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The divergence point analysis procedure is aimed at obtaining an estimate of the onset of
the influence of an experimental variable on response latencies (e.g., fixation duration,
reaction time). The procedure involves generating survival curves for two conditions,
and using a bootstrapping technique to estimate the timing of the earliest discernible
divergence between curves. In the present paper, several key extensions for this procedure
were proposed and evaluated by conducting simulations and by reanalyzing data from
previous studies. Our findings indicate that the modified versions of the procedure
performed substantially better than the original procedure under conditions of low
experimental power. Furthermore, unlike the original procedure, the modified procedures
provided divergence point estimates for individual participants and permitted testing the
significance of the difference between estimates across conditions.The advantages of the
modified procedures are illustrated, the theoretical and methodological implications are
discussed, and promising future directions are outlined.
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Since the pioneering investigation of reaction time (RT) perfor-
mance by Franciscus Donders (1868), the study of the time-course
and speed of mental processes, which is often referred to as mental
chronometry, constitutes an ongoing focus for research on percep-
tion, cognition and cognitive neuroscience. In particular, extensive
research has been directed at examining variables that influence
fixation duration and RT data. The latency with which a vari-
able impacts performance on perceptual and cognitive tasks is the
focus of much empirical work and theorizing in many domains of
research. Much of this work has focused on the analysis of mean
durations, but there is a growing recognition that distributional
analyses can provide more fine-grained time-course information
than mean analyses alone (e.g., Ratcliff and Murdock, 1976; Rat-
cliff, 1979; Heathcote et al., 1991; McConkie et al., 1994; McConkie
and Dyre, 2000; Yang and McConkie, 2001; Feng, 2009; Staub et al.,
2010; Balota and Yap, 2011; Staub, 2011; White and Staub, 2012;
Luke and Henderson, 2013; Luke et al., 2013; Staub and Benatar,
2013).

Recently, Reingold et al. (2012) introduced a novel distribu-
tional analysis method aimed at determining the earliest dis-
cernible impact of a variable by contrasting survival curves across
two experimental conditions and using a bootstrap resampling
procedure (Efron and Tibshirani, 1994) for determining the point
at which the two curves begin to diverge. To date, this Divergence
Point Analysis (DPA) procedure has proven useful for obtaining
fine-grained time-course information about the earliest impact of
variables on fixation duration in a variety of domains including
reading (Reingold et al., 2012; Sheridan and Reingold, 2012a,b;
Sheridan et al., 2013; Glaholt et al., 2014; Inhoff and Radach, 2014;

Schad et al., 2014), visual search (Reingold and Glaholt, 2014)
and scene perception (Glaholt and Reingold, 2012). In addition, a
recent study employed this technique to analyze the distributions
of RT data that were obtained during the performance of a word
recognition task (Ando et al., 2014).

The main goal of the present paper was to propose and evaluate
two modified versions of the DPA procedure. The first modified
procedure was aimed at the computation of confidence intervals
for divergence point estimates in order to determine whether or
not these estimates are significantly different across experimen-
tal conditions, while the second modified procedure was designed
for computing divergence point estimates for individual partic-
ipants. Accordingly, we begin by describing the technique used
in prior studies and its limitation. Next we introduce the two
modified DPA procedures. We then report on the findings from
two simulations which were conducted in order to examine the
robustness and consistency of the original and modified proce-
dures. Finally, the performance of the modified procedures was
examined by reanalyzing data that was obtained in several prior
studies.

THE DPA PROCEDURE – REINGOLD ET AL. (2012)
The DPA procedure was developed in order to test the hypoth-
esis that cognitive influences could be rapid enough to produce
an immediate adjustment of fixation duration based on the
properties of the fixated stimulus (henceforth, the direct cogni-
tive control hypothesis). Prior to the 1970s, there was a great
deal of skepticism over whether cognitive processes could have
a rapid impact on fixation duration. This was in part based
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on the widely held belief that cognition was simply too slow
to produce real-time adjustment of eye-movement parameters
(e.g., Kolers, 1976). Although, extensive research during the
decades to follow produced ample evidence for cognitive influ-
ences on mean fixation duration, the direct cognitive control
hypothesis remained controversial (for reviews see Rayner, 1998,
2009; Reingold et al., 2012, in press). This is because an influ-
ence of a cognitive variable on mean fixation duration might
be restricted to very few long fixations while the vast majority
of fixations remain unaffected. In order to address this issue,
Reingold et al. (2012) argued that an analysis of the distribu-
tion of fixation durations has the potential to provide a more
direct estimate for the earliest discernible influence of a vari-
able on fixation duration (see Staub et al., 2010 for a similar
argument).

To illustrate the DPA procedure, Figures 1A,B displays the
survival curve and the histogram of fixation duration for two
experimental conditions that differ in terms of the mean fix-
ation duration (henceforth referred to as the fast vs. slow
condition). To plot survival curves, the survival percent for a
given time t, refers to the percent of fixations with a dura-
tion greater than t (i.e., “surviving” fixation are those that
were not yet terminated by a saccade). As can be seen in
Figure 1B, survival is at one hundred percent when t equals
zero (since all of the fixation durations by definition are greater
than zero). Survival percent then declines as t increases and
approaches zero percent as t approaches the duration of the
longest observed fixation duration. Thus, the survival curve
depicts a monotonically decreasing function with an initial slow
decrease that is followed by a rapid, largely linear decrease
in the middle of the curve, and with a final section of slow
decline. The shape of the survival curve reflects the outline
of the histogram of fixation duration which is approximately
normal yet presents a clear rightward (positive) skew (see
Figure 1B). In other words, there are more fixations near the
center of the distribution than on either tail, and the right
tail of the distribution is more densely populated than the left
tail.

To pinpoint the earliest significant effect of a variable, the DPA
procedure uses a bootstrap resampling technique (Efron and Tib-
shirani, 1994; for an extensive recent review and bibliography see
Chernick, 2008). Bootstrapping is a non-parametric approach to
statistical inference. In traditional parametric inference, statistics
computed for a given sample are used to make inferences about
the population parameters on the basis of a priori assumptions
and analytic formulas that fully specify the sampling distribution
of these statistics. In marked contrast, the bootstrapping approach
does not rely on such strong distributional assumptions and/or on
the availability of analytic formulas. Instead, the bootstrapping
procedure involves approaching the sample as if it was the popula-
tion and using repeated, multiple iterations of random resampling
with replacement (sometime referred to as Monte Carlo sam-
pling) to empirically derive an estimate of the entire sampling
distribution of a statistic that is computed on every iteration.
Thus, to the extent that the sample is in fact representative of
the population, the bootstrap resampling technique offers a very
powerful and flexible tool for making statistical inferences under

FIGURE 1 | An illustration of the original divergence point analysis

(DPA) procedure. Panel (A) shows the survival curves for first fixation
duration in the slow and fast conditions. The vertical line marks the
divergence point estimate and the row of asterisks at the top of this panel
indicates 1-ms time bins for which the survival percent was significantly
greater for the slow than the fast condition. Panel (B) provides the
corresponding histograms of fixation duration.

conditions in which the traditional parametric approach offers no
solutions.

Employing such an approach, Reingold et al. (2012) used
10,000 iterations of random resampling of fixations for each
participant and condition. For each iteration of the bootstrap
procedure, survival curves were generated for each individual
participant. Next, for each 1-ms bin ranging from 1 to 600 ms,
survival percent values were averaged across participants to pro-
duce the group survival curves. Using the group survival curves,
for each bin, the value in the fast condition was then subtracted
from the corresponding value in the slow condition. Across the
10,000 iterations, the obtained differences for each bin were then
sorted in order of magnitude and the range between the 5th
and the 9,995th value was defined as the confidence interval
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of the difference for each bin. Time bins for which the lower
bound of the confidence interval of the difference between the
slow and fast survival curves was greater than zero were con-
sidered to represent a significant difference between curves. The
divergence point estimate was then defined as the earliest signif-
icant difference point that was part of a run of five consecutive
significant difference points (For an illustration of significant
bins and divergence point estimate see Figure 1A; See sup-
plementary materials for Matlab code implementation of this
procedure).

It is important to note, that Reingold et al. (2012) and
follow-up investigations (e.g., Glaholt and Reingold, 2012; Sheri-
dan and Reingold, 2012a,b; Sheridan et al., 2013; Glaholt et al.,
2014; Reingold and Glaholt, 2014) attempted to test the valid-
ity of the direct cognitive control hypothesis that predicted
early divergence points as a function of cognitive influences.
Consequently, in order to protect against making a Type I
error (i.e., erroneously estimating a divergence point prior to
the actual point of divergence), the DPA procedure incorpo-
rated very conservative criteria for estimating divergence points
(i.e., α < 0.001 for the significance of individual bins and the
requirement for five consecutive significant bins). Importantly,
despite this deliberate bias against the direct cognitive control
hypothesis, the above studies documented fast acting cognitive
influences in strong support for that hypothesis (for a review
see Reingold et al., in press). However, the cost of such a con-
servative bias in the DPA procedure is the risk that the estimate
of the divergence point would be delayed relative to the actual
point of divergence. This would be especially the case under
low experimental power (i.e., a small number of participants
and observations). To mitigate this risk, the above investigations
employed a large number of observations and participants. Nev-
ertheless, it would be desirable to construct a version of the DPA
technique that can successfully handle the lower experimental
power that is typical of many eye movements and reaction time
experiments.

Another limitation of the current version of the DPA pro-
cedure is that it does not provide confidence intervals for the
obtained divergence point estimates and consequently it does
not permit determining whether or not estimates of divergence
points are significantly different across experimental conditions.
Finally, the analysis method used in prior studies derived diver-
gence point estimates based on group data rather than for each
individual participant. While computing divergence point esti-
mates for each participant might prove useful in the context of
individual differences research, a key challenge for this endeavor
concerns the small number observations that are typically avail-
able for an individual participant in each condition. Yet, despite
this inherent low power, recent findings suggest that distribu-
tional analysis techniques could be successfully used to produce
reliable individual differences measures which were shown to be
correlated with measures of cognitive ability, such as working
memory capacity (e.g., Schmiedek et al., 2007; Tse et al., 2010;
Balota and Yap, 2011; Staub and Benatar, 2013). Next, we pro-
pose and evaluate the modified DPA procedures that attempted
to address the limitations of the method that was used in prior
studies.

THE MODIFIED DPA PROCEDURES
In the present paper we propose two modified versions of
the DPA procedure that was introduced by Reingold et al.
(2012). Specifically, the Confidence Interval DPA procedure was
aimed at the computation of confidence intervals for diver-
gence point estimates in order to determine whether or not
these estimates are significantly different across experimental
conditions, while the Individual Participant DPA procedure was
designed for computing divergence point estimates for each
participant in the sample. In order to compare the perfor-
mance of the original and modified DPA procedures, as a
function of experimental power, we conducted two simula-
tions. The first simulation (Simulation 1) examined the accu-
racy and variability of divergence point estimates that were
obtained when a large sample of 104 participants was pro-
gressively reduced by randomly selecting subsets of 52, 26, or
13 participants. In the second simulation (Simulation 2) the
datasets corresponding to the 104 participants from Simula-
tion 1 were modified to create artificial datasets with known
divergence point values which were used to investigate the
number of observations required per condition in order to
accurately estimate individual differences in divergence point
values. Specifically, across participants, simulated divergence
point values varied from 110 to 210 ms and the Individ-
ual Participant DPA procedure was used to produce diver-
gence point estimates. The strength of the correlation between
simulated and obtained divergence point estimates was eval-
uated when the number of observations for each participant
was progressively reduced by randomly selecting subsets of
36, 24, or 12 fixations per condition. Finally, the perfor-
mance of the original and modified procedures was examined
by reanalyzing data that was obtained in several prior reading
studies.

METHOD
In this section we first describe the details of the modified DPA
procedure (See supplementary materials for Matlab code imple-
mentations of these procedures). We then outline the method used
in Simulations 1 and 2.

CONFIDENCE INTERVAL DPA PROCEDURE
This procedure was identical to the method used by Reingold et al.
(2012) procedure with the following exceptions: (1) 1,000 rather
than 10,000 bootstrap iterations were used, and (2) the divergence
point was calculated for each iteration rather than once across all
iterations. Specifically, in the Confidence Interval DPA procedure,
for each iteration, the divergence point estimate was defined as
the first 1-ms bin in a run of five consecutive bins in which the
survival percent in the slow condition was at least 1.5% greater
than the survival percent in the fast condition. Across the 1,000
iterations, divergence point estimates were then sorted from the
smallest to the largest value and the 25th and 975th values consti-
tuted the 95% confidence interval. In addition, the median of the
1,000 divergence point values was used as the divergence point esti-
mate for the sample. It is important to note that the threshold we
selected for the detection of a difference between survival percent
across the slow and fast conditions (1.5%) necessarily implies that
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a smaller effect would not be detected by the Confidence Inter-
val DPA procedure. However, setting a lower threshold would
risk falsely detecting a difference under noisy low power condi-
tions. Thus, although this threshold can be safely lowered for very
large samples, based on our explorations to date, we believe that
the 1.5% difference threshold constitutes an optimal compromise
under the typical experimental power that is used in the literature.

INDIVIDUAL PARTICIPANT DPA PROCEDURE
As explained earlier, accurately estimating the divergence point
for each individual participant is far from trivial given the small
number observations that are typically available for each con-
dition. Consequently, we designed the Individual Participant
DPA procedure to maximize the chances of correctly detecting
true divergence while minimizing the chances of falsely detect-
ing divergence due to noisy individual participant’s survival
curves. Specifically, in order to derive the individual divergence
estimates, the following sequence of steps was performed sepa-
rately for the fixation duration data from each participant. For
each of 1,000 bootstrap iterations, regardless of the number of
fixations that were available for a given participant, 1200 fixa-
tions were randomly sampled with replacement from the pool
of fixations corresponding to the slow condition and from the
pool of fixations corresponding to the fast condition. Both sets
of 1200 fixations were sorted from the shortest to the longest
duration value and then paired (i.e., s1 f1, s2 f2, s3 f3,. . .,s1200

f1200). For both the slow and fast condition, the sorted order
of fixations specified the sequence in which fixations were ter-
minated, and in turn the “death” of a single fixation decreased
the survival percent by the minimum possible decrement (i.e.,
1/1200∗100). Consequently, the process of sorting by fixation
duration created 1200 survival percent bins (for bin i survival
percent equalled 100-i/1200∗100). For each of the 1200 survival
percent bins, the difference between the duration of the slow
minus the fast fixation duration was computed (for bin i, this
difference equalled si – fi). Next, we identified the first sur-
vival percent bin in a run of 100 consecutive bins in which the
value of this difference was positive (si > fi). Finally, the aver-
age duration of the pair of fixations corresponding to that bin
was defined as the divergence point value for each iteration.
Iterations in which a divergence point value was not identi-
fied were discarded and the median value across the remaining
iterations was then defined as the divergence point estimate
for that individual. Participants for which a divergence point
value was obtained in less than 50% of iterations were deemed
unreliable and were excluded from the computation of group
divergence point estimates (the frequency with which this occurs
was recorded). It is important to note that the threshold we
selected for the detection of a difference between the slow and
fast survival curves in each iteration (i.e., 100 consecutive bins
in which si > fi) necessarily implies that a weak and/or brief
true divergence effect might be missed at least on some itera-
tions. However, given the small number observations that are
typically available for each participant, a more lenient detec-
tion criterion would inevitably result in an unacceptably high
false alarm rate. Thus, although the above detection criterion
can be made more lenient in the context of studies with large

numbers of observations for each participant and condition,
based on our explorations to date, we believe that it constitutes
an optimal compromise under the typical experimental power
that is used in the literature (see Simulation 2 for a related
investigation).

SIMULATION 1
For the purpose of the illustration and evaluation of the modified
DPA procedures, we used a large dataset obtained by Sheri-
dan et al. (2013; Experimental 1A, normal reading condition)
in which the word frequency of target words was manipu-
lated (low frequency vs. high frequency) and the distribu-
tion of first-fixation durations on target words was contrasted
across conditions. This dataset was composed of 104 partic-
ipants with approximately 60 observations per condition for
each participant. We simulated a reduction in experimental
power by treating the dataset of 104 participants as the pop-
ulation and randomly sampling without replacement subsets
of 52, 26, or 13 participants. For each sample size, 100 ran-
dom samples were drawn and estimates of divergence points
were computed based on both the original and modified DPA
procedures.

SIMULATION 2
To produce the artificial datasets that were used in this simulation
we modified the datasets corresponding to the 104 participants
from Simulation 1. Specifically, the sample of 104 participants was
randomly divided into 26 groups of four participants. Each group
was then assigned a unique simulated divergence point value that
varied between 110 and 210 ms (i.e., increasing across groups
by 4 ms steps: 110 ms, 114 ms, 118 ms,....,210 ms). To imple-
ment these simulated divergence points, the fast condition data
for each participant in Simulation 2 was identical to the data used
in Simulation 1 (i.e., the pool of fixations on high frequency target
words from Sheridan et al., 2013). In contrast, the slow condi-
tion was created by modifying the fast condition data rather than
by using the empirical data. Importantly, the slow condition in
the artificial datasets was constructed as follows: (1) all fixations
with durations that were shorter than the simulated divergence
point value were identical across the fast and slow conditions,
and (2) a randomly selected subset of 50% of fixations in the
fast condition with durations that were longer than or equal to
the simulated divergence point value were lengthened by 50 ms
to create their counterparts in the slow condition (the remaining
50% of longer fixations were identical across the fast and slow
conditions). The main goal of Simulation 2 was to examine the
strength of the correlation between simulated divergence points
and the estimates generated by the Individual Participant DPA
procedure. This correlation indicates the extent to which individ-
ual differences are accurately depicted by the estimates derived
from Individual Participant DPA procedure. In addition to com-
puting this correlation using the 104 artificial datasets that were
described above, it was also computed when these datasets were
progressively reduced by randomly (without replacement) and
repeatedly selecting subsets of 36, 24, or 12 fixations per condition
(100 random samples of 36, 24, or 12 fixations per condition were
produced).
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RESULTS
In this section we first report on the results of Simulations 1 and 2
and then the performance of the original and modified procedures
were examined by reanalyzing data that was obtained in several
prior reading studies.

SIMULATION 1
For the full sample of 104 participants, we calculated divergence
point estimates for all 3 versions of the DPA procedure. For the
group data, the analysis using the original DPA procedure and
the Confidence Interval DPA procedure yielded nearly identical
divergence point estimates (original DPA = 112 ms; Confidence
Interval DPA = 114 ms). Importantly, the Confidence Interval
DPA procedure also provided a 95% confidence interval (98–
130 ms). In contrast, the Individual Participant DPA procedure
produced an average divergence point estimate across individual
participants (M = 131 ms; SD = 51.1) that was somewhat longer
than the divergence point estimates that were produced using the

group data. This is the case because the DPA procedures that are
based on group data detect a divergence at the point at which
participants in the sample with early divergence point estimates
begin to significantly influence the group survival curves. Thus, the
Confidence Interval DPA and the Individual Participant DPA pro-
cedures should be considered supplementary as they contribute
unique information about the characteristics of the point of diver-
gence across the sample. Figure 2 illustrates the wide spectrum of
divergence point estimates that was observed across the sample
of 104 participants. Not surprisingly, survival curves for individ-
ual participants were fairly noisy. However, a visual inspection of
Figure 2 indicates that the point of divergence identified by the
Individual Participant DPA procedure appears quite reasonable.

The results of Simulation 1 provided a more systematic method
for evaluating the performance of the original and modified DPA
procedures. Specifically, as shown in Figure 3, for each of the
3 versions of the DPA procedure (original, Confidence Interval
DPA, Individual Participant DPA), we used the divergence point

FIGURE 2 | An illustration of the range of divergence point

estimates that were obtained across individual participants

from the sample of 104 participants which was used for

Simulation 1. Survival curves (slow condition = solid line, fast

condition = dashed line) for 9 participants with progressively longer
divergence point estimates are shown in Panel (1–9). The vertical
line in each panel marks the divergence point estimate (see text for
details).
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FIGURE 3 |The results from Simulation 1 that examined the accuracy

and variability of divergence point estimates as a function of sample size

(52, 26, 13) and DPA procedure (CI-DPA, Confidence Interval DPA

procedure; IP-DPA, Individual Participant DPA procedure). For each

condition, the minimum, maximum and average values of the estimates are
displayed. The dashed horizontal lines show the criterion divergence
estimates that were obtained by using each version of the DPA procedure to
analyze data from the entire sample of 104 participants (see text for details).

estimates from the sample of 104 participants as the criterion for
evaluating the estimates that were produced when a random subset
of the large sample was used for computing divergence point esti-
mates. Next, for each sample size (52, 26, and 13), 100 random
samples without replacement were drawn, and estimates of diver-
gence points were computed based on all 3 versions of the DPA
procedure. Figure 3 shows the minimum, maximum and average
values of the divergence point estimate by sample size and proce-
dure. The results of the simulation indicated that as sample size
decreased the modified procedures performed substantially bet-
ter than the original procedure. As expected, when sample size
decreased the original DPA procedure produced estimates that
were biased to be longer than the criterion divergence value (i.e.,
the divergence value in the full sample of 104 participants). While
this bias was relatively small when the sample size was cut in half,
it became much more pronounced for smaller sample sizes. In
marked contrast, both of the modified DPA procedures provided
an unbiased estimate of the criterion divergence point regardless
of sample size. In addition, the variability of the divergence point
estimates across the randomly sampled subsets was substantially
smaller in the modified procedures than the original procedure
(see Figure 3). As a case in point, for a sample size of 52, the
Confidence Interval DPA procedure produced a range of diver-
gence point estimates of 94–136 ms, and this range is almost as
small as the 95% confidence interval which was obtained using
the Confidence Interval DPA procedure on the full sample of 104
participants.

SIMULATION 2
As explained earlier, for the purpose of this simulation, we created
artificial datasets corresponding to 104 participants with simulated
divergence points that varied between 110 and 210 ms. Figure 4A
displays the histograms of fixation duration for the fast condition
(M = 203 ms; SD = 26.7) and the slow condition (M = 221 ms;
SD = 29.7). We began by calculating divergence point estimates
using all 3 versions of the DPA procedure. All procedures yielded

estimates that were fairly close to the average simulated divergence
point across participants which was 160 ms. However, as was the
case for Simulation 1, the Individual Participant DPA procedure
produced an average divergence point estimate across individ-
ual participants (M = 173 ms; SD = 28.6) that was somewhat
longer than the divergence point estimates that were produced
using the group data (original DPA = 152 ms; Confidence Inter-
val DPA = 146 ms; see Figure 4B). Most importantly, as shown
in Figure 4C, the Individual Participant DPA procedure was very
accurate in detecting the simulated divergence points as reflected
by a very strong correlation between simulated and obtained diver-
gence points across the sample of 104 participants [r(102) = 0.96,
p < 0.001].

The main goal of Simulation 2 was to examine the variation
in the strength of this correlation as a function of the number
of available observations per condition. Specifically, for each par-
ticipant, the number of fixations was progressively reduced by
randomly and repeatedly selecting subsets of 36, 24, or 12 fixa-
tions per condition. For each subset size, 100 reduced datasets were
produced and the correlation between simulated and obtained
divergence points was computed across the sample of 104 partic-
ipants. Figure 4D shows the minimum, maximum and average
values of the correlation by subset size (36, 24, or 12). As can be
seen in this figure, a decrease in the number of fixations per con-
dition, from a maximum of 60 in the unreduced datasets to 36,
produced a dramatic decrease in the average correlation between
simulated and obtained divergence points (0.96–0.36). This cor-
relation was further reduced for a subset size of 24 fixations per
condition (r = 0.22) and was all but eliminated for a subset size
of 12 fixations per condition (r = 0.08). Interestingly, as shown
in the figure, despite this very substantial decrease in the mag-
nitude of the correlation, the average divergence point estimate
across participants remained relatively stable and accurate (sub-
set size 36 = 157; subset size 24 = 155; subset size 12 = 152).
This pattern of findings clearly indicates the need for a suffi-
cient number of observations per condition in studies which
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FIGURE 4 |The results from Simulation 2 that used artificial datasets

with known divergence point values which varied between 110 and

210 ms (M = 160 ms). Panel (A) shows histograms of the slow and
fast condition across the sample of 104 participants. Panel (B) shows
the divergence point estimate (solid line) and the 95% confidence
interval (dotted lines) that were produced using the Confidence Interval
DPA procedure. Panel (C) shows a scattergram with each dot

representing the simulated and obtained divergence point for an
individual participant (using the Individual Participant DPA procedure).
Panel (D) shows, across 100 randomly selected subsets of 36, 24, or
12 fixations per condition, the minimum, maximum, and average values
of (1) the correlation between simulated and obtained divergence, and
(2) mean divergence point estimate across participants (see text for
details).

aim to use divergence point estimates in individual differences
research. However, the Individual Participant DPA procedure
might still be useful as a measure of the average divergence point
estimate even with a much smaller number of observations per
condition.

RE-ANALYSIS OF DATA FROM PRIOR STUDIES
The findings from several prior studies were analyzed using the
original and modified DPA procedures and the obtained estimates
are summarized in Table 1. As can be seen by an inspection of
the table, the estimates produced by the modified procedures are

Table 1 | Summary of the re-analysis of data from prior reading studies by DPA procedure.

Mean duration (ms) DPA procedure

Variable Study Slow Fast Difference Original CI-DPA IP-DPA

Word frequency (low–high frequency) Reingold et al. (2012) valid preview 234 214 20 145 138 (131–147) 139 (59/60)

Predictability (low–high predictability) Sheridan and Reingold (2012a) 216 208 8 140 124 (101–142) 138 (55/60)

Lexical ambiguity (subordinate–dominant context) Sheridan and Reingold (2012b) 228 216 12 139 121 (96–150) 131 (53/60)

Preview validity (invalid–valid) Reingold et al. (2012) 256 224 32 132 135 (129–147) 133 (59/60)

Location (central–outer location) Reingold et al. (2012) valid preview 228 214 14 145 139 (131–148) 140 (58/60)

DPA, Divergence point analysis; for mean fixation duration Difference, slow minus fast fixation duration; CI-DPA, Confidence Interval DPA procedure; IP-DPA, Individual
Participant DPA procedure; for the Confidence Interval DPA procedure, the confidence interval is shown in brackets beside the estimate; for the Individual Participant
DPA procedure, the number of participants out of 60 for which a valid estimate was produced is shown in brackets beside the estimate.
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generally very consistent with the published estimates that were
based on the original DPA procedure. This was especially the case
for experimental variables (e.g., word frequency, preview validity,
and location) which produced strong effects on fixation duration
(i.e., effects with a large mean fixation duration difference between
the slow and fast conditions) and/or very consistent effects (i.e.,
effects for which the Confidence Interval DPA procedure produced
a narrow confidence interval). In contrast, for variables which
produced effects that were smaller and more variable (e.g., pre-
dictability, and lexical ambiguity), the Confidence Interval DPA
produced somewhat earlier divergence estimates than either the
original or the Individual Participant DPA procedures. Additional
studies are required in order to more fully explore the influence of
effect size and consistency on divergence point estimates.

To further evaluate DPA procedures, it is important to consider
studies which involve comparing the time-course of the influence
of variables under different experimental conditions. For exam-
ple, Sheridan et al. (2013) investigated the hypothesis that lexical
processing would be delayed by the removal of inter-word spaces
(see Rayner et al., 1998). To do this, Sheridan et al. (2013) con-
ducted an experiment in which high- and low-frequency words
were embedded either in normal (English) text or in unsegmented
text in which the blank spaces between the words were replaced
with random numbers. Sheridan et al. (2013) demonstrated that
the word frequency divergence points were delayed (by 23–40 ms)
in the unsegmented condition relative to the normal reading con-
dition. To examine whether this difference was in fact significant,
we used the modified DPA procedures and reanalyzed the data
obtained by Sheridan et al. (2013, Experiment 1A). The word
frequency divergence point estimate reported by Sheridan et al.
(2013) using the original DPA procedure was 112 ms in the nor-
mal (segmented) text condition and 152 ms in the unsegmented
text condition. As shown in Figures 5A,B, the divergence point
estimates that were obtained using the Confidence Interval DPA
procedure (segmented = 114 ms; unsegmented = 151 ms) were
extremely similar to the published estimates. More importantly,
the 95% confidence intervals did not overlap between these condi-
tions (segmented = 98 to 130 ms; unsegmented = 141 to 158 ms)
indicating that the difference in divergence points as a function
of segmentation was significant. A similar pattern of findings
was obtained using the Individual Participant DPA procedure.
Specifically, the average divergence point estimates were 131 ms
in the segmented text condition and 155 ms in the unsegmented
text condition and this difference was significant [t(103) = 3.63,
p < 0.001]. In addition, Figure 5C shows the distribution of
divergence point estimates for individual participants by text
segmentation condition, and an inspection of this panel demon-
strates a clear rightward shift in the unsegmented distribution as
compared to the normal (segmented) text condition.

Taken together, the results of the simulations and re-analysis
indicate that the original and modified DPA procedures performed
similarly with a large sample size, but with reduced experimental
power the modified procedures performed substantially better. In
addition, the modified procedures allowed for testing the signifi-
cance of the difference between divergence point estimates across
experimental conditions. Finally, the Individual Participant DPA
procedure has a distinct advantage over the DPA procedures that

FIGURE 5 | A re-analysis of data from Sheridan et al. (2013) using the

modified DPA procedures. Panel (A) shows the word frequency
divergence point estimate (solid line) and the 95% confidence interval
(dotted lines) for the normal (segmented) text condition. Panel (B) presents
the corresponding values for the unsegmented text condition. Panel (C)

displays the distribution of divergence point estimates for individual
participants as a function of text segmentation condition (see text for
details).

are based on group data. This is the case because this procedure
has the potential to provide a much more complete and accurate
description of the entire distribution of divergence point esti-
mates across the sample. Furthermore, deriving divergence point
estimates for each individual participant would potentially offer
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an interesting correlate for use in individual differences research.
However, as shown by Simulation 2, a prerequisite for such an
endeavor would be the availability of a sufficient number of
observations per participant. In contrast, the Confidence Inter-
val DPA procedure might be advantageous when exploring weak
and inconsistent empirical effects or when the number of available
observations per participant is relatively small.

DISCUSSION
The goal of the present paper was to further develop the DPA
procedure which was introduced by Reingold et al. (2012) as a
method for investigating the direct cognitive control hypothesis.
The basic experimental strategy which guided previous stud-
ies using this procedure was to employ large sample sizes and
large numbers of observations per condition. In addition, given
the persistent skepticism concerning the feasibility of the direct
cognitive control hypothesis, the procedure incorporated a con-
servative criterion that made it more difficult to obtain evidence
supporting this hypothesis. Despite this built in bias, the find-
ings that emerged from this paradigm provided strong support
for the validity of the direct cognitive control hypothesis (e.g.,
Glaholt and Reingold, 2012; Reingold et al., 2012; Sheridan and
Reingold, 2012a,b; Sheridan et al., 2013; Glaholt et al., 2014; Inhoff
and Radach, 2014; Reingold and Glaholt, 2014; Schad et al., 2014).

Although the original DPA procedure offered a useful tool for
the investigation of the theoretical question which motivated its
inception, further extensions of this technique seemed necessary
before the DPA method could be applied more broadly across a
wide range of experimental paradigms. The goal of the present
manuscript was to augment the DPA procedure in several impor-
tant ways: (1) by developing a DPA procedure that could provide
confidence intervals for divergence point estimates, (2) by devel-
oping a DPA procedure that would be less negatively impacted by
lower experimental power (although a large pool of observations
is still the recommended approach for distributional analyses),
and (3) by developing a method for obtaining divergence point
estimates for individual participants.

Based on the present results, we argue that the modified DPA
procedures constitute substantial progress toward attaining these
goals. However, it should be acknowledged that the DPA procedure
is still in its infancy. Much more methodological and empiri-
cal work is required in order to fully evaluate the merit and the
scope of this technique. Future directions might include attempt-
ing to develop an analytic method for producing divergence point
estimates that could then be compared with the non-parametric
bootstrapping approach (Kullback and Leibler, 1951; Matuschek
and Risse, in preparation). It would also be interesting to inves-
tigate the value of the divergence point estimate as a predictor
variable in individual differences research. Another potentially
promising future direction would be to extend the use of the
procedure to investigate different types of response latencies. To
date, there was only one study that used the DPA procedure to
analyze RT data (Ando et al., 2014), and all of the other studies
examined fixation duration data. In principle, the DPA procedure
could accommodate a variety of behavioral and/or neural response
indicators such as reaction time, fixation duration, or changes in
electrophysiological measures.

For all types of response modalities, one important issue to
consider is that there is necessarily a delay between the point at
which the cognitive system first differentiates between two cate-
gories of stimulus states (e.g., familiar vs. unfamiliar stimuli), and
the point at which significant differential responding is detected.
Inferring the time-course of cognitive and neural processes is a
complex enterprise that requires taking into account various neu-
ral transmission delays and response output delays. In addition,
the detection of differential responding by measurement and sta-
tistical instruments requires a minimum intensity and/or duration
to occur. This issue inevitably distorts time-course estimates, and
the magnitude of the inaccuracy can be substantial for weak effects
or effects that have a very gradual onset. Given that no single
procedure or paradigm is capable of providing artifact-free and
assumption-free time-course estimates, our approach has been
to seek convergent evidence by employing multiple distributional
analysis methods (e.g., survival analysis and Ex-Gaussian fitting),
and by comparing our findings to those obtained from neuroimag-
ing studies using ERP and MEG methodology (for a review see
Reichle and Reingold, 2013).

Finally, with respect to the direct cognitive control hypothesis,
we would suggest that the focus in the field is beginning to shift
away from an “existence proof” stage (i.e., the search for a con-
vincing demonstration of immediate cognitive influences on eye
movement parameters). Instead, there seem to be greater focus
on deriving quantitative estimates for the timing and magnitude
of the influence of cognitive variables. Such estimates constitute
critical “benchmarks” for the development and testing of compu-
tational models of eye-movement control in visual cognition. We
would strongly argue that the DPA procedure has the potential to
contribute to this important goal.
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