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Order cancellation process plays a crucial role in the dynamics of price formation
in order-driven stock markets and is important in the construction and validation of
computational finance models. Based on the order flow data of 18 liquid stocks traded on
the Shenzhen Stock Exchange in 2003, we investigate the empirical statistical properties
of inter-cancellation durations in units of events defined as the waiting times between two
consecutive cancellations. The inter-cancellation durations for both buy and sell orders of
all the stocks favor a q-exponential distribution when the maximum likelihood estimation
method is adopted; In contrast, both cancelled buy orders of 6 stocks and cancelled sell
orders of 3 stocks prefer Weibull distribution when the non-linear least-squares estimation
is used. Applying detrended fluctuation analysis (DFA), centered detrending moving
average (CDMA) and multifractal detrended fluctuation analysis (MF-DFA) methods, we
unveil that the inter-cancellation duration time series process long memory and multifractal
nature for both buy and sell cancellations of all the stocks. Our findings show that order
cancellation processes exhibit long-range correlated bursty behaviors and are thus not
Poissonian.

Keywords: econophysics, order flow, inter-cancellation duration, probability distribution, memory effect,

multifractal nature

1. INTRODUCTION
In an order-driven market, order submission and cancellation
play the most important role in the process of price formation.
For order submission process, lots of studies have been conducted
to investigate the statistical properties of the ingredients of an
order including order price [1–8], order size or volume [9–18],
order direction [7, 19–21], and so on. Special attention has been
paid to the probability distribution and memory effect of these
ingredients and many stylized facts have been documented.

Order cancellation is a process of removing orders from the
limit-order book which is a queue of limit orders waiting to be
executed and constructed according to the price-time priority. If
all orders placed at the best ask or best bid are cancelled, the mid-
price defined as the mean value of the best ask and best bid will
change. If cancellation occurs inside the limit order book, it causes
changes of the structure of limit order book and has potential
impact on price fluctuation.

The motivation of order cancellation is related to the non-
execution (NE) risk or free option (FO) risk [22, 23], and the
former is the major reason for cancelling limit orders [23]. NE
risk arises when the current security price moves away from the
submitting price. The orders submitted in the front of limit-order
book cannot be transacted immediately, which makes the traders
suffer opportunity cost. Traders may cancel the stale orders and
resubmit more aggressive ones to increase the transaction proba-
bility. So in order to reduce NE risk, buy traders potentially drive

the security price up, and sell traders drive the price down. FO
risk arises when important news arrives. The intrinsic value of
asset will be underestimated (for good news) or overestimated
(for bad news) according to the current price. In order to prevent
to be traded at the unfavorable price, traders will cancel their limit
orders and resubmit unaggressive ones. So conversely, in order to
reduce FO risk, buy traders potentially drive the price down, and
sell traders drives the price up.

Since there are rare cancellation data recorded in the past,
only a few literatures investigated the empirical regularities of
order cancellation. With the development of information tech-
nology and computer science, it is possible to record the order
flow data which enables us to analyze the statistical properties
of order cancellation and construct cancellation models. Ni et al.
[24] investigated the empirical regularities of inter-cancellation
duration of 22 stocks in the Chinese stock market, and made
a conclusion that order cancellation is a non-Poisson process.
Liu [25] showed a simple model of order revision and cancel-
lation, and found that the frequency of order cancellation is
positively related to order submission risk and stock capitaliza-
tion, but negatively related to bid-ask spread. In an order-driven
model, Daniels et al. [26] assumed that order cancellation follows
a Poisson process, which makes the model having powerful pre-
dictions of stylized facts, such as price diffusion, price impact, and
so on. In the empirical model proposed by Mike and Farmer [7],
the order cancellation process is determined by three independent
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factors, the position in the order book relative to the opposite
best price, the imbalance of buy and sell orders in the limit-order
book, and the total number of orders stored in the limit-order
book. This cancellation model gives an excellent prediction for
the life time of cancelled orders.

In financial markets, a widely studied subject is the recurrence
interval defined as the waiting time between two consecutive
events. Many scholars have analyzed the probability distribu-
tion of recurrence intervals of different variables such as returns,
volatilities and trading volumes. However, the results are contro-
versial. Power-law distribution [27–30] and stretched exponential
distribution [31–42] are mainly selected to fit the probability
density function (PDF) in different financial markets. Moreover,
other distributions are also proposed for complement [43, 44].
It is interesting that the recurrence interval time series usually
processes long memory [28, 30–32, 34, 38, 39, 41, 42, 45, 46].
Recurrence interval analysis has also been applied to other fields
such as the energy dissipation rate in three-dimensional fully
developed turbulence [47].

Similar to recurrence interval, intertrade duration which
is defined as the interval between two consecutive transac-
tions is another important topic. Continuous-time random walk
(CTRW) proposed by Montroll and Weiss [48] has been widely
utilized to deal with the intertrade duration in the financial time
series [49–54]. Empirical results indicate that intertrade durations
might follow a power-law distribution [51, 54–56], a stretched
exponential or Weibull distribution [57–62], or a q-exponential
distribution [62, 63]. On the other hand, some studies showed
that the intertrade durations are neither exponentially distributed
[55, 61, 64, 65] nor power-law distributed [63].

The goodness of fit for Weibull distribution and q-exponential
distribution has been estimated in the distribution of intertrade
durations. Jiang et al. [62] studied the limit order data of 18 liq-
uid stocks listed in the Chinese stock market, and showed that
Weibull distribution gives better fitting than q-exponential distri-
bution with the maximum likelihood estimation method, while
q-exponential distribution outperforms Weibull distribution with
the non-linear least-squares estimation method. Politi and Scalas
[63] analyzed the tick-by-tick data set of DJIA stocks traded at
NYSE in year 1999, and found that q-exponential distribution
compares well to the Weibull distribution.

In this paper, we will study the statistical properties of inter-
cancellation durations in event time for both cancelled buy and
sell orders of 18 stocks listed on the Shenzhen Stock Exchange.
The rest of paper is organized as follows. We study the proba-
bility distributions of the inter-cancellation durations based on
the maximum likelihood estimation and non-linear least-square
estimation methods. We further discuss the memory effect and
multifractal nature.

2. MATERIALS AND METHODS
2.1. DATA SETS
Our analysis is based on the order flow data of 18 liquid stocks
traded on the Shenzhen Stock Exchange in 2003. There were
three periods in a trading day in 2003: opening call auction, cool
period and continuous double auction. Opening call auction is
held from 9:15 to 9:25 a.m., referring to the process of one-time

centralized matching of buy and sell orders accepted during a
specified period to generate the opening price at 9:25 in a trading
day. Following the opening call auction, cool period is held from
9:25 to 9:30 a.m. when the Exchange is opened to orders rout-
ing from investors, but the orders or cancellations are not allowed
to be processed. The main trading period is the continuous auc-
tion (9:30–11:30 a.m. and 13:00–15:00 p.m.), which refers to the
process of continuous matching of both buy and sell orders on a
one-by-one basis.

Our database records ultra-high-frequency order flow data
whose time stamps are accurate to 0.01s. It contains the details of
order placement and order cancellation. For example, the stock
Ping An Bank Co., Ltd. (000001) contains 3,925,832 records in
the whole year of 2003. So we can rebuild the limit-order book
based on the prefect database according the trading rules. On the
other hand, it is difficult to obtain this type of prefect database
and we only have the data of 23 stocks in the whole year of 2003
among which 5 stocks have wrong records of order cancellation,
and we select the rest 18 stocks to study the statistical properties of
order cancellation. For the 18 stocks analyzed, they cover 9 CSRC
(China Securities Regulatory Commission) Industries, such as
finance and insurance, real estate, transportation, machinery, to
list a few. On the other hand, in the year of 2003, the Chinese stock
index first went up then fell down. Bull market and bear market
were both existed in 2003. So the database we studied generally
presents the situation of Chinese market.

The paper not only focuses on the cancellation data in the con-
tinuous auction, but also includes the cancellation data in the
opening call auction and cool period. We count the cancellation
numbers NC for both cancelled buy and sell orders of each stock,
and then calculate the ratio r of NC to the number of all the orders
NA (including both submitted orders and cancelled orders). The
results are listed in Table 1. We find that the ratio r fluctuates
within a wide range, being [0.097, 0.195] for cancelled buy orders
and being [0.087, 0.189] for cancelled sell orders. An interesting
feature shows that the ratio of cancelled buy orders approximates
to cancelled sell orders for each stock, which implies that a large
proportion of buy orders cancelled corresponds to a large number
of cancellations for sell orders, and vice versa.

We further investigate the ratios r in each trading day for all the
stocks. Figure 1 presents the linear relations between NC and NA

for both cancelled buy and sell orders of two stocks. The slopes
γ of the fitted lines are calculated using the least-squares fitting
method, and the values of 18 stocks are listed in Table 1. It is evi-
dent that the value of γ is close to the value of r for each stock,
which implies that the ratios of cancellation in each trading day
are almost similar for both cancelled buy and sell orders of each
stock.

In the paper, the inter-cancellation duration is defined as the
interval between two consecutive cancellations in units of events,
which reads

d(i) = t(i) − t(i − 1), (1)

where t(i) is the event time when the i-th cancellation takes place.
It is clear that inter-cancellation duration d(i) is the number of
orders (including both buy orders and sell orders) submitted
between the (i − 1)-th cancellation and the i-th cancellation. We
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calculate the average values 〈d〉 of inter-cancellation durations for
both cancelled buy and sell orders of each stock, and depict the
results in Table 1. According to the definition of inter-cancellation
duration, we easily obtain the relation r > 1/〈d〉 which is con-
firmed by the data listed in the table. The reason is that the ratio
r is defined based on a certain kind of orders (buy orders or sell
orders) while the inter-cancellation duration d is considered as
the number of both buy and sell orders submitted between two
successive cancellations.

Table 1 | The statistics of inter-cancellation durations for both

cancelled buy and sell orders of 18 stocks.

Stock Cancelled buy orders Cancelled sell orders

NC r γ 〈d〉 NC r γ 〈d〉

000001 320,872 0.157 0.174 12.12 277,878 0.148 0.148 13.73

000009 185,018 0.176 0.180 11.81 188,725 0.164 0.183 11.38

000012 115,335 0.194 0.187 9.84 107,443 0.189 0.200 10.62

000016 60,724 0.170 0.179 11.89 59,723 0.154 0.152 12.09

000021 158,470 0.188 0.182 10.70 154,157 0.174 0.173 10.98

000024 43,013 0.177 0.179 12.03 46,130 0.156 0.160 11.23

000066 110,979 0.191 0.188 10.60 107,641 0.173 0.182 10.85

000406 94,998 0.164 0.160 11.92 92,841 0.157 0.173 12.21

000429 37,332 0.161 0.158 12.63 36,585 0.140 0.138 12.96

000488 33,183 0.148 0.167 13.18 34,478 0.145 0.150 12.75

000539 27,322 0.127 0.124 14.76 27,487 0.127 0.128 14.88

000541 19,938 0.149 0.178 13.29 20,112 0.129 0.135 13.24

000550 123,948 0.188 0.193 10.99 131,270 0.181 0.182 10.31

000581 27,570 0.152 0.169 13.99 29,907 0.131 0.124 13.05

000625 124,736 0.178 0.187 11.38 133,627 0.179 0.187 10.65

000709 66,291 0.152 0.145 13.16 64,697 0.136 0.145 13.55

000720 16,767 0.097 0.116 17.44 14,441 0.087 0.089 20.29

000778 44,113 0.151 0.150 14.17 48,041 0.131 0.138 13.13

NC is the number of cancellation. r is the ratio of NC to NA. γ is the slope of the

fitted line presented in Figure 1. 〈d〉 is the average inter-cancellation duration in

units of events.

2.2. MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS
Multifractals are ubiquitous in the nature and society [66],
including financial time series. In this section, we investigate
the multifractal properties of inter-cancellation durations apply-
ing the multifractal detrended fluctuation analysis (MF-DFA)
method [67] which is generalized from the DFA method. The
MF-DFA algorithm is described as follows.

Step 1. Consider an inter-cancellation duration series d(i),
where i = 1, 2, . . . , N. Construct the cumulative sum sequence
y(i) as follows,

y(i) =
i∑

k = 1

d(k), i = 1, 2, . . . , N. (2)

Step 2. Divide the sequence y(i) into Ns disjoint segments with
the same length s, where Ns = [N/s], and [x] is the largest integer
not larger than x. Each segment can be denoted as yv such that
yv(j) = y(� + j) for 1 � j � s, and � = (v − 1)s. Since the length
of the inter-cancellation duration series N might not be a multiple
of the segment size s, a remaining part (with the length smaller
than s) at the end of sequence y(i) is not covered by the dividing
procedure. We will select another Ns disjoint segments from the
end of the series for compensating the remaining part, and then
consider the 2Ns segments which covers the whole sequence y(i).

Step 3. In each segment yv, a polynomial function is utilized to
represent the trend by the least-squares regression. The simplest
function could be a line, and in the paper we adopt the linear
function ỹv(j) with 1 � j � s to remove the trend. The residual
εv(j) in the segment yv can be calculated by

εv(j) = yv(j) − ỹv(j). (3)

Step 4. The detrended fluctuation function F(v, s) of the segment
yv is defined as follows,

F(v, s) =
√√√√1

s

s∑
j = 1

[εv(j)]2. (4)

FIGURE 1 | Plots of the number of cancellations NC with respect to the number of all the orders NA of each trading day for two stocks 000009 (A)

and 000012 (B). The solid lines are calculated with the least-squares fitting method.
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Step 5. The q-th order overall fluctuation function Fq(s) is deter-
mined through

Fq(s) =
{

1

2Ns

2Ns∑
v = 1

[F(v, s)]q

} 1
q

, (5)

where q can take any real value except for q = 0. When q = 0,
according to L’Hôspital’s rule we have

ln[F0(s)] = 1

2Ns

2Ns∑
v = 1

ln[F(v, s)]. (6)

Step 6. Varying the values of segment size s from 10 to [N/6], a
power-law relation between the function Fq(s) and the size scale s
is determined, which reads

Fq(s) ∼ sh(q). (7)

According to the standard multifractal formalism, the multifractal
scaling exponent τ(q) characterizes the multifractal nature, which
reads

τ(q) = qh(q) − Df , (8)

where Df is the fractal dimension of the geometric support of
multifractal measure. For one dimensional time series analysis,
we have Df = 1. If the scaling exponent τ(q) is a non-linear func-
tion of q, the series has multifractal nature. Finally, it is easy to
obtain the singularity strength function α(q) and the multifractal
spectrum f (α) via the Legendre transform, that is,{

α(q) = dτ(q)/dq
f (q) = qα − τ(q)

. (9)

3. RESULTS
3.1. PROBABILITY DISTRIBUTION
Probability distribution of financial variables has crucial impli-
cations on asset pricing and risk management. In this section,

we focus on investigating the probability distributions of inter-
cancellation durations for both cancelled buy and sell orders of
18 stocks. The probability density functions (PDFs) P(d) of four
randomly chosen stocks are presented in Figure 2A.

According to the empirical results shown in the literature and
the curve shape presented in Figure 2, we fit the distributions by
Weibulls [24, 60–62] and q-exponentials [24, 62, 63, 68, 69]. For
Weibull distributions, we have

PWBL(d) = b

a

(
d

a

)b − 1

e−( d
a )b

, (10)

where a is the scale parameter and b is the shape parameter. The
q-exponential distributions can be described as follows:

PqE(d) = 1

κ

[
1 − (1 − q)(

d

κ
)

] q
1−q

, (11)

where κ is the scale parameter and q is the shape parameter.
The maximum likelihood estimation (MLE) method is first

applied to estimate the parameters of Weibull and q-exponential
distributions. As we know, MLE method captures the major part
of the fitting data. We find that it accounts for 64.9% (63.7%) in
the range d ≤ 10 for cancelled buy (sell) orders. The parameters
a and b of the Weibull distribution and the parameters κ and q of
the q-exponential distribution estimated with the MLE method
are listed in the left panel of Table 2.

Since Weibull distribution has the same number of parame-
ters as q-exponential distribution, the root mean square χ of the
difference between the best fit and the empirical data is applied
to compare the performance of the two distributions, which is
presented in Table 2 as well. It is clear that χqE of q-exponential
distribution are smaller than χWBL of Weibull distribution (χqE <

χWBL). So we conclude that q-exponential distribution outper-
forms Weibull distribution for the cancelled buy orders of each
stock with the MLE method.

In order to capture the tail behavior of the distribution,
we then utilize the non-linear least-squares estimation (NLSE)
method to fit the distribution of cancelled buy orders, and the

FIGURE 2 | Probability distributions (A) and rescaled probability distributions (B) of inter-cancellation durations d for both cancelled buy and sell orders

of four stocks 000001, 000009, 000012, and 000021. The curves corresponding to cancelled sell orders have been vertically translated downward for clarity.
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Table 2 | Parameters of the Weibull and q-exponential distributions based on the MLE and NLSE methods for cancelled buy orders of 18 stocks.

Stock MLE NLSE

Weibull q-exponential Weibull q-exponential

a b χWBL κ q χqE a b χWBL κ q χqE

000001 11.55 0.92 0.0075 9.47 1.22 0.0057 4.88 0.54 0.0092 7.97 1.26 0.0029

000009 11.45 0.94 0.0064 9.59 1.18 0.0044 4.73 0.54 0.0114 7.34 1.28 0.0013

000012 9.57 0.95 0.0090 8.00 1.18 0.0066 4.66 0.59 0.0098 7.07 1.21 0.0041

000016 11.63 0.96 0.0073 9.99 1.16 0.0055 7.26 0.68 0.0062 9.11 1.17 0.0038

000021 10.31 0.93 0.0085 8.52 1.20 0.0063 4.96 0.58 0.0092 7.67 1.22 0.0042

000024 11.56 0.93 0.0082 9.64 1.20 0.0065 6.44 0.63 0.0068 8.46 1.22 0.0043

000066 10.32 0.95 0.0082 8.67 1.18 0.0060 5.52 0.62 0.0088 7.62 1.21 0.0034

000406 11.59 0.95 0.0069 9.85 1.17 0.0052 4.35 0.54 0.0108 7.43 1.26 0.0016

000429 12.38 0.96 0.0067 10.74 1.15 0.0051 7.66 0.68 0.0064 9.29 1.18 0.0026

000488 12.24 0.88 0.0099 9.67 1.27 0.0087 6.83 0.60 0.0051 9.25 1.24 0.0079

000539 12.16 0.76 0.0216 7.91 1.51 0.0211 6.31 0.52 0.0161 8.75 1.36 0.0222

000541 12.69 0.92 0.0086 10.60 1.20 0.0075 6.01 0.59 0.0070 8.60 1.24 0.0049

000550 10.38 0.90 0.0102 8.32 1.24 0.0082 6.19 0.62 0.0067 8.14 1.22 0.0078

000581 12.63 0.84 0.0113 9.60 1.32 0.0106 6.05 0.54 0.0065 8.67 1.31 0.0094

000625 10.63 0.89 0.0105 8.37 1.27 0.0086 6.17 0.61 0.0066 8.47 1.22 0.0087

000709 12.78 0.94 0.0061 10.88 1.17 0.0046 5.37 0.56 0.0104 8.34 1.26 0.0016

000720 11.28 0.63 0.0394 4.57 2.00 0.0346 7.82 0.51 0.0369 9.24 1.47 0.0429

000778 13.69 0.94 0.0066 11.71 1.17 0.0056 7.77 0.65 0.0061 10.25 1.19 0.0038

MEAN 12.01 0.89 0.0104 9.56 1.27 0.0088 6.50 0.60 0.0092 8.79 1.25 0.0076

χ is the root mean square of the difference between the best fit and the empirical data.

parameters of Weibull and q-exponential distributions are listed
in the right panel of Table 2. The parameters a and b calculated
from the NLSE method are all smaller than those with the MLE
method for 18 stocks. For the parameter κ , 3 stocks out of 18
stocks own larger values with NLSE method, while for the param-
eter q, 12 stocks have larger values with NLSE method. We also
select the root mean square χ to compare the performance of the
two distributions with the NLSE method. According to the values
of χ listed in Table 2, we find that the result is different from the
MLE method. There are 6 stocks prefer Weibull distribution, and
the rest 12 stocks are better fitted by q-exponential distribution.
The mean values of four parameters for cancelled buy orders are
also presented in the last row of Table 2. The mean value of the
four parameters obtained from the MLE method are larger than
those from the NLSE method.

With the same procedure mentioned above, we then analyze
the probability distribution of cancelled sell orders with the MLE
and NLSE methods, and obtain similar results. The parameters
a and b of Weibull distribution and the parameters κ and q
of q-exponential distribution are listed in Table 3. For the can-
celled sell orders, the relation χqE < χWBL is satisfied for each
stock when using the MLE method, which indicates that the
distribution prefers q-exponential distribution than Weibull dis-
tribution with the MLE method. However, there are 3 stocks
out of 18 stocks have smaller values of χWBL and prefer Weibull
distribution with the NLSE method.

Similar to the cancelled buy orders, the parameters a and b
of Weibull distribution calculated from the NLSE method are

smaller than those from the MLE method for cancelled sell orders
of each stock. However, when considering q-exponential distribu-
tion, there are 2 stocks (000488 and 000720) having larger values
of κ and smaller values of q with the NLSE method. The mean val-
ues of four parameters for the cancelled sell orders are presented
in the last row of Table 3 as well. It is evident that the mean value
of the four parameters obtained from the MLE method are larger
than those from the NLSE method, except for the parameter q.

We rescale the inter-cancellation duration d to d/〈d〉 and the
probability density function P(d) to P(d)〈d〉, where 〈d〉 is the
mean value of inter-cancellation durations d. The rescaled PDFs
of inter-cancellation durations for the same four stocks are pre-
sented in Figure 2B. We find that four rescaled curves collapse
together, showing a perfect scaling behavior. Since the rescaled
probability distribution has an excellent scaling, we aggregate all
the inter-cancellation durations of 18 stocks together and treat
them as an ensemble to obtain a better statistic. The rescaled PDFs
of ensemble durations for both cancelled buy and sell orders are
shown in Figure 3.

The parameters of Weibull and q-exponential distributions for
ensemble inter-cancellation durations are calculated by the MLE
and NLSE methods, respectively. When Using the MLE method,
we obtain a = 11.21, b = 0.91 and κ = 9.13, q = 1.22 for can-
celled buy orders, and a = 11.55, b = 0.93 and κ = 9.64, q =
1.19 for cancelled sell orders. When applying the NLSE method,
we have a = 4.79, b = 0.54 and κ = 7.90, q = 1.25 for cancelled
buy orders, and a = 4.80, b = 0.54 and κ = 7.91, q = 1.25 for
cancelled sell orders. It is clear that the values of the parameters
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Table 3 | Parameters of Weibull and q-exponential distributions based on the MLE and NLSE methods for cancelled sell orders of 18 stocks.

Stock MLE NLSE

Weibull q-exponential Weibull q-exponential

a b χWBL κ q χqE a b χWBL κ q χqE

000001 13.05 0.90 0.0058 10.68 1.22 0.0042 6.04 0.56 0.0094 9.01 1.27 0.0015

000009 11.11 0.95 0.0066 9.44 1.17 0.0046 4.92 0.57 0.0108 7.97 1.22 0.0015

000012 10.31 0.95 0.0083 8.64 1.18 0.0061 4.92 0.59 0.0094 7.58 1.21 0.0036

000016 11.96 0.97 0.0063 10.52 1.13 0.0047 5.12 0.59 0.0109 7.81 1.22 0.0021

000021 10.72 0.95 0.0073 9.09 1.17 0.0053 4.63 0.57 0.0107 7.49 1.23 0.0016

000024 11.16 0.99 0.0065 9.83 1.12 0.0046 4.32 0.56 0.0122 6.80 1.25 0.0035

000066 10.65 0.95 0.0072 9.11 1.16 0.0052 5.80 0.63 0.0090 7.95 1.19 0.0025

000406 11.88 0.95 0.0078 10.23 1.16 0.0065 5.04 0.57 0.0088 7.88 1.24 0.0036

000429 12.87 0.98 0.0060 11.45 1.12 0.0044 9.44 0.77 0.0045 10.56 1.12 0.0029

000488 11.96 0.89 0.0125 9.72 1.24 0.0119 8.67 0.70 0.0064 10.13 1.17 0.0124

000539 13.63 0.86 0.0093 10.68 1.28 0.0088 7.30 0.57 0.0053 9.24 1.31 0.0073

000541 12.86 0.94 0.0075 11.11 1.16 0.0065 4.69 0.52 0.0102 7.41 1.31 0.0047

000550 10.06 0.94 0.0078 8.48 1.17 0.0057 4.22 0.55 0.0111 6.66 1.25 0.0016

000581 12.43 0.91 0.0080 10.32 1.21 0.0070 5.70 0.56 0.0075 7.88 1.29 0.0041

000625 10.33 0.94 0.0086 8.70 1.18 0.0067 3.71 0.53 0.0108 6.70 1.25 0.0024

000709 13.24 0.95 0.0056 11.48 1.15 0.0043 5.22 0.55 0.0106 8.51 1.25 0.0023

000720 14.37 0.66 0.0275 7.02 1.82 0.0259 9.87 0.53 0.0241 10.93 1.46 0.0304

000778 12.90 0.96 0.0068 11.36 1.13 0.0055 8.27 0.71 0.0050 10.02 1.15 0.0036

MEAN 11.98 0.93 0.0085 9.94 1.20 0.0070 6.02 0.59 0.0095 8.29 1.25 0.0048

χ is the root mean square of the difference between the best fit and the empirical data.

FIGURE 3 | Rescaled probability distributions of the ensemble inter-cancellation durations for both cancelled buy (A) and sell (B) orders. The empirical
data are fitted by Weibull and q-exponential distributions using the MLE and NLSE methods, respectively.

obtained from ensemble inter-cancellation durations are similar
to the mean values presented in the last rows of Tables 2, 3, which
confirms that the scaling behavior is truly existed. In addition, we
find in Figure 3 that Weibull distribution evidently deviates from
the empirical data in the tail with the MLE method, which is con-
sistent with the relation χqE < χWBL for both cancelled buy and
sell orders.

3.2. MEMORY EFFECT
Another important issue about financial time series is the
memory effect. Many methods have been proposed for

quantitatively measuring the memory effort, such as the rescaled
range (RS) analysis [70, 71], the fluctuation analysis (FA) [72], the
wavelet transform module maxima (WTMM) method [73, 74],
the detrended fluctuation analysis (DFA) [75], the detrending
moving average (DMA) [76], and so on. Shao et al. [77] com-
pared the performance of the FA, DFA, and DMA methods
using different long-range correlated time series, and found that
centred detrending moving average (CDMA) has the best per-
formance and DFA is only slightly worse in some situations,
while FA performs the worst. In this paper we apply the DFA
and CDMA to investigate the memory effect of inter-cancellation
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duration series for both cancelled buy and sell orders of 18
stocks.

Figure 4 presents the detrended fluctuation functions FDFA(s)
with respect to the size scale s using the DFA method for both can-
celled buy and sell orders of four stocks, 000001, 000009, 000012,
and 000021. Each curve reveals excellent power-law scaling over
more than three orders of magnitude.

Applying the DFA method, the Hurst exponents H of 18 stocks
are estimated according to the power-law relation FDFA(s) ∼ sH ,
which are the slopes of solid lines shown in the log-log plot of
Figure 4. We list the Hurst exponents for both cancelled buy and
sell orders of 18 stocks in Table 4. The value of H for cancelled
buy orders varies in the range [0.68, 0.82] with the mean value
〈H〉 = 0.76 ± 0.04, and for cancelled sell orders it varies from
0.68 to 0.85 with the mean value 〈H〉 = 0.76 ± 0.04. Since all the
Hurst exponents are evidently larger than 0.5, we conclude that
the inter-cancellation duration time series of both cancelled buy
and sell orders process long memory.

Comparing with the backward detrending moving average
(BDMA) and forward detrending moving average (FDMA), the
centered detrending moving average (CDMA) performs better in
one dimensional time series [78]. We then choose the CDMA
method to estimate the memory effect of inter-cancellation dura-
tion series. The detrended fluctuation functions FCDMA(s) calcu-
lated from the CDMA method for both cancelled buy and sell
orders of four stocks are depicted in Figure 5.

Perfect power-law scalings are observed in the log-log plot
which implies that the relation FCDMA(s) ∼ sH is well satisfied.
The Hurst exponents H are the slopes of solid lines in the
log-log plot. Using the least-squares fitting method, we calcu-
late the Hurst exponents for both cancelled buy and sell orders
of 18 stocks which are listed in Table 5 as well. It is obvi-
ous that the values of H obtained from the CDMA method
are close to those calculated from DFA method. With all the
Hurst exponents apparently larger than 0.5 with the two meth-
ods, we conclude that the inter-cancellation duration time series
for both cancelled buy and sell orders of 18 stocks process long
memory.

On the other hand, the memory effect might be affected by
the distribution of inter-cancellation durations. In order to test
this hypothesis, we first shuffle the inter-cancellation duration
series of each stock for 100 times, and then calculate the Hurst
exponents HSFL for each shuffling series based on both DFA and
DMA methods, respectively. The mean Hurst exponents HSFL of
100 shuffling series for both cancelled buy and sell orders of each
stock are shown in Table 4. We find that the values of HSFL are all

Table 4 | Hurst exponents H of inter-cancellation durations for both

cancelled buy and sell orders of 18 stocks based on the DFA and DMA

methods.

Stock Cancelled buy orders Cancelled sell orders

DFA DMA DFA DMA

H HSFL H HSFL H HSFL H HSFL

000001 0.808 0.500 0.814 0.499 0.845 0.501 0.837 0.497

000009 0.795 0.501 0.796 0.495 0.841 0.502 0.839 0.494

000012 0.782 0.503 0.763 0.495 0.806 0.500 0.791 0.493

000016 0.739 0.500 0.726 0.495 0.726 0.500 0.737 0.499

000021 0.754 0.501 0.753 0.496 0.783 0.500 0.777 0.495

000024 0.773 0.501 0.768 0.492 0.731 0.503 0.746 0.497

000066 0.775 0.500 0.770 0.498 0.797 0.500 0.796 0.494

000406 0.734 0.500 0.738 0.496 0.783 0.500 0.784 0.494

000429 0.719 0.503 0.708 0.494 0.679 0.502 0.690 0.493

000488 0.764 0.501 0.751 0.492 0.747 0.501 0.721 0.498

000539 0.811 0.501 0.818 0.494 0.752 0.500 0.740 0.496

000541 0.741 0.502 0.722 0.503 0.715 0.502 0.712 0.496

000550 0.773 0.500 0.766 0.493 0.762 0.500 0.761 0.495

000581 0.816 0.500 0.809 0.496 0.768 0.501 0.757 0.500

000625 0.743 0.500 0.739 0.490 0.745 0.501 0.742 0.496

000709 0.747 0.500 0.742 0.496 0.738 0.501 0.731 0.500

000720 0.679 0.500 0.685 0.492 0.710 0.501 0.701 0.493

000778 0.721 0.502 0.719 0.494 0.724 0.503 0.717 0.494

HSFL is the mean Hurst exponent of 100 shuffled inter-cancellation durations.

FIGURE 4 | Plots of the fluctuation functions FDFA(s) of inter-cancellation durations for both cancelled buy (A) and sell (B) orders for four stocks with the

DFA method. The solid lines are power-law fits to the empirical data. The curves of stocks 000009, 000012, and 000021 have been shifted vertically for clarity.

www.frontiersin.org March 2014 | Volume 2 | Article 16 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Gu et al. Empirical properties of inter-cancellation durations

FIGURE 5 | Plots of the fluctuation functions FCDMA(s) of inter-cancellation durations for both cancelled buy (A) and sell (B) orders for four stocks with the

CDMA method. The solid lines are power-law fits to the empirical data. The curves of stocks 000009, 000012, and 000021 have been shifted vertically for clarity.

Table 5 | The width of the multifractal spectra �α of inter-cancellation

durations for both cancelled buy and sell orders of 18 stocks based

on the MF-DFA method.

Stock Cancelled buy orders Cancelled sell orders

�α �αSFL R �α �αSFL R

000001 0.81 0.29 ± 0.01 0.52 0.80 0.29 ± 0.01 0.51

000009 0.53 0.32 ± 0.01 0.21 0.41 0.27 ± 0.02 0.13

000012 0.45 0.30 ± 0.02 0.15 0.46 0.30 ± 0.02 0.16

000016 0.37 0.26 ± 0.02 0.10 0.78 0.32 ± 0.02 0.46

000021 0.67 0.28 ± 0.02 0.39 0.50 0.28 ± 0.02 0.22

000024 0.97 0.32 ± 0.03 0.65 0.56 0.39 ± 0.02 0.17

000066 0.36 0.28 ± 0.02 0.08 0.41 0.26 ± 0.02 0.15

000406 0.84 0.37 ± 0.02 0.47 0.78 0.30 ± 0.02 0.48

000429 0.62 0.29 ± 0.03 0.33 0.41 0.24 ± 0.03 0.17

000488 0.77 0.36 ± 0.03 0.41 0.66 0.29 ± 0.03 0.37

000539 1.07 0.53 ± 0.04 0.54 0.92 0.43 ± 0.03 0.49

000541 0.70 0.44 ± 0.04 0.26 0.82 0.53 ± 0.04 0.29

000550 0.77 0.28 ± 0.02 0.49 0.58 0.33 ± 0.02 0.24

000581 0.84 0.47 ± 0.03 0.37 0.69 0.42 ± 0.04 0.26

000625 0.80 0.30 ± 0.02 0.50 0.61 0.34 ± 0.02 0.27

000709 0.87 0.34 ± 0.03 0.54 0.96 0.36 ± 0.03 0.59

000720 1.28 0.70 ± 0.06 0.58 1.38 0.60 ± 0.06 0.78

000778 0.62 0.31 ± 0.02 0.31 0.50 0.24 ± 0.02 0.25

	αSFL is the mean width of 100 shuffled inter-cancellation durations. R is the

residual of spectrum width by removing the shuffled width 	αSFL from the

original one 	α.

extremely close to 0.5, being significant smaller than the original
ones H. So we conclude that the distribution of inter-cancellation
duration series has little impact on its memory effect, and con-
firm that inter-cancellation duration series of both cancelled buy
and sell orders truly exhibit significant long memory for all the 18
stocks.

Memory effect presents the time persistence of inter-
cancellation durations. It reflects the clustering behavior of order
cancellation which is caused by traders’ similar reactions to the

market. For example, when good news arrives, traders will imme-
diately cancel their limit orders in order to avoid being transacted
at the unfavorable price. Many cancellations occur in a short
period, which results to the clustering behavior and long memory
effect of order cancellation.

3.3. MULTIFRACTAL NATURE
We calculate the q-th order fluctuation functions Fq(s) of inter-
cancellation durations for both cancelled buy and sell orders of
two stocks, 000009 and 000012, and present the fluctuation func-
tions Fq(s) in Figure 6. We find that the function Fq(s) has a
excellent power-law scaling with respect to the scale size s. Using
the least-squares fitting method, we obtain the slopes h(q) for
q = −4,−2, 0, 2, 4, respectively.

Figure 7 presents the scaling exponents τ(q) with respect to
the order q and the multifractal spectra f (α) as a function of the
singularity strength α for both cancelled buy and sell orders of the
two stocks. We observe that the function τ(q) is non-linear with
respect to q, which illustrates that the inter-cancellation durations
own multifractal nature.

In addition, the strength of multifractal can also be
measured by the width of the multifractal spectrum f (α)

(	α = αmax − αmin), and a larger value of 	α corresponds to
stronger multifractal. We calculate the singularity width 	α for
both cancelled buy and sell orders of 18 stocks and list the results
in Table 5. The value 	α of cancelled buy orders varies from 0.37
to 1.28 with the mean value 〈	α〉 = 0.74 ± 0.24, and for can-
celled sell orders the value 	α varies in the range [0.41, 1.38] with
the mean value 〈	α〉 = 0.68 ± 0.25. Since all the values of 	α

larger than zero, we consider that the inter-cancellation duration
series for both cancelled buy and sell orders of 18 stocks have mul-
tifractal nature, which is consistent with the results obtained from
the scaling exponent τ(q).

Similar to the memory effect, the probability distribution
might have influence upon the multifractal nature of inter-
cancellation durations. In order to test the influence of distri-
bution, we shuffle the inter-cancellation durations for 100 times
to test this influence. For each shuffling series, the width of the
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FIGURE 6 | Plots of the q-th order detrended fluctuation functions

Fq(s) for the cancelled buy (A) and sell (B) orders of the stock

000009, and for the cancelled buy (C) and sell (D) orders of the

stock 000012. The solid lines are the best power-law fits to the data.
The plots for q = −2, 0, 2, 4 have been translated downward for better
visibility.

FIGURE 7 | Plots of the scaling exponents τ(q) (A) and multifractal spectra f (α) (B) for both cancelled buy and sell orders of the stocks 000009 and

000012.

multifractal spectrum 	αSFL is obtained based on the MF-DFA
method. The mean values of 100 shuffled series for 18 stocks
are listed in Table 5. The values of 	αSFL are clearly larger than
zero, which indicates that the distribution of inter-cancellation
durations reliably generates multifractal. We define the residual
of spectrum width R through removing the shuffled width 	αSFL

from the original one 	α, that is, R = 	α − 	αSFL, and list the
values R of 18 stocks in Table 5. Since the values of R are evidently

larger than zero, we conclude that inter-cancellation durations
process multifractal nature for both cancelled buy and sell orders
of all the stocks.

4. DISCUSSION
Order cancellation is an important issue in the dynamics of price
formation in financial markets. We have carried out empirical
investigations on the statistical properties of inter-cancellation
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durations (in units of events) using the order flow data of 18 liq-
uid stocks traded on the Shenzhen Stock Exchange in the whole
year of 2003.

We first study the probability distributions of inter-
cancellation durations for both cancelled buy and sell orders,
and find that the rescaled probability density functions have
a scaling behavior. When fitting the probability distributions
by Weibull and q-exponential distributions, we find that both
cancelled buy and sell orders prefer q-exponential distribution
with MLE method. However, applying the NLSE method, we find
that cancelled buy orders of 6 stocks and cancelled sell orders of
3 stocks prefer Weibull distribution which is different from the
result obtained from the MLE method.

We then investigate the memory effect of inter-cancellation
durations based on the detrended fluctuation analysis (DFA) and
centered detrending moving average (CDMA) methods. Using
the DFA method we obtain the average Hurst exponent of 18
stocks 〈H〉 = 0.76 for both cancelled buy and sell orders, and with
the CDMA method it is 〈H〉 = 0.75 for both cancelled buy and
sell orders. According to the results from these two methods, it
is evident that the inter-cancellation duration series processes the
same strength of long memory for both cancelled buy and sell
orders.

Finally, we investigate the multifractal properties apply-
ing the multifractal detrended fluctuation analysis (MF-DFA)
method. We find that the average width of multifractal spec-
trum 〈	α〉 = 0.74 for cancelled buy orders of 18 stocks and it
is 〈	α〉 = 0.68 for cancelled sell orders. So we conclude that
the inter-cancellation duration series has multifractal nature, and
inter-cancellation duration series of buy orders has little stronger
multifractality than cancelled sell orders. Our findings indicate
that the cancellation process has a bursty behavior and possesses
long-range correlations. Such non-Poisson behaviors have been
unveils in many other human dynamics [79].
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