by externally applying these patterns to the octopus
arm models (Gutfreund et al., 1996; Gutfreund, 1998; Yekutieli
et al., 2005a,b). On this point, our technique presented here may
reveal further insights on this overall scheme by including the role
of the arm’s body dynamics. Considering that the PNS does not
have a plasticity (Kandel et al., 2000), it would be worth inves-
tigating how the arm’s body dynamics, together with the PNS,
modeled as a linear and static feedback loop onto the arm, embeds
the motor patterns of bend propagation according to the initia-
tion command sent by the CNS. This line of experiment can be
investigated in future work.

There exists a growing number of documented cases in nature,
which support that certain morphologies found in animals are
facilitating a kind of computation. This observation is usually
characterized by the term morphological computation. For exam-
ple, the non-linear, non-homogeneous spatial arrangement of the
ommatidia in insect eyes are more dense toward the front than
on the side in order to compensate for motion parallax, which
is non-linear (Franceschini et al., 1992). The morphology coun-
teracts the non-linearity introduced by the parallax; hence, the
complexity of the computational tasks to steer through obstacles
based on the visual input is reduced. Since the resulting task for
the brain is now simpler and not non-linear anymore due to the
“clever” morphology, one could argue that part of the computa-
tion is conducted by the morphology. While this is a very simple
case of a morphological computation, since the given morphol-
ogy represents only a static, non-linear mapping, the concept does
go further, if we consider, for example, soft, compliant bodies.
Such bodies exhibit interesting dynamic properties, such as fading
memory and non-linearity. Examples of such complex computa-
tions outsourced to the physical layer are passive walkers (Collins
et al., 2005). Their design pushes the limits of what can be out-
sourced to the physical body, in so far that no controller (i.e.,
CPU) is needed at all. The mechanical design inspired by the mus-
culoskeletal structure enabling “preflexes”, which can self-stabilize
movements through its elastic material properties, also gives such
an example (Brown et al., 1995; Blickhan et al., 2007; Proctor
and Holmes, 2010). Their morphology (i.e., the mechanical, soft
design and the environment) is able to “do” all the computations
needed to walk robustly. While such robots are impressive, their

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 17

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

disadvantage is their inflexibility by restricting the computation
to a fixed physical body only. In a biological system, a sensible
distribution of the computation between the body and the brain
is more probable. Despite the number of biological examples and
the series of robots, which have been built considering the concept
of morphological computation in their design, there are still a few
studies characterizing the concept within a quantitative frame-
work (Hauser et al., 2011, 2012; Füchslin et al., 2013). In this
context, we believe that the approach presented here would be
one of the interesting directions for further study.

FUNDING
This work was supported by the European Commission in
the ICT-FET OCTOPUS Integrating Project (EU project FP7-
231608), and was partially supported by JSPS Postdoctoral
Fellowships for Research Abroad.

ACKNOWLEDGMENTS
We would like to thank Stefan Häusler, Tao Li, and
Junichi Kuwabara for fruitful discussions and helpful
suggestions.

REFERENCES
Atiya, A. F., and Parlos, A. G. (2000).

New results on recurrent network
training: unifying the algorithms
and accelerating convergence. IEEE
Trans. Neural Netw. 11, 697–709.
doi: 10.1109/72.846741

Blickhan, R., Seyfarth, A., Geyer, H.,
Grimmer, S., Wagner, H., and
Gunther, M. (2007). Intelligence by
mechanics. Philos. Trans. R. Soc. A
Math. Phys. Eng. Sci. 365, 199–220.
doi: 10.1098/rsta.2006.1911

Brown, E., Rodenberg, N., Amend, J.,
Mozeika, A., Steltz, E., Zakin, M. R.,
et al. (2010). Universal robotic
gripper based on the jamming of
granular material. Proc. Natl. Acad.
Sci. U.S.A. 107, 18809–18814. doi:
10.1073/pnas.1003250107

Brown, I. E., Scott, S. H., and Loeb,
G. E. (1995). Preflexes – pro-
grammable, high-gain, zero-delay
intrinsic responses of perturbed
musculoskeletal systems. Soc.
Neurosci. Abst. 21, 562.9.

Caluwaerts, K., D’Haene, M.,
Verstraeten, D., and Schrauwen,
B. (2013). Locomotion without a
brain : physical reservoir computing
in tensegrity structures. Artif. Life
19, 35–66. doi: 10.1162/ARTL_a_
00080

Caluwaerts, K., and Schrauwen, B.
(2011). “The body as a reservoir:
locomotion and sensing with lin-
ear feedback,” in Proceedings of
the 2nd International Conference on
Morphological Computation (ICMC
2011), (Venice), 45–47.

Collins, S. H., Wisse, M., Ruina, A., and
Tedrake, R. (2005). Efficient bipedal
robots based on passive-dynamic
walkers. Science 307, 1082–1085.
doi: 10.1126/science.1107799

Feinstein, N., Nesher, N., and Hochner,
B. (2011). Functional morphology
of the neuromuscular system of the
octopus vulgaris arm. Vie et Milieu
61, 219–229.

Franceschini, N., Pichon, J. M., Blanes,
C., and Brady, J. M. (1992). From
insect vision to robot vision. Philos.
Trans. Biol. Sci. 337, 283–294. doi:
10.1098/rstb.1992.0106

Füchslin, R. M., Dzyakanchuk, A.,
Flumini, D., Hauser, H., Hunt,
K. J., Luchsinger, R. H., et al.
(2013). Morphological computa-
tion and morphological control:
steps towards a formal theory and
applications. Artif. life 19, 9–34. doi:
10.1162/ARTL_a_00079

Gutfreund, Y. (1998). Patterns of
arm muscle activation involved in
octopus reaching movements. J.
Neurosci. 18, 5976–5987.

Gutfreund, Y., Flash, T., Yarom, Y.,
Fiorito, G., Segev, I., and Hochner,
B. (1996). Organization of octo-
pus arm movements: a model
system for studying the control
of flexible arms. J. Neurosci. 16,
7292–7307.

Hauser, H., Ijspeert, A. J., Füchslin,
R. M., Pfeifer, R., and Maass, W.
(2011). Towards a theoretical foun-
dation for morphological compu-
tation with compliant bodies. Biol.
Cybern. 105, 355–370. doi: 10.1007/
s00422-012-0471-0

Hauser, H., Ijspeert, A. J., Füchslin,
R. M., Pfeifer, R., and Maass, W.
(2012). The role of feedback in
morphological computation with
compliant bodies. Biol. Cybern. 106,
1–12. doi: 10.1007/s00422-012-
0516-4

Ijspeert, A. J. (2001). A connection-
ist central pattern generator for
the aquatic and terrestrial gaits
of a simulated salamander. Biol.
Cybern. 83, 331–348. doi: 10.1007/
s004220000211

Jaeger, H. (2002). Tutorial on training
recurrent neural networks, covering
bptt, rtrl, ekf and the “echo state
network” approach. Technical
Report 159, German National
Research Center for Information
Technology.

Jaeger, H. (2003). “Adaptive nonlinear
system identification with echo state
networks,” in Advances in Neural
Information Processing Systems,
eds S. Becker, S. Thrun, and K.
Obermayer (Cambridge, MA: MIT
Press), 593–600.

Jaeger, H., and Haas, H. (2004).
Harnessing nonlinearity: predicting

chaotic systems and saving energy
in wireless communication. Science
314, 78–80. doi: 10.1126/science.
1091277

Kandel, E. R., Schwartz, J. H., and
Jessell, T. M. (2000). Principles
of Neural Science. New York, NY:
McGraw-Hill, Health Professions
Division.

Kang, R., Branson, D. T., Guglielmino,
E., and Caldwell, D. G. (2012).
Dynamic modeling and control of
an octopus inspired multiple con-
tinuum arm robot. Comput. Math.
Appl. 64, 1004–1016. doi: 10.1016/j.
camwa.2012.03.018

Kang, R., Kazakidi, A., Guglielmino,
E., Branson, D. T., Tsakiris,
D. P., Ekaterinaris, J. A., et al.
(2011). “Dynamic model of a
hyper-redundant, octopus-like
manipulator for underwater appli-
cations,” in Proceedings of 2011
IEEE/RSJ International Conference
on Intelligent Robots and Systems
(IROS), (San Francisco, CA),
4054–4059. doi: 10.1109/IROS.
2011.6094468

Kazakidi, A., Vavourakis, V.,
Pateromichelakis, N., Ekaterinaris,
J. A., and Tsakiris, D. P. (2012).
“Hydrodynamic analysis of
octopus-like robotic arms,”
in Proceedings of 2012 IEEE
International Conference on Robotics
and Automation (ICRA), (Saint
Paul, MN), 5295–5300. doi:
10.1109/ICRA.2012.6225037

Khalil, H. K. (2002). Nonlinear Systems.
Upper Saddle River, NJ: Prentice
Hall.

Kier, W. M., and Curtin, N. A. (2002).
Fast muscle in squid (loligo pealei):
contractile properties of a special-
ized muscle fibre type. J. Exp. Biol.
205, 1907–1916.

Kier, W. M., and Smith, K. K. (1985).
Tongues, tentacles and trunks: the
biomechanics of movement in
muscular-hydrostats. Zool. J. Linn.
Soc. 83, 307–324. doi: 10.1111/j.
1096-3642.1985.tb01178.x

Kuwabara, J., Nakajima, K., Kang,
R., Branson, D. T., Guglielmino,
E., Caldwell, D. G., et al. (2012).

“Timing-based control via echo
state network for soft robotic
arm,” in Proceedings of the 2012
International Joint Conference
on Neural Networks (IJCNN),
(Brisbane), 1–8. doi: 10.1109/
IJCNN.2012.6252774

Laschi, C., Mazzolai, B., Cianchetti,
M., Margheri, L., Follador, M.,
and Dario, P. (2012). A soft robot
arm inspired by the octopus. Adv.
Robot. 26, 709–727. doi: 10.1163/
156855312X626343

Laschi, C., Mazzolai, B., Mattoli, V.,
Cianchetti, M., and Dario, P. (2009).
Design of a biomimetic robotic
octopus arm. Bioinspir. Biomim.
4:015006. doi: 10.1088/1748-3182/
4/1/015006

Li, T., Nakajima, K., Calisti, M.,
Laschi, C., and Pfeifer, R. (2012).
“Octopus-inspired sensorimotor
control of a multi-arm soft robot,”
in Proceedings of 2012 International
Conference on Mechatronics and
Automation (ICMA), (Chengdu),
948–955. doi: 10.1109/ICMA.2012.
6283271

Li, T., Nakajima, K., and Cianchetti,
M. (2011a). “Finding structure in
deadtime,” in Proceedings of the
2nd International Conference on
Morphological Computation (ICMC
2011), (Venice), 47–49.

Li, T., Nakajima, K., Kuba, M., Gutnick,
T., Hochner, B., and Pfeifer, R.
(2011b). From the octopus to soft
robots control: an octopus inspired
behavior control architecture
for soft robots. Vie et Milieu 61,
211–217.

Li, T., Nakajima, K., and Pfeifer, R.
(2013). “Online learning technique
for behavior switching in a soft
robotic arm,” in Proceedings of 2013
IEEE International Conference on
Robotics and Automation (ICRA),
(Karlsruhe), 1288–1294.

Lieber, R. (2002). Skeletal Muscle
Structure, Function, and Plasticity:
The Physiological Basis of
Rehabilitation. Philadelphia, PA:
Lippincott Williams and Wilkins.

Lukoševičius, M., and Jaeger, H. (2009).
Reservoir computing approaches to

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 18

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Nakajima et al. A soft body as a reservoir

recurrent neural network training.
Comput. Sci. Rev. 3, 127–149.

Maass, W., Natschlaeger, T., and
Markram, H. (2002). Real-time
computing without stable states:
a new framework for neural com-
putation based on perturbations.
Neural Comput. 14, 2531–2560. doi:
10.1162/089976602760407955

Mazzolai, B., Laschi, C., Cianchetti, M.,
Patane, F., Bassi-Luciani, L., Izzo,
I., et al. (2007). “Biorobotic inves-
tigation on the muscle structure of
an octopus tentacle,” in Proceedings
of the 29th Annual International
Conference of the IEEE EMBS,
(Lyon), 1471–1474.

Nakajima, K., Hauser, H., Kang, R.,
Guglielmino, E., Caldwell, D. G.,
and Pfeifer, R. (2013). “Computing
with a muscular-hydrostat sys-
tem,” in Proceedings of 2013
IEEE International Conference on
Robotics and Automation (ICRA),
(Karlsruhe), 1496–1503.

Nakajima, K., Li, T., Kang, R.,
Guglielmino, E., Caldwell, D. G.,
and Pfeifer, R. (2012a). “Local
information transfer in soft robotic
arm,” in Proceedings of 2012
IEEE International Conference on
Robotics and Biomimetics (ROBIO),
(Guangzhou), 1273–1280. doi:
10.1109/ROBIO.2012.6491145

Nakajima, K., Ngouabeu, A. M. T.,
Miyashita, S., Göldi, M., Füchslin,
R. M., and Pfeifer, R. (2012b).
Morphology-induced collective
behaviors: dynamic pattern for-
mation in water-floating elements.
PLoS ONE 7:e37805. doi: 10.1371/
journal.pone.0037805

Nakajima, K., Li, T., Kuppuswamy, N.,
and Pfeifer, R. (2011a). “Harnessing
the dynamics of a soft body
with “timing”: octopus inspired
control via recurrent neural net-
works,” in Proceedings of 2011
15th International Conference
on Advanced Robotics (ICAR),
(Tallinn), 277–284.

Nakajima, K., Li, T., and Pfeifer, R.
(2011b). “Timing and behavioral
efficiency in controlling a soft
body: a case study in octopus
reaching behavior,” in Proceedings
of the 2nd International Conference
on Morphological Computation
(ICMC 2011), (Venice),
132–134.

Nakajima, K., Li, T., Sumioka, H.,
Cianchetti, M., and Pfeifer, R.
(2011c). “Information theo-
retic analysis on a soft robotic
arm inspired by the octopus,”
in Proceedings of 2011 IEEE
International Conference on
Robotics and Biomimetics (ROBIO),
(Phuket), 110–117. doi: 10.1109/
ROBIO.2011.6181271

Pfeifer, R., and Bongard, J. (2006).
How the Body Shapes the Way We
Think: A New View of Intelligence.
Cambridge, MA: The MIT Press.

Pfeifer, R., Lungarella, M., and Iida, F.
(2007). Self-organization, embod-
iment, and biologically inspired
robotics. Science 318, 1088–1093.
doi: 10.1126/science.1145803

Pfeifer, R., Lungarella, M., and Iida,
F. (2012). The challenges ahead
for bio-inspired ‘soft’ robotics.
Commun. ACM 55, 76–87. doi:
10.1145/2366316.2366335

Proctor, J., and Holmes, P. (2010).
Reflexes and preflexes: on the role
of sensory feedback on rhythmic
patterns in insect locomotion. Biol.
Cybern. 102, 513–531. doi: 10.1007/
s00422-010-0383-9

Righetti, L., and Ijspeert, A. J. (2008).
“Pattern generators with sen-
sory feedback for the control
of quadruped locomotion,” in
Proceedings of IEEE International
Conference on Robotics and
Automation (ICRA), (Pasadena,
CA), 819–824.

Schrauwen, B., Verstraeten, D., and
Campenhout, J. V. (2007). “An
overview of reservoir computing:
theory, applications and imple-
mentations,” in Proceedings of
the 15th European Symposium on
Artificial Neural Networks, (Bruges),
471–482.

Shepherd, R. F., Ilievski, F., Choi, W.,
Morin, S. A., Stokes, A. A., Mazzeo,
A. D., et al. (2011). Multigait soft
robot. Proc. Natl Acad. Sci. U.S.A.
108, 20400–20403. doi: 10.1073/
pnas.1116564108

Shinohara, M., Sabra, K., Gennisson,
J. L., Fink, M., and Tanter, M.
(2010). Real-time visualization of
muscle stiffness distribution with
ultrasound shear wave imaging
during muscle contraction. Muscle
Nerve 42, 438–441. doi: 10.1002/
mus.21723

Smith, K. K., and Kier, W. M. (1989).
Trunks, tongues, and tentacles:
moving with skeletons of muscle.
Am. Sci. 77, 28–35.

Steltz, E., Mozeika, A., Rodenberg,
N., Brown, E., and Jaeger, H. M.
(2009). “Jsel: jamming skin enabled
locomotion,” in Proceedings of
IEEE/RSJ International Conference
on Intelligent Robots and Systems
(IROS), (St. Louis), 5672–5677.

Sumbre, G., Fiorito, G., Flash, T., and
Hochner, B. (2005). Motor con-
trol of flexible octopus arms. Nature
433, 595–596. doi: 10.1038/433595a

Sumbre, G., Gutfreund, Y., Fiorito,
G., Flash, T., and Hochner,
B. (2001). Control of octopus
arm extension by a peripheral
motor program. Science 293,
1845–1848. doi: 10.1126/science.
1060976

Sumioka, H., Hauser, H., and Pfeifer,
R. (2011). “Computation with
mechanically coupled springs for
compliant robots,” in Proceedings
of the IEEE/RSJ International
Conference on Intelligent Robots and
Systems (IROS), (San Francisco,
CA), 4168–4173.

Taylor, J., and Kier, W. (2003).
Switching skeletons: hydrostatic
support in molting crabs. Science
301, 209–210. doi: 10.1126/science.
1085987

Trivedi, D., Rahn, C. D., Kier, W. M.,
and Walker, I. D. (2008). Soft
robotics: biological inspiration,
state of the art, and future research.
Appl. Bionics Biomec. 5, 99–117. doi:
10.1080/11762320802557865

Vavourakis, V., Bampasakis, D.,
Kazakidi, A., Pateromichelakis, N.,
Ekaterinaris, J. A., and Tsakiris,
D. P. (2012a). “Generation of
primitive behaviors for non-linear
hyperelastic octopus-inspired
robotic arm,” in Proceedings of
IEEE RAS/EMBS International
Conference on Biomedical Robotics
and Biomechatronics (BioRob 2012),
(Roma), 725–730.

Vavourakis, V., Kazakidi, A., Tsakiris,
D. P., and Ekaterinaris, J. A.
(2012b). A nonlinear dynamic finite
element approach for simulating
muscular hydrostats. Comput.
Meth. Biomech. Biomed. Engin.
doi: 10.1080/10255842.2012.723702.
[Epub ahead of print].

Verstraeten, D., Schrauwen, B., Haene,
M. D., and Stroobandt, D. (2007).
An experimental unification of
reservoir computing methods.
Neural Netw. 20, 391–403. doi:
10.1016/j.neunet.2007.04.003

Yekutieli, Y., Sagiv-Zohar, R.,
Aharonov, R., Engel, Y., Hochner,
B., and Flash, T. (2005a). Dynamic
model of the octopus arm. i. biome-
chanics of the octopus reaching
movement. J. Neurophysiol. 94,
1443–1458. doi: 10.1152/jn.00684.
2004

Yekutieli, Y., Sagiv-Zohar, R., Hochner,
B., and Flash, T. (2005b). Dynamic
model of the octopus arm. ii.
control of reaching movements. J.
Neurophysiol. 94, 1459–1468. doi:
10.1152/jn.00685.2004

Zheng, T., Branson, D. T., Kang,
R., Cianchetti, M., Guglielmino,
E., Follador, M., et al. (2012).
“Dynamic continuum arm model
for use with underwater robotic
manipulators inspired by octopus
vulgaris,” In Proceedings of 2012
IEEE International Conference on
Robotics and Automation (ICRA),
(Saint Paul, MN), 5289–5294. doi:
10.1109/ICRA.2012.6224685

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 26 January 2013; accepted: 17
June 2013; published online: 09 July
2013.
Citation: Nakajima K, Hauser H, Kang
R, Guglielmino E, Caldwell DG and
Pfeifer R (2013) A soft body as a reser-
voir: case studies in a dynamic model of
octopus-inspired soft robotic arm. Front.
Comput. Neurosci. 7:91. doi: 10.3389/
fncom.2013.00091
Copyright © 2013 Nakajima, Hauser,
Kang, Guglielmino, Caldwell and
Pfeifer. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 91 | 19

http://dx.doi.org/10.3389/fncom.2013.00091
http://dx.doi.org/10.3389/fncom.2013.00091
http://dx.doi.org/10.3389/fncom.2013.00091
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm
	Introduction
	Materials and Methods
	Dynamic Model of a Soft Robotic arm Inspired by the Octopus
	Experimental Procedure
	Task 1: non-linear dynamical system emulation tasks
	Task 2: closed-loop control—embedding non-linear limit cycles

	Results
	Task 1: Non-Linear Dynamical System Emulation Tasks
	Task 2: Closed-Loop Control—Embedding Non-Linear Limit Cycles

	Discussion
	Funding
	Acknowledgments
	References

