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Cells of the immune system have been shown to infiltrate the cochlea after acoustic
trauma or ototoxic drug treatment; however, the contribution of the immune system to
hair cell loss in the inner ear is incompletely understood. Most studies have concentrated
on the immediate innate response to hair cell damage using CD45 as a broad marker for
all immune cells. More recent studies have used RNA sequencing, GeneChip arrays and
quantitative PCR to analyze gene expression in the entire cochlea after auditory trauma,
leading to a better understanding of the chemokines and cytokines that attract immune
cells to the cochlea. Immune suppression by blocking cytokines or immune receptors
has been proven to suppress hair cell damage. However, it is now understood that
not all immune cells are detrimental to the cochlea. CX3CR1+ resident macrophages
protect hair cells from damage mediated by infiltrating immune cells. Systemically, the
immune response is associated with both protection and pathology, and it has been
implicated in the regeneration of certain tissues after injury. This review focuses on the
studies of immune cells in various models of hearing loss and highlights the steps that
can be taken to elucidate the connection between the immune response and hearing
loss. The interplay between the immune system and tissues that were previously thought
to be immune privileged, such as the cochlea, is an emerging research field, to which
additional studies of the immune component of the cochlear response to injury will make
an important contribution.
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INTRODUCTION

In the cochlea, the loss of sensory hair cells in the organ of Corti or the connecting spiral ganglion
neurons due to exposure to ototoxic drugs or excessive noise results in hearing loss. There is
increasing evidence that the loss of one or both of these cell types is exacerbated by inflammation
of the cochlea. The direct action of infiltrating immune cell types and their cytokines, as well
as reactive oxygen species (ROS) and cytokines generated by resident cochlear cells, leads to
irreparable damage to hair cells and neurons (Bánfi et al., 2004; Lang et al., 2016). Understanding
the cell types and cellular products that lead to this cell death will provide valuable targets
for combatting sensorineural hearing loss. Although Fredelius and Rask-Andersen (1990) first
reported the infiltration of immune cells into the noise-damaged cochlea nearly 30 years ago, the
phenomenon has attracted renewed interest in the last 10–15 years. The following review discusses
the recent advances in our understanding of the role of the cells of the immune system in hearing
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loss due to noise and ototoxic drug treatment. It is hoped that
our examination of the existing literature will serve as a basis for
developing new ideas in this exciting area of research that may
ultimately lead to new ways of preventing or treating hearing loss
resulting from the aforementioned causes.

BASIC PATHWAYS IN STERILE
INFLAMMATION

Inflammation in the ear caused by exposure to ototoxic drugs
or excessive noise is unique in that the resulting immune
response at the epithelial surface is not a response to a
pathogen. Accordingly, it is termed sterile inflammation (Ma
et al., 2000; Rock et al., 2010). In the past, it was thought
that the immune system was unable to infiltrate into several
sites of the body. Such ‘‘immune privileged’’ sites included the
brain, the inner ear, the eye and the joint capsules among
others. However, the multiple observations of immune responses
in these sites have fundamentally changed our understanding,
such that the immune system is now thought to be able to
respond in all tissues, albeit with varying degrees of efficiency
(Galea et al., 2007; Taylor, 2016). Furthermore, many of the
tissues formerly considered to be ‘‘immune-privileged’’ have
their own specific resident immune cell populations, with
the microglia of the brain being the best characterized in
this regard (Immig et al., 2015). When damage occurs in
these tissues in the absence of a pathogen, cellular byproducts
of the damage, termed damage-associated molecular patterns
(DAMPs), stimulate pattern recognition receptors (PRRs; Tang
et al., 2012). This PRR activation rapidly leads to the activation
of resident macrophages, the release of pro-inflammatory
cytokines, and ROS production, causing apoptosis of damaged
cells and immune cell infiltration (Hume et al., 2001; Park
et al., 2004; Tsung et al., 2007). Early inflammation caused by
DAMP-PRR signaling is an evolutionarily conserved mechanism
for controlling the spread of pathogens or necrotic tissue.
In the absence of a pathogen, immune cells are recruited
to sites of inflammation to clear debris and facilitate wound
healing. Cells of the innate immune system are the first to
respond to inflammation. Bone marrow-derived macrophages
and neutrophils attempt to kill any damaged cells by nonspecific
means, such as by releasing ROS, and they also phagocytose dead
and dying cells. This activity mirrors the role of macrophages
and neutrophils at the site of an infection, where they kill
infected cells to stop the spread of the pathogen. The second
wave of cells that infiltrates an area of active inflammation
consists of T cells of the adaptive immune system. In the
case of inflammation caused by a pathogen, T cells specifically
kill cells infected with the pathogen, which they are able to
recognize via interaction with a unique T-cell receptor (TCR).
T cells also secrete cytokines to modify the activation states
of innate cells that are present (Stein et al., 1992). In a sterile
inflammatory site, T cells may recognize self-antigens as a
result of the cell debris arising from damage and inflammation
(Brodeur et al., 2015). T-regulatory cells also infiltrate the site to
dampen inflammation and facilitate wound healing (Gazzinelli
et al., 1992; Fontenot et al., 2003). In this way, the adaptive

immune response first refines then curbs inflammation to bring
about an effective resolution. Because inflammatory signaling
after noise exposure or ototoxic insult happens quickly in
the cochlea and appears to play a role in hair cell death,
most research to date has concentrated on preventing the
earliest stages of inflammation. However, the immune system
is also involved in the resolving inflammation and in wound
healing (Nahrendorf et al., 2007; Xu et al., 2014; Lindemans
et al., 2015; Psachoulia et al., 2016). It is unclear whether the
pro-regenerative resolution of inflammation mediated by the
immune response does not occur in the inner ear or whether
the cells of the cochlea do not respond to this resolution phase
because they are unable to regenerate in response to immune
signals.

GENE EXPRESSION IN THE EAR AFTER
NOISE DAMAGE

New developments in detecting and sequencing mRNA have
enabled the examination of gene transcription after noise
damage. This is an important step toward understanding how
the cochlea as a whole responds to damage. One of the first
studies of transcription after noise damage compared the effect
of noise on the lateral wall and organ of Corti in mouse strains
that were susceptible or resistant to noise damage (Gratton et al.,
2011). An important finding of this study was that C57BL/6mice,
which are susceptible to noise-induced hearing loss, express
more genes related to an immune response after noise damage
than do mice of resistant strains (Gratton et al., 2011). More
recently, a group used RNA sequencing to compare the gene
expression in the sensory epithelia of mice and rats 1 day after
acoustic injury (Yang et al., 2016). Again, this study highlighted
the upregulation of immune-response genes after noise damage,
showing that this type of gene expression is conserved across
mammalian species. Tan et al. (2016) took this approach a step
further by investigating at immune-response gene and protein
expression at multiple time points up to 14 days after noise
damage. The expression of genes encoding TNF-α, IL-1β and
Icam1 increased as early as 6 h after injury with Icam-1 protein
remaining elevated at 14 days after noise damage (Tan et al.,
2016). Taken together, the results of these studies show that genes
encoding cytokines, chemokines and innate immune responses
to noise damage are expressed in the cochlea as early as 6 h
after damage occurs. Moreover, there was considerable overlap
among the genes whose expression was detected in these various
studies.

Even though each of the studies described above used
different strains of mice, namely CBA/CaJ, 129, C57BL/6,
or B6.CAST, it appears that several genes involved in the
inflammatory response are expressed following noise damage
(Gratton et al., 2011; Tan et al., 2016; Yang et al., 2016). Fos,
Socs3, Gpb2 and Icam1 are all associated with the response
to noise damage. Socs3 is especially interesting in this regard
as it is expressed to dampen JAK/STAT-dependent cytokine
signaling by marking signaling components for degradation
(Bode et al., 1999; Babon et al., 2008). Regulation of cytokine
signaling after damage may control the attraction of new
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immune cells and the activation of resident immune cells.
Icam1 is expressed after NF-κB activation caused by TNF-α
and enables recruited immune cells to follow other signals into
the cochlea by facilitating the extravasation of the cells from
the bloodstream through interaction with lymphocyte function-
associated antigen 1 (LFA-1; Wilcox et al., 1990; Wertheimer
et al., 1992; Ledebur and Parks, 1995; Suzuki and Harris, 1995).
Fos and Gbp2 are both upregulated under conditions of cellular
stress and can be expressed in response to interferons (Li et al.,
2002; Wei et al., 2008). Although it is important to know that
immune response genes can be detected in the cochlear tissue
after noise damage, it is much more likely that only a subset
of cell types upregulate these genes. Identifying these cell types
will enable specific targeting of their contribution to hair cell
loss.

CELL TYPES THAT INFILTRATE THE
COCHLEA

The first marker used to identify immune cells infiltrating
the cochlea after noise damage was CD45, also known as
leukocyte common antigen (Kurtin and Pinkus, 1985; Tornabene
et al., 2006). Hirose et al. (2005) used the combination of
CD45 expression and morphology to characterize most of
the infiltrating cells as monocytes or macrophages. Additional
markers were subsequently explored, so that today the profile
of infiltrating immune cells after noise damage currently
includes CD45+, F4/80+, Iba-1+ CD11b+ and CX3CR1+
macrophages (Tornabene et al., 2006; Okano et al., 2008;
Tan et al., 2008; Sato et al., 2010; Shi, 2010; Yang et al.,
2015). Although these markers are important for identifying
macrophage populations, the likelihood of all the infiltrating
macrophages and resident macrophages having the same
signature is low. The increased sensitivity of cell sorters and
flow cytometers will enable a more complete characterization
of the expression of these markers on infiltrating cells. The
identification of the specific cell types that infiltrate the cochlea
is still ongoing, but the timeline of the arrival of these cells
after acoustic or ototoxic trauma has been more extensively
studied.

Few truly comparable studies have examined the combination
of cytokine expression, Icam1 expression, and immune cell
infiltration with reference to the same parameters of hair
cell damage (e.g., hair cell ablation, aminoglycoside/cisplatin
ototoxicity and noise damage). This makes it difficult to draw
conclusions about the overall immune response after hair cell or
cochlear trauma. Nevertheless, it is worth critically synthesizing
the information from these disparate studies to inform the future
direction of the field. The immune response to each type of
damage needs to be characterized, as noise damage affects more
cell types than hair cell- specific ablation or aminoglycoside
ototoxicity. The best information about the immune response
that can be gleaned at present is a rough timeline of events
after hair cell death. TNF-α, IL-1β and IL-6 are expressed before
as early as 6 h and up to 1 day after damage (Fujioka et al.,
2006; Wakabayashi et al., 2010; Tan et al., 2016). Chemokines
such as CCL2, CCL4 and CXCL12 are expressed as early as

6 h after damage (Tornabene et al., 2006; Tan et al., 2008,
2016; Dai et al., 2010). Chemokine expression beginning at
24 h after noise seems to be due to ROS, as iNOS-deficient
mice do not secrete CXCL12 from the lateral wall after injury
to the blood-labyrinth barrier (Dai et al., 2010). By 3–4 days
after damage, the numbers of CX3CR1+ and CD45+ cells in
the cochlea reach a peak, with increased cell counts being
observed until day 7 (Hirose et al., 2005; Kaur et al., 2015).
Interestingly, a second peak of expression of TNF-α, IL-1β and
IL-6 occurs after cell infiltration, starting at day 3–4 after damage
(Oh et al., 2011; Tan et al., 2016). The cytokine expression
that occurs as early as 6 h after noise damage could be a
result of activation of resident CX3CR1+ macrophages and
fibrocytes that are present at the initiation of damage, whereas
the secondary peak in cytokine expression could be due to
infiltrating immune cells; however, this has not been definitively
shown (Figure 1; Okano et al., 2008; Oh et al., 2011; Kaur
et al., 2015; Tan et al., 2016). In rats, IL-6 was expressed by
type III and type IV fibrocytes of the lateral wall, but not Iba-1
positive macrophages, 6 h after noise damage (Fujioka et al.,
2006). Fujioka et al. (2006) also showed that spiral ganglion
neurons expressed IL-6 12 h after noise damage. In mice, the
receptor for IL-6 and its signal transducer, gp130, are expressed
in hair cells in the organ of Corti and the spiral ganglion
neurons, meaning that these cells can respond to IL-6 released
after noise damage (Wakabayashi et al., 2010). Furthermore,
TNF-α, IL-1β and IL-6 staining after lipopolysaccharide (LPS)
injection shows expression throughout the cochlea (Oh et al.,
2011). The overall effect of these cytokines is to induce the
activation of spiral ganglion neurons, lateral wall fibrocytes and
immune cells and thereby increase inflammation through the
secretion of more of the same cytokines such as TNF-α, IL-1β
and IL-6 as well as chemokines such as CCL2 and CXCL12 (So
et al., 2007; Dai et al., 2010). However, the specific expression
of cytokines and chemokines by immune cells have not been
explored. Many of these genes are direct targets of canonical
NF-κB, a transcription factor that is upregulated after damage
induced by noise or ototoxic drug (Masuda et al., 2005; So et al.,
2007). One way in which these cytokines increase immune cell
infiltration is by inducing Icam1 expression in the spiral ligament
(Tan et al., 2016). Icam1 interacts with receptors on the surface
of the immune cell to enable its extravasation into the cochlea
(Wilcox et al., 1990; Suzuki and Harris, 1995). Future studies
should concentrate on the cell types present and the cytokines
expressed immediately after damage, as well as at a 3–4 days
and 7–10 days or later after damage, in order to understand the
waxing and waning of the whole immune response to damage in
the cochlea.

EVIDENCE FOR RESIDENT
MACROPHAGES

When GFP-labeled bone marrow was used to reconstitute a
lethally irradiated mouse, GFP+ bone marrow cells populate
the cochlea in the absence of damage to the tissue (Okano
et al., 2008). Approximately 80% of these cells were identified as
macrophages, based on their morphology and staining for F4/80,
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FIGURE 1 | Timeline of cytokine expression, chemokine expression and cell infiltration in the inner ear after noise damage. The relative amounts of each
cytokine (blue line), chemokine (green dashed line) and cell infiltration (black line) in the first 7 days after noise damage are summarized in the above graph. Note that
the cytokine and chemokine expression begins at zero expression as such expression has not been reported in the steady state. The line representing CD45+ and
CX3CR1+ cells does not begin at zero as CX3CR1+ and CD45+ cells are present in the cochlea in the steady state. Peak exp.: peak expression. No exp.: No
expression.

Iba-1, CD11b and CD68 (Okano et al., 2008; Sun et al., 2014).
Resident macrophages are also positive for CX3CR1, which
allows for chemoattraction to CX3CL1 expressed in the organ of
Corti and the spiral ganglion; however, the specific chemotaxis
of resident macrophages to these sources of CX3CL1 has not
been proven (Sato et al., 2008, 2010; Kaur et al., 2015). In the
CX3CR1gfp/gfp mouse model, fractalkine signaling is disrupted
by GFP knock-in that also labels CX3CR1-expressing cells.
Kanamycin treatment in this model results in an increased
number of infiltrating CD45+ cells in the cochlea (Sato et al.,
2010). Furthermore, transplanting CX3CR1gfp/gfp bonemarrow
into a wild-type mouse results in a similar phenotype of
increased infiltration of CD45+ cells, suggesting that disruption
of CX3CR1 signaling on immune cells is detrimental to hair cell
survival after aminoglycoside exposure (Sato et al., 2010). When
no CX3CR1 is expressed in mice that have a specific loss of
all their hair cells, spiral ganglion cell death is increased (Kaur
et al., 2015). Taken together, these results indicate that resident
CX3CR1+ macrophages may have a valuable role in reducing
immune cell infiltration and cell death after aminoglycoside
treatment or in response to a specific hair cell lesion. Thus,
further characterization of this protective function of CX3CR1+
macrophages will be valuable for understanding the positive role
of immune cells in regulating the inflammatory response after
cochlear damage.

TLR4 ACTIVATION

Toll-like receptor 4 (TLR4) is a PRR that recognizes multiple
ligands, the best characterized of which is Gram-negative

bacterial LPS (Liaunardy-Jopeace and Gay, 2014). TLR4 is
one of the multiple PRRs that can be activated during sterile
inflammation. The downstream effects of TLR4 are ROS
production and canonical NF-κB activation (Park et al., 2004;
Fan et al., 2007). Several studies have implicated TLR4 activation
as one of the pathways leading to inflammation in the cochlea
after noise damage or ototoxicity caused by aminoglycoside or
cisplatin treatment. Although the exact ligand that activated
TLR4 in each of these cases is unknown, each of these
types of damage increases the expression of TLR4 in the
cochlea within hours (Oh et al., 2011; Hirose et al., 2014;
Vethanayagam et al., 2016). In turn, TLR4 activation leads
to NF-κB activation and production of TNF-α, IL-1β and
IL-6 (Oh et al., 2011). Interestingly, systemic LPS given to
mimic a bacterial infection or sepsis amplifies the amount
of inflammation in all three types of damage and increases
the severity of hearing loss (Oh et al., 2011; Hirose et al.,
2014; Vethanayagam et al., 2016). Cochleae deficient in
TLR4 exhibit less inflammation, and especially less TNF-α
expression, which in turn results in less hearing loss (Oh
et al., 2011; Vethanayagam et al., 2016). These studies have
furthered our understanding of the negative effects of innate
inflammation in the inner ear while raising the possibility that
systemic inflammation affects the inflammatory response of the
inner ear.

IMMUNE MODULATION

Many mouse models and reagents are available for investigating
the modulation of the immune response. Several studies have
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used these models and techniques in an effort to identify
specific cytokines and signaling pathways that are stimulated
as a result of cochlear trauma. In the first such study, the
FDA-approved anti-TNF-α antibody etanercept was used in
conjunction with cisplatin treatment to reduce inflammation
in the cochlea (So et al., 2007). Blocking TNF-α release after
cisplatin treatment reduced the amount of the canonical NF-κB
constituent p65 and the amount of apoptosis throughout the
cochlea, even though the outer hair cells were still damaged
(So et al., 2007). In a second study, a neutralizing antibody
to the IL-6R was used to block the effects of IL-6 released
after noise damage (Wakabayashi et al., 2010). This resulted in
significantly less infiltration of CD45+ Iba-1+ double-positive
cells at day 3 after noise-induced damage, along with less cell
death in the spiral ganglion. Furthermore, this study showed
that a systemically administered antibody could cross the blood-
labyrinth barrier after acoustic trauma, thereby opening the
way to studying FDA-approved biologics for treating cochlear
damage (Wakabayashi et al., 2010). In a third study, minocycline
was used to reduce macrophage activation in order to prevent
hair cell damage by CX3CR1+ macrophages (Sun et al., 2014).
When minocycline was administered along with neomycin, mice
had less microglia-like cell infiltration, less hair cell death,
and a reduced threshold shift, which suggests the blockade of
macrophage-induced inflammation is important for attenuating
the effects of neomycin on hearing (Sun et al., 2014). Although
these results appear to indicate that the immune system can
be modulated to protect the cochlea from aminoglycoside
ototoxicity, follow-up studies in adult mice are needed to verify
that this is indeed the case. The most recent study of immune
modulation in the cochlea (Vethanayagam et al., 2016) built
upon the observation that systemic LPS worsened ototoxic hair
cell loss; this study fully examined the role of TLR4 in cochlear
inflammation by using TLR4 knockout mice. Compared to
wild-type controls, TLR4 knockout mice retained more hair cells
and had a lower ABR threshold after noise damage, as well as
reduced levels of IL-6 in the organ of Corti (Vethanayagam
et al., 2016). Although the TLR4 knockout mice ultimately
had less hearing damage, they still exhibited infiltration of
macrophages; however, these macrophages did not upregulate
MHCII, which would have allowed them to present antigen
to the CD4+ T cells of the adaptive immune system (Gloddek
et al., 2002; Vethanayagam et al., 2016). Taken together, the
results of these studies suggest that the early stimulation of
innate receptors and inflammatory cytokines plays a role in
hair cell death after damage, although these factors are not
solely responsible for all the inflammation that occurs in the
cochlea.

SUMMARY

Thus far, the investigations of the role of the immune
system in the inner ear have focused on the early players in
inflammation: TLR4 activation, pro-inflammatory cytokine
and chemokine release and infiltrating cells of the innate
immune system. All three of these major pathways are
common to acoustic injury and to ototoxicity caused by

both aminoglycosides or cisplatin. This has led researchers
in the field to identify ways of systemically modulating
the immune system to reduce inflammatory destruction of
the inner ear. However, CX3CR1+ resident macrophages
appear to regulate the influx of CD45+ cells after hair
cell damage. The exact regulatory actions of these cells
must be examined to discover ways to dampen damaging
inflammation. Also, the role of adaptive immunity in the
inner ear is yet to be explored. Infiltrating T cells could
prolong inflammation by initiating a self-antigen-specific
response (Brodeur et al., 2015). However, in other epithelial
systems, adaptive immunity supports tissue regeneration
by IL-22 signaling, by dampening the inflammatory
response through the release of IL-10, and by polarizing
macrophages to an anti-inflammatory phenotype (Gazzinelli
et al., 1992; Lindemans et al., 2015; Siqueira Mietto et al.,
2015).

Although the mechanisms that act in other tissues may not
be applicable to the inner ear, further study is required in
three areas in order to learn more about the full extent of
the immune response in the inner ear after noise or ototoxic
drug damage. First, it is imperative to identify all the cell
types that enter the cochlea. Second, once the cell types have
been identified, their specific functions must be explored to
understand how their secreted products and cell interactions
shape the inflammatory response in the inner ear. Finally, each
of the PRR families should be investigated to obtain a better
understanding of which DAMPs cause the initiation of the
inflammatory response in the ear after damage. The results
of these studies should reveal new targets for preventative
therapies in the case of ototoxic drugs and new treatments
for noise-induced hearing loss, and they should expand our
fundamental knowledge of the immune response to sterile
insults.
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