
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 15 October 2014

doi: 10.3389/fimmu.2014.00506

AntifungalTh immunity: growing up in family
Monica Borghi 1, Giorgia Renga1, Matteo Puccetti 2,Vasileios Oikonomou1, Melissa Palmieri 1,
Claudia Galosi 1, Andrea Bartoli 1 and Luigina Romani 1*
1 Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
2 Polo GGB, Perugia, Italy

Edited by:
Dragana Jankovic, National Institutes
of Health, USA

Reviewed by:
Edward John Collins, The University
of North Carolina at Chapel Hill, USA
Cosima T. Baldari, University of Siena,
Italy

*Correspondence:
Luigina Romani , Pathology Section,
Department of Experimental
Medicine, University of Perugia, Polo
Unico Sant’Andrea delle Fratte,
Perugia 06132, Italy
e-mail: luigina.romani@unipg.it

Fungal diseases represent an important paradigm in immunology since they can result
from either the lack of recognition or over-activation of the inflammatory response. Current
understanding of the pathophysiology underlying fungal infections and diseases highlights
the multiple cell populations and cell-signaling pathways involved in these conditions. A
systems biology approach that integrates investigations of immunity at the systems-level
is required to generate novel insights into this complexity and to decipher the dynamics
of the host–fungus interaction. It is becoming clear that a three-way interaction between
the host, microbiota, and fungi dictates the types of host–fungus relationship. Tryptophan
metabolism helps support this interaction, being exploited by the mammalian host and
commensals to increase fitness in response to fungi via resistance and tolerance mecha-
nisms of antifungal immunity.The cellular and molecular mechanisms that provide immune
homeostasis with the fungal biota and its possible rupture in fungal infections and diseases
will be discussed within the expanding role of antifungal Th cell responses.

Keywords:Th cell subsets, immunity, tolerance, fungi

FUNGAL INFECTIONS AND DISEASES IN THE
METAGENOMICS ERA: A REAPPRAISAL
Fungi can interact with their hosts (plants, animals, or human
beings) in multiple ways, establishing symbiotic, commensal, or
pathogenic relationships. Most fungi, such as Aspergillus fumiga-
tus and Cryptococcus neoformans, and the thermally dimorphic
fungi are ubiquitous in the environment, and human beings are
exposed by inhaling spores or small yeast cells. In addition, more
than 400 species of fungi associated with human beings have been
identified (1). In this case, co-evolution of commensals, such as
Pneumocystis jirovecii, Malassezia spp., and Candida albicans, with
their mammalian hosts implicates the existence of sophisticated
mechanisms to antagonize immunity in order to survive. Once
considered pathogenic microbes, the commensal fungal micro-
biota is now an important component of the human intestinal
ecosystem. Indeed, despite the intimate contact of fungi with the
human host, fungal diseases in immunocompetent hosts are fairly
uncommon, indicating that low-virulence fungi have evolved par-
ticular adaptation mechanisms that allow them to persist relatively
unnoticed by the immune system (2). This “peaceful” coexistence
may digress into overt disease under conditions of immune dereg-
ulation, such as in primary immunodeficiency human immun-
odeficiency virus infection and as a result of immunosuppressive
therapies (2). In addition, invasive fungal diseases continue to be

Abbreviations: AhR, aryl hydrocarbon receptor; APS-1, autoimmune polyen-
docrine syndrome type 1 patients; CF, cystic fibrosis; CLR, C-type lectin receptors;
CMC, chronic mucocutaneous candidiasis; DCs, dendritic cells; DTH, delayed type
hypersensitivity; IDO1, indoleamine 2,3-dioxygenase 1; ILC3, innate lymphoid cells
3; IRIS, immune reconstitution inflammatory syndrome; PRRs, pattern recognition
receptors; RVVC, recurrent VVC; Th, T helper; Treg, regulatory T-cells; VVC, human
vulvovaginal candidiasis.

a serious problem in patients with hematologic disorders, solid,
and hematopoietic organ transplantation as well as in non-high-
risk, sensu strictu, patients, such as patients with Mycobacterium
tubercolosis infection, hyper IgE syndrome, and anti-TNF-alpha
therapy (3).

The increasing understanding of the importance of the micro-
biota in shaping the host immune and metabolic activity has ren-
dered fungal interactions with the host and its microbiome more
complex than previously appreciated (4) (Box 1). Indeed, the com-
plex interactions between fungal and bacterial commensals, either
directly or through the participation of the host immune system,
all impact on the pathophysiology of a number of inflammatory
disease that, in turn, may lead to secondary fungal infections (5, 6).
Evidence is accumulating to support the exciting concept that the
interaction between different biomes and between the host and
the mycobiome are critical in the pathogenesis of fungal infec-
tions and other human diseases (1, 7, 8). Here, we will discuss
recent findings on host- and microbial-dependent mechanisms of
immune homeostasis with the fungal biota and its possible rupture
in fungal infections and diseases.

RESISTANCE AND TOLERANCE MECHANISMS OF
ANTIFUNGAL IMMUNITY
As the immune system has evolved to accommodate colonization
by symbiotic microbes while retaining the capacity to oppose their
infectivity, a fine balance between pro- and anti-inflammatory sig-
nals is a prerequisite for a stable host/fungal relationship, the dis-
ruption of which may lead to pathological consequences. Indeed,
despite the occurrence of severe fungal infections in immunocom-
promised patients, clinical evidence indicates that fungal diseases
also occur in the setting of a heightened inflammatory response,
in which immunity occurs at the expense of host damage and
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Box 1 The mycobiome at the host/microbiome interface.

The development of culture-independent methods has expanded our knowledge of the mycobiomes found in different body sites, their
interface with other biomes, and their association with human health and diseases (1). Alterations in the mycobiome are frequently reported
to be associated with various diseases such as cystic fibrosis (9), inflammatory bowel diseases (6, 10, 11), atopic dermatitis (12), or muco-
cutaneous candidiasis (13). However, it remains to be elucidated whether this variation is primary or secondary to an imbalanced bacterial
microbiome. Indeed, interactions of fungi with bacteria in vitro have been described [reviewed in Ref. (6)] as well as the clinical relevance
of these interactions (14), such as the occurrence of intractable candidiasis in association with antibiotic-induced dysbiosis (15) and of
mixed fungal–bacterial species in biofilms (14). Fungal–bacterial interactions can be antagonistic, synergistic, or symbiotic; regardless, they
influence the physiological characteristics and survival of either one partner and, consequently, impact on host immune reactivity. Variations
in the mycobiome can also be secondary to dysregulated host immune reactivity.The traditional view of a single direction by which bacteria
stimulates the immune system, leading to inflammation or autoimmune disorders, has been challenged by a more complex view; the gut
immune system does not simply protect from pathogens, but is actively involved in the maintenance of a rich and healthy community of gut
bacteria (16). Faults in the immune regulation lead to changes in the bacterial community that in turn feed back into the immune system.
Similar to the microbiome, the host/mycobiome interactions also lead to mutual influences. Not only is the host affecting the mycobiome
composition and variations, by means of genotype, physiology, immune system, and lifestyle, but also the fungal microbiota may contribute
to the balance of inflammation and tolerance at local mucosal surfaces and at distal sites (17).

pathogen eradication (18). A number of fungal diseases are critical
examples of such bidirectional influences between infection and
immune-related pathology, a condition that highlights the bipolar
nature of the inflammatory process in infection. Early inflamma-
tion prevents or limits infection, but an uncontrolled response may
eventually oppose disease eradication. This conceptual principle
is best exemplified by the occurrence of severe fungal infections
in patients with chronic granulomatous disease (19), cystic fibro-
sis (20), or with immune reconstitution inflammatory syndrome
(IRIS) (21), an entity characterized by local and systemic inflam-
matory reactions that can result in quiescent or latent infections
manifesting as opportunistic mycoses. Chronic mucocutaneous
candidiasis (CMC) and chronic disseminated candidiasis also
belongs to the spectrum of fungus-related IRIS (22). Thus, an
immune response that limits both fungal infectivity and host col-
lateral damage is required to maintain a homeostatic environment
(23). This dual role has recently been accommodated within the
conceptual framework of a two-component antifungal immune
response, i.e., resistance – the ability to limit fungal burden – and
tolerance – the ability to limit the host damage caused by either the
immune response or other mechanisms (2). Resistance is meant
to reduce pathogen burden through innate and adaptive immune
mechanisms, whereas a plethora of tolerance mechanisms, despite
less known relative to resistance mechanisms, protect the host from
immune- or pathogen-induced damage (24).

MECHANISMS OF ANTIFUNGAL RESISTANCE
Innate immune mechanisms are used by the host to respond
to a range of fungal pathogens in an acute and conserved fash-
ion. The constitutive mechanisms of innate defense are present at
sites of continuous interaction with fungi and include the barrier
function of body surfaces and the mucosal epithelial surfaces of
the respiratory, gastrointestinal, and genitourinary tracts. Micro-
bial antagonism, defensins, collectins, and the complement system
realize the strict fungus specificity of the constitutive mechanisms
and provide opsonic recognition. Multiple cell populations and
cell-signaling pathways are involved in the antigen-independent
recognition of fungi by PRRs (2, 25). Both murine and human
studies have confirmed the association of susceptibility to fungal

infections and diseases with genetic deficiency of selected PRRs
(2). Because PRRs not only mediate downstream intracellular
events related to fungal clearance but also participate in activa-
tion of adaptive immunity, deficiencies on innate immune genes
also reverberate on the type and quality of the adaptive immune
response, including effector CD4+ T helper (Th), regulatory T
(Treg), and CD8+ T-cells (2, 25–27).

DENDRITIC CELLS
It is well established that the adaptive immune response, in partic-
ular that of T-cells, plays a pivotal role in antifungal host defense
(2, 25). Dendritic cells (DCs) play a key role in promoting T-cell
differentiation and responses to ubiquitous or commensal fungi.
Studies have shown that lung DCs can transport fungal antigens to
the draining lymph nodes (28, 29), where they orchestrate T-cell
activation and differentiation into effector cells. Through elabora-
tion of distinct sets of cytokines and other mediators, DCs have the
unique ability to elicit a robust T-cell response that can be either
tolerogenic or pro-inflammatory in nature, based on anatomi-
cal location and local metabolic environment. The whole-genome
transcriptional analysis of DCs stimulated with fungi evidenced
the presence of peculiar transcriptional programs governing the
recognition of fungi (30).

These include common signaling pathways involving Syk
kinase, Card9 and NF-κB downstream CLRs and ERK kinase,
PI3K/Akt downstream TLRs for Th1/Th2/Th17 priming by con-
ventional, inflammatory DCs, as well as p38/TRIF/STAT3 for Treg
priming by plasmacytoid DCs (2, 31). In a mutual interaction, the
host and the fungus control each other to avoid potential harm-
ful inflammatory response. The ability of a given DC subset to
respond with flexible activating programs and activation of dis-
tinct intracellular signaling pathways to the different PRR/fungal
molecules’ combinations confers unexpected plasticity to the DC
system and pivotally contributes in shaping adaptive Th cells
responses in infection and vaccination. The capacity of DCs
to initiate different adaptive antifungal immune responses also
depends upon specialization and cooperation between DC sub-
sets (32). The multiple, functionally distinct, receptor/signaling
pathways in DCs, ultimately affecting the local Th/Treg balance,
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Table 1 | CD4+ Th cell subsets in fungal infections.

Th cells Cytokines Functions

Th1 IFN-γ/TNF-α Fungal clearance
Inflammation

Th17 IL-17A/IL-17F Defensins, neutrophil recruitment
Inflammation

Th22 IL-22 Defensins
Tissue homeostasis

Th2 IL-4/IL-13 Humoral response
Allergy

Th9 IL-9/IL-10 Tissue inflammation

Treg IL-10/TGF-β Low inflammation
Immunosuppression

Tr1 IL-10 Low immunopathology

are likely successfully exploited by fungi from commensalism to
infection (33).

TH1 CELLS
CD4+ Th cells exist in a variety of epigenetic states that deter-
mine their function, phenotype, and capacity for persistence, and
form long-term immune memory (34). Well-balanced Th1 and
Th17 cell responses are crucial in antifungal immunity and facil-
itate phagocytic clearance of fungal recognition, mainly through
release of cytokines such as TNF-α, IFN-γ, and IL-17A and IL-
17F (Table 1). These cytokines stimulate the disparate antifungal
effector functions of phagocytes, as well as the generation of opti-
mal T-cell-dependent immunity (2, 25). A dominant Th1 response
correlates with the expression of protective immunity to fungi (2,
35) and vaccines (36, 37). Through the production of the sig-
nature cytokine IFN-γ and help for opsonizing antibodies, the
activation of Th1 cells is instrumental in the optimal activa-
tion of phagocytes at sites of infection. Therefore, the failure to
deliver activating signals to effector phagocytes may predispose
patients to overwhelming infections, limit the therapeutic efficacy
of antifungals and antibodies, and favor fungal persistency (2).
Patients who are deficient in IL-12Rβ are susceptible to CMC,
which is frequently recurrent or persistent (38), as well as to deep
paracoccidioidomycosis (39).

TH17 CELLS
Th17 are present in the human T-cell memory repertoire to fungi
(2) and inborn errors of human IL-17 immunity underlie suscep-
tibility to CMC (40) in which both Th17 (41) and Th1 (38, 42, 43)
responses are defective. Combined deficiency of the Th1 and Th17
pathway predisposes to fungal diseases (44, 45), thus emphasizing
the important role played by both pathways in resistance against
fungi. This could be explained with the notion that Th17 cells,

although found early during the initiation of an immune response,
are involved in a broad range of Th1-, Th2- and Treg-dominated
immune responses (2, 46). In terms of effector functions, the abil-
ity of IL-17A to mobilize neutrophils and induce defensins may
contribute to a prompt and efficient control of the infection at
the different body sites. In respiratory fungal infections, Th17 cell
are dispensable for resistance to the primary infection caused by
A. fumigatus (47), but are required for vaccine-induced immunity
against systemic mycoses endemic to North America (48). Thus,
both Th17 and Th1 (27) cells are required for vaccine immunity
to respiratory fungal pathogens.

It is intriguing that Th17 responses are down regulated by
C. albicans (49). Regardless of the contribution of this phe-
nomenon to infection or commensalism, this finding suggests
that Th17 responses are finely tuned by fungi, as the failure to
downregulate Th17 may eventually result in chronic inflamma-
tion and failure to resolve the infection (47, 50). The mecha-
nisms that linked inflammation to chronic infection have been
credited to the offending potential of IL-17A that, although pro-
moting neutrophil recruitment, impeded the timely restriction
of neutrophil inflammatory potential (51) while directly pro-
moting fungal virulence (52). Thus, the Th17 pathway could
be involved in the immunopathogenesis of chronic fungal dis-
eases where persistent fungal antigens may maintain immuno-
logical dysreactivity. This may happen in autoimmune polyen-
docrine syndrome type 1 patients (APS-1) and Aire-deficient
mice (53) where an excessive Th17 reactivity was observed. This
finding apparently conflicts with the presence of autoantibod-
ies against IL-22, IL-17A, and IL-17F observed in these patients
(54, 55). Although correlated to susceptibility to CMC, these
antibodies were also present in patients without CMC. In addi-
tion, despite the presence of antibodies to type I IFN, APS-I
patients do not appear prone to recurrent viral infections. It
has instead been shown that autoantibodies to pro-inflammatory
cytokines may act as beneficial autoimmunity in their ability to
dampen pro-inflammatory mediators and restrict self-destructive
immunity (56).

TH2 CELLS
IL-4 and IL-13 act as the most potent proximal signal for
commitment to Th2 reactivity that, by dampening protec-
tive Th1 responses and promoting the alternative pathway of
macrophage activation, favors fungal persistence, allergy, and dis-
ease relapse. Limiting IL-4 production restores antifungal resis-
tance (2) (Table 1). In atopic subjects and neonates, the sup-
pressed DTH response to fungi is associated with elevated levels
of antifungal IgE, IgA, and IgG. In CF patients, heightened Th2
reactivity associates with allergic bronchopulmonary aspergillosis
and is sensitive to vitamin 3 (57). However, alternatively acti-
vated macrophages may have a protective role in defense against
some respiratory fungi (58, 59) and Th2-dependent humoral
immunity may afford some protection, in part by promoting
Th1 immunity (60) and by altering fungal gene expression and
intracellular trafficking (61–63). The efficacy of certain vaccines
that elicit protective antibody strongly indicates that antibody
responses can make a decisive contribution to host defense to
fungi (61).

www.frontiersin.org October 2014 | Volume 5 | Article 506 | 3

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Borghi et al. Antifungal Th immunity

TH9 CELLS
The realization that Th effectors can produce various other
cytokines alone or in combination in patterns not fitting the pre-
conceived definitions of Th1/Th2 or Th17 subsets has led to the
description of additional Th cell lineages, including Th9 and Th22.
Initially thought to be a Th2-specific cytokine by virtue of its role
in the pathogenesis of asthma, IgE class switch recombination,
and resolution of parasitic infections, IL-9 is now considered to
be the product of a distinct Th subset, the Th9 (64). Despite its
relationship with other subsets, such as Th2, Th17, and Treg cells,
Th9 cell subset can mediate tumor immunity and participate in
autoimmune and allergic inflammation. Recently,human memory
Th9 cells were found to be skin tropic or skin resident. Human Th9
cells co-expressed TNF-α and granzyme B, lacked coproduction of
Th1/Th2/Th17 cytokines, and many were specific for C. albicans.
IL-9 production preceded the upregulation of other inflamma-
tory cytokines, such as IFN-γ, IL-13, and IL-17. IL-9-producing
T-cells were increased in the skin lesions of psoriasis, suggest-
ing that these cells may contribute to human inflammatory skin
disease in the presence of Candida (65). Recent findings demon-
strated that IL-9 is predominantly produced in vivo by a novel
subset of innate lymphoid cells termed ILC2 (66). It has been pro-
posed that IL-9 might have a regulatory and prosurvival function
for many lymphoid and myeloid cells (67). Our recent evidence
suggests that different types of ILCs are defective in IL-9-deficient
mice infected with either C. albicans or A. fumigatus, and this pro-
foundly affects the outcome of either infection and the associated
pathology (unpublished observations) (Table 1).

TH22 CELLS
Th22 cells producing only IL-22 but neither IFN-γ nor IL-17A
have been identified in human beings (68). They are induced
in the presence of TNF-α and IL-6 and require ligation of aryl
hydrocarbon receptor (AhR). Th22 cells via IL-22 influence the
function of mesenchymal and epithelial cells and have been impli-
cated in the dermatopathology of psoriasis and atopic dermatitis
(69, 70). Memory C. albicans-specific IL-22+ CD4+ cells are
present in human beings and defective in patients with CMC (71).
Recent evidence indicates that IL-22 may play a crucial role in the
innate immune resistance and local protection in mucocutaneous
fungal diseases (72–74). Through the exploitation of primitive
anti-fungal defense mechanisms, IL-22 was crucially involved in
the control of Candida growth at mucosal sites in conditions of
Th1 and Th17 deficiency (72, 74). Produced by ILC3 cells express-
ing AhR, IL-22 directly targeted gut epithelial cells to induce STAT3
phosphorylation and the release of S100A8 and S100A9 pep-
tides known to have anti-candidal activity and anti-inflammatory
effects (72, 74). Thus, due to dominant-negative mutations of
STAT3, patients with autosomal dominant hyper-IgE syndrome
have a defective Th17 (41) that is likely amplified on ECs where
STAT3 mutation compromises the IL-22 effects. IL-22 also medi-
ates antifungal resistance and epithelial protection in experimental
and human vulvovaginal candidiasis (VVC) as well as in recur-
rent VVC (RVVC). In RVVC, functional genetic variants in IL22
genes were found to be associated with heightened resistance to
RVVC, and they correlated with increased local expression of IL-22
(74). Thus, IL-22+ cells, employing ancient effector mechanisms

of immunity, may represent a primitive mechanism of resistance
against fungi under a condition of limited inflammation (Table 1).
The fact that IL-22 production in the gut is driven by commen-
sals (see below) also provides novel mechanistic insights on how
antibiotic-related dysbiosis may predispose to candidiasis (75).

MECHANISMS OF TOLERANCE
TREG CELLS
The exposure to fungi requires the generation of a controlled
immune response in the host that recognizes and controls them,
limits collateral damage to self-tissues, and restores a homeo-
static environment. A number of clinical observations suggest
an inverse relationship between IFN-γ and IL-10 production in
patients with fungal infections. High levels of IL-10, negatively
affecting IFN-γ production, are detected in chronic candidal dis-
eases, in the severe form of endemic mycoses, and in neutropenic
patients with aspergillosis. Thus, high levels of IL-10 have been
linked to susceptibility to fungal infections (76). However, given
its prominent effect on resolution of inflammation, IL-10 produc-
tion may be a consequence, rather than the cause, of the infection.
This predicts that, in the case of chronic fungal infections domi-
nated by non-resolving, persisting inflammation, IL-10 produced
by Treg cells acts as homeostatic host-driven response to keep
inflammation under control. Treg cells with anti-inflammatory
activity have been described in fungal infections of both mice and
human beings (2, 25). In experimental fungal infections, inflam-
matory immunity and immune tolerance in the respiratory or the
gastrointestinal mucosa were all controlled by the coordinate acti-
vation of different Treg cell subsets, exerting a fine control over
effector components of innate and adaptive immunity. Seen in
this context, the Treg/IL-10 axis is a dangerous necessity, the fail-
ure of which may lead to detrimental inflammation. However, as
the Treg responses may handicap the efficacy of protective immu-
nity, the consequence of Treg activity is less damage to the host
but also fungal persistence and immunosuppression, eventually
(Table 1). Thus, by controlling the quality and magnitude and
effector innate and adaptive responses, the spectrum of Treg cell
activities may go from “protective tolerance,” defined as a host’s
response that ensures survival of the host in a trade-off between
sterilizing immunity and its negative regulation limiting pathogen
elimination to overt immunosuppression. Taking a step further,
this suggests that the interaction between fungi and the host
immune status may determine their position from commensals to
pathogens, and this position can change continuously. The salu-
tary effects of Treg cells may go beyond their anti-inflammatory
properties, to include the polarization of protective Th17 cells (46).

TR1 CELLS
T regulatory Type 1 (Tr1) cells are adaptive Treg cells charac-
terized by the ability to secrete high levels of IL-10. Since their
discovery, Tr1 cells have been proven to be important in maintain-
ing immunological homeostasis and preventing T-cell-mediated
diseases. Tr1 cells suppress T- and DC-dependent responses pri-
marily via the secretion of IL-10 and TGF-β, release of granzyme
B and perforin, and by disrupting the metabolic state of T effector
cells. Tr1 cells have been demonstrated to have a role in infec-
tious diseases, autoimmunity, and transplant rejection in different
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pre-clinical disease models and in patients (77). It has recently
been shown that Tr1 cells play a distinct, yet complementary role,
in response to A. fumigatus in human beings and mice. Tr1 cells
specific for an epitope derived from the cell wall glucanase Crf-1 of
A. fumigatus (Crf-1/p41) were identified in healthy human beings
and mice after vaccination with Crf-1/p41+ zymosan. These cells
produced high amounts of interleukin IL-10 and suppressed the
expansion of antigen-specific T-cells in vitro and in vivo, thus lim-
iting immunopathology (Table 1). In vivo differentiation of Tr1
cells was dependent on the presence of AhR, c-Maf, and IL-27.
In comparison to Tr1 cells, Foxp3+ induced Treg that recog-
nize the same epitope were induced in an interferon gamma-type
inflammatory environment and more potently suppressed innate
immune cell activities. These data provide evidence that Tr1 cells
are involved in the maintenance of antifungal immune home-
ostasis, and most likely play a distinct, yet complementary, role
compared with Foxp3+ Treg cells (78).

TRYPTOPHAN METABOLISM
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and its down-
stream catabolites sustain the delicate balance between Th1/Th17
pathways and Treg cells, by providing the host with adequate pro-
tective immune mechanisms without necessarily eliminating the
pathogen or causing undesirable tissue damage (79). As a result of
their ability to induce differentiation of Treg cells and inhibit Th17
cells, IDO1 is critical to cell lineage commitment in experimental
fungal infections and contributes to the overall outcome of inflam-
mation, allergy, and Th17-driven inflammation in these infections.
Under these circumstances, the Th17 pathway, by inhibiting tryp-
tophan catabolism, may instead favor pathology and provides
evidence accommodating the apparently paradoxical association
of chronic inflammation with fungal disease (19). IDO1 is a“meta-
bolic” enzyme conserved through the past 600 million years of
evolution. Initially recognized in infection because of antimicro-
bial activity (“tryptophan starvation” of intracellular parasites),
IDO1 is now widely recognized as suppressor of acute inflamma-
tory responses and regulator of mammalian immune homeostasis
(79). Not surprising, IDO1 may represent an evasion mechanism
for microbes that establish commensalism or chronic infection
(79). In their capacity to induce Tregs and inhibit Th17, IDO1-
expressing DCs and epithelial cells and kynurenines revealed an
unexpected potential in the control of inflammation, allergy, and
Th17-driven inflammation in these infections (51, 80).

MICROBIOTA REGULATION OF RESISTANCE AND
TOLERANCE TO FUNGI
Commensal-driven mucosal responses are upregulated in IDO1
deficiency (81) and IL-22 responses are upregulated in conditions
of defective adaptive immunity (72) and IDO deficiency (75). AhR
is a ligand-activated transcription factor that mediates IL-22 pro-
duction (82). A variety of indole derivatives act as endogenous
ligands for AhR (83) and are generated through conversion from
dietary tryptophan by commensal intestinal microbes (84). Recent
evidence has shown that AhR is involved in the (patho)physiology
of skin including the regulation of skin pigmentation, photo-
carcinogenesis, and skin inflammation (85, 86). Of interest, the
ability of Malassezia-derived indoles to activate AhR correlated

with local immunoregulation (87) and pathogenicity in sebor-
rheic dermatitis (88). Similarly, metabolomics has revealed that
bioactive indoles with Ahr agonist activity are also present in
mice with candidiasis (75). Thus, the trpyptophan metabolism
pathway is exploited by commensals and the mammalian host to
increase fitness in response to fungi via induction of resistance
and tolerance at the skin and mucosal surface. The new findings
support a model in which the IL-22 axis controls the initial fun-
gal growth (i.e., resistance) and epithelial cells homeostasis likely
exploiting primitive anti-fungal effector defense mechanisms. In
contrast, the exploitation of the IFN-γ/IDO 1 axis for functional
specialization of antifungal regulatory mechanisms (i.e., protective
tolerance) may have allowed the fungal microbiota to co-evolutes
with the mammalian immune system, survives in conditions of
high-threat inflammation, and prevents dysregulated immunity
(79). The two pathways, although non-redundant, are reciprocally
regulated and compensate each other in the relative absence of
either one (72), consistent with the theme that adaptive immu-
nity depends on innate immunity but innate immunity requires
adaptive regulation. This finding not only helps to explain the asso-
ciation of fungal infections with dysbiosis but also points to the
essential help the microbiota may provide in fungal colonization
and pathogenicity in immunodeficient patients.

CONCLUSION
Vertebrates have co-evolved with microorganisms resulting in a
symbiotic relationship, which plays an important role in shap-
ing host immunity. However, intestinal inflammation also dictates
the composition of gut-associated microbial communities (89),
a finding indicating the reciprocal influence of the microbiota
and the mammalian immune status. The mycobiome is not an
exception to the rule. The activation of different Th cells with
distinct effector and immunoregulatory functions may impact
differently on the local mycobiome composition. Indeed, the find-
ings that fungi oppositely react to IFN-γ (90) or IL-17A (52), in
terms of growth and virulence, suggest that the local Th envi-
ronment may contribute to the diversity of the mycobiome at
different body sites. Ultimately, fungi have evolved a contingency-
based system during co-evolution to adapt to host immunity and
persist in an inflammatory host environment. In turn, this feeds
back into the host immune fitness. For instance, manipulation
of the regulatory network of the host by the fungal microbiota,
resulting in the activation of Treg-dependent immune tolerance,
is a mechanism to ensure fungal survival and commensalism at
different body sites, as well as local immune tolerance (76, 91,
92). Thus, challenging existing paradigms with new perspectives
from the crosstalk between fungi, the immune system, and the
microbiota will eventually lead toward the development of multi-
pronged therapeutic approaches for mucosal and systemic fungal
diseases.
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