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Target of rapamycin (TOR) was first identified in yeast as a target molecule of rapamycin,
an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue
is called mammalian TOR (mTOR). mTOR is a serine/threonine kinase that converges
different extracellular stimuli, such as nutrients and growth factors, and diverges into
several biochemical reactions, including translation, autophagy, transcription, and lipid
synthesis among others. These biochemical reactions govern cell growth and cause cells
to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a
wide array of diseases such as cancer, diabetes, and obesity. In the central nervous
system, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and
neurotransmitters that enhances protein (and possibly lipid) synthesis and suppresses
autophagy. These processes contribute to normal neuronal growth by promoting their dif-
ferentiation, neurite elongation and branching, and synaptic formation during development.
Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal
neural development. While reduced mTOR signaling is associated with neurodegeneration,
excess activation of mTOR signaling causes abnormal development of neurons and glia,
leading to brain malformation. In this review, we first introduce the current state of
molecular knowledge of mTOR complexes and signaling in general. We then describe
mTOR activation in neurons, which leads to translational enhancement, and finally discuss
the link between mTOR and normal/abnormal neuronal growth during development.

Keywords: mTORC1 signaling, translational control, protein synthesis, BDNF, CNS neurons, amino acids,
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INTRODUCTION: IDENTIFICATION OF TOR AND mTOR
Mammalian target of rapamycin (mTOR) controls growth and
metabolism by activating anabolic processes and suppressing
catabolic processes. Dysregulation of mTOR signaling induces var-
ious disorders including cancer, diabetes, obesity, cardiovascular
disease, inflammation, and neurodevelopmental and neurodegen-
erative disorders. Several inhibitors of mTOR have been developed
and are now clinically approved. Recently, remarkable progress
has been made in understanding the molecular nature of mTOR
signaling and its biological significance. Here we overview the
signaling network of mTOR cascades with special emphasis on
translational control. We also focus on the normal and abnormal
growth of neurons regulated by mTOR complex 1 (mTORC1).

Mammalian target of rapamycin is a 289-kDa serine/threonine
protein kinase that is, as indicated by its name, a target molecule of
the immunosuppressant rapamycin. Rapamycin is an anti-fungal
macrolide compound isolated from soil bacterium, Streptomyces
hygroscopicus, in Rapa Nui (Easter Island; Vézina et al., 1975). The
12-kDa FK506-binding protein (FKBP12) was first identified as
a rapamycin-binding protein (Heitman et al., 1991a; Schreiber,
1991). However, yeast genetic screening revealed that FKBP12 was
not a functional TOR because disruption of FRP1 (FKBP12 cod-
ing gene in the budding yeast Saccharomyces cerevisiae) did not
cause growth inhibition/toxicity. This suggested that FKBP12 was
likely a co-factor in executing the rapamycin action. Screening of

rapamycin-resistant yeast mutants led to the identification of genes
TOR1 and TOR2 as molecular targets of rapamycin-FKBP12 com-
plex and functional targets of rapamycin (Heitman et al., 1991b).
Subsequently, four groups identified rapamycin targets in mam-
malian cells: mTOR, FRAP (FKBP12 and rapamycin associated
protein), RAFT1 (rapamycin and FKBP12 target 1), and RAPT1.
Although recent database nomenclature defined the abbreviation
MTOR as the “mechanistic TOR” in mammals, many researchers
still use the name mTOR (Hall, 2013).

mTOR COMPLEX: COMPONENTS OF mTORC1 AND mTORC2
Whereas yeast expresses two TOR molecules, TOR1 and TOR2,
only one TOR homolog, mTOR, exists in mammals. mTOR nucle-
ates two distinct complexes called mTORC 1 and 2 with several
interacting proteins; these complexes have different functions.
For example, mTORC1 governs cell growth, metabolism and cell
cycle, whereas mTORC2 controls cell survival and cytoskeleton
organization (see review by Laplante and Sabatini, 2012). The
composition of mTORC1 and mTORC2 is shown in Figure 1 and
detailed below. The main characteristic component of mTORC1
is raptor (Hara et al., 2002; Kim et al., 2002). Raptor is a scaffold
protein that regulates complex assembly in addition to substrate
recognition, that is to say, it determines downstream signaling of
mTORC1. Likewise, rictor is a crucial binding partner of mTOR
to make it function as mTORC2 (Jacinto et al., 2004; Sarbassov
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FIGURE 1 | Upper panel. Domain structure of mTOR. HEAT: Huntington
Elongation Factor 3 PR65/ATOR, FAT: FRAP ATMTTRAP, FRB: FKBP12-
Rapamycin Binding. Middle and lower panel: Components of mTOR
complexs.

et al., 2004). In fact, as discussed below, mTORC1 and mTORC2
functions are impaired by the knockout/knockdown of raptor or
rictor, respectively. The mammalian lethal with sec13 protein 8
(mLST8) is thought to be a requisite for mTORCs activities and
mSin1 is thought to be a scaffold for mTORC2. In addition, dep-
tor and PRAS40 are inhibitor molecules for mTORCs. Several
other molecules are reported to be involved in these complexes
but their roles are still unclear. Rapamycin, in binding with FKBP-
12, interacts with mTOR on its FKBP12-rapamycin binding (FRB)
domain and inhibits mTORC1 activity. Many, but not all (Kang
et al., 2013), of the substrates and biological processes controlled
under mTORC1 are rapamycin-sensitive. mTORC2 activity, in
contrast, has been thought to be rapamycin-insensitive. Recently
structural analysis of mTOR gives us an important insight into the
mechanism of rapamycin action (Yang et al., 2013). The work pre-
dicts that FKBP12-rapamycin complex bound FRB domain may
come close to mLST8 thus reducing the access of the substrates
to active site of mTOR. These structural properties of mTOR may
contribute to the preferences of substrates and/or phosphoryla-
tion sites by rapamycin inhibition (Choo and Blenis, 2009; Kang
et al., 2013). In case of mTORC2, its components may already
be bound proximately to FRB domain thus inhibits FRB. This
notion is supported by the two findings. Prolonged treatment

with rapamycin affects mTORC2 activity (Sarbassov et al., 2006).
Rapamycin does not liberate a pre-existing rictor-mTORC but
inhibits the interaction of newly synthesized rictor with mTOR.
Another finding is that micromolar order of rapamycin inhibits
mTORC2 activity independently of FKBP12 (Shor et al., 2008).
High dose of rapamycin may allows free-rapamycin that can bind
FRB domain and thus inhibits mTORC2. These findings advance
our knowledge about the mechanism of the inhibitory action of
rapamycin.

SIGNAL TRANSDUCTION PATHWAYS OF mTORC1
In contrast to the dearth of knowledge about the signaling pathway
of mTORC2, the upstream and downstream pathways of mTORC1
are much better understood. mTORC1 integrates several intracel-
lular and extracellular cues, and transduces divergent downstream
events. Growth factors and amino acids are the best-characterized
extracellular stimuli that activate mTORC1. In addition, cellu-
lar energy status, oxygen/hypoxia and stressors regulate mTORC1
activity. In the central nervous system (CNS), neurotransmit-
ters, neuromodulators, and hormones are reported to activate
mTORC1.

UPSTREAM SIGNALING AND STIMULANTS OF mTORC1
Growth factors bind to and activate receptor tyrosine kinases
(RTKs). The RTK to Akt (aka PKB) pathway has been well inves-
tigated so far. Then, tuberous sclerosis complex 1 (TSC1; aka
hamartin) and TSC2 (aka tuberin) have been identified as links
between Akt and mTOR (Gao et al., 2002; Inoki et al., 2002; Tee
et al., 2002). Akt phosphorylates TSC2 and causes it to disso-
ciate from TSC1. Dissociated TSC2 is captured by 14-3-3 and
is prevented to form the complex (Li et al., 2002; Nellist et al.,
2002; Shumway et al., 2003). Phosphorylated and liberated TSC2
is degraded by ubiquitination (Chong-Kopera et al., 2006; Hu
et al., 2008), although the role of 14-3-3 in this process is unclear.
The TSC1/2 plays a key role in the activation of mTOR. TSC1/2,
together with a third component TBC1D7 (Nakashima et al.,
2007) functions as a GTPase-activating protein (GAP) for small
G-protein Ras homology enriched in brain (Rheb; Inoki et al.,
2003a; Dibble et al., 2012). GTP-bound Rheb, the active form,
directly binds to mTORC1 and activates its kinase activity (Long
et al., 2005). The GAP accelerates GTP hydrolysis, which inac-
tivates Rheb into its GDP-bound form. In steady state, without
growth factor stimulation, unphosphorylated TSC2 maintains a
heteromeric interaction with TSC1, and this complex is a sup-
pressor of mTRC1. Until now, the guanine nucleotide exchange
factor (GEF) that promotes GDP to GTP conversion of Rheb had
not been identified. In addition to Akt, mitogen-activated protein
kinase (MAPK), and Rsk inhibit TSC2 thus activating mTORC1.
As discussed below, the mutations that causes loss of function of
TSCs result in mTORC1 over activation and cause brain diseases.

Tuberous sclerosis complex 2 directly receives many upstream
signals by its phosphorylation. The phosphorylation of TSC2
induces both activation and inactivation of mTORC1 depending
on the phospho-acceptor amino acid residues. For example,
phosphorylation at Thr1462 of TSC2 by Akt (Inoki et al., 2002;
Manning et al., 2002) and Ser664 by MAPK (aka Erk; Ma
et al., 2007) inhibits TSC1/2 activity thus activating mTORC1,
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whereas Ser1345 phosphorylation by AMP-activated protein
kinase (AMPK) enhances TSC1/2 activity (Inoki et al., 2003b).
GSK3β (glycogen synthase kinase) also phosphorylates TSC2 at
Ser 1337 and Ser1341 after priming phosphorylation at Ser1345
by AMPK and activates TSC1/2, thus inhibiting mTORC1 (Choo
et al., 2006; Inoki et al., 2006).

STIMULANTS OF mTORC IN NEURONS
Growth factors and neurotransmitters
Insulin is the most-characterized growth factor that activates
mTORCs through the PI3K/Akt/TSC/Rheb pathway (Avruch et al.,
2006). Indeed, insulin and insulin-like growth factor 1 (IGF1)
enhance mRNA translation in neurons possibly through mTORC1
(Quevedo et al., 2002; Lee et al., 2005; Chenal et al., 2008). Among
several growth factors tested, brain-derived neurotrophic factor
(BDNF), the most prominent neurotrophic factor in the CNS
(Lewin and Barde, 1996; Nawa and Takei, 2001), has been shown to
activate mTORC1 signaling and enhance novel protein synthesis in
cortical neurons (Takei et al., 2001, 2004). Interestingly, the effects
of BDNF on translation were stronger than that of insulin likely
because BDNF activates both Akt and MAPK, whereas insulin
activates only Akt in neurons. This makes sense because TSC2 is
phosphorylated by both Akt and MAPK. In addition to BDNF
and insulin, several growth factors/RTKs (Kim et al., 2008a; Yao
et al., 2013) and guidance molecules such as Eph, Slit, and Reelin
(detailed in the axonal growth section) have been reported to
activate mTORC1 signaling in neuronal cells.

A list of activators of mTORC1 in neurons is shown in
Table 1. For example, G-protein coupled receptors (GPCRs)
such as μ-opioid (Polakiewicz et al., 1998), metabotropic gluta-
mate (Hou and Klann, 2004; Page et al., 2006), and cannabinoid
(Puighermanal et al., 2009) receptors activate mTORC1 in neu-
rons. Because GPCRs are known to transduce signals to Akt and/or
MAPK, mTORC1 activation triggered by these ligands seems to
inhibit TSC2. Other neurotransmitters were reported to possi-
bly activate mTORC1 (meaning that the outputs are sensitive to
rapamycin), such as serotonin (5-HT; Casadio et al., 1999; Carroll
et al., 2004, 2006), may utilize this pathway.

Neural activity-dependent regulation is another characteris-
tic feature of mTORC1 activation in the CNS. For instance, the
paradigms of synaptic plasticity such as long-term potentiation
(LTP) and long-term depression (LTD) often induce mTORC1
activation. mTORC1 activation associates with spatial learning
and fear conditioning as well. The direct activator molecules driv-
ing these plasticity-related or behavioral paradigms are likely the
growth factors or neurotransmitters mentioned above. Indeed,
the involvement of BDNF in LTP and metabotropic glutamate
receptors (mGluRs) in LTD is well known. Interestingly, Rheb,
an upstream activator of mTORC1, was originally found as a
growth factor- and an activity-dependent transcript in the brain
so that it named “enriched in brain” (Yamagata et al., 1994). This
mechanism may also participate in mTORC1 activation by neural
activity. The increase of blood flow during learning, as revealed
by blood oxygenation level-dependent functional magnetic reso-
nance imaging (BOLD fMRI) may supply enough nutrients such
as glucose and amino acids. As mentioned below, these nutrients
are other stimulants of mTORC1. More detailed discussions on

mTORC1 in synaptic plasticity can be found in other reviews in
this issue.

Nutrients
Yeast TOR activity is controlled by nutrients. Similarly, amino
acids, especially leucine, are other essential extracellular stim-
uli that activate mTORC1 (Hara et al., 1998) in mammalian
cells. Amino acids are not only the building blocks of proteins
or intermediates of metabolism but are also evolutionarily con-
served inter-cellular signaling molecules in both eukaryotes and
prokaryotes. For example, glutamate and GABA are important
neurotransmitters in the CNS. Recent reports have answered the
long-lasting question, why and how leucine activates mTORC1.
The analysis of raptor binding partner (Sancak et al., 2008) and
siRNA screening of small GTPases (Kim et al., 2008b) revealed
the link between Rag family small G-proteins (RagA–D) and
mTORC1. RagA or RagB (∼98% sequence similarity) forms a
heterodimer with RagC or RagD (∼87% sequence similarity).
The active conformation is a heterodimer of RagA/B·GTP and
RagC/D·GDP. When amino acid availability is sufficient, this com-
plex directly binds to raptor and recruits mTORC1 to the lysosome
with “Ragulator (consisting with three proteins, MP1/P14/P18),”
which is a GEF for RagA/B. This makes mTORC1 close to and bind
to Rheb, an activator of mTORC1 on the lysosomal membrane. A
surprising molecule now comes into play – leucyl-tRNA synthetase
(LeuRS) – both in mammalian cells (Han et al., 2012) and in yeast
(Bonfils et al., 2012). LeuRS is an aminoacyl-tRNA synthetase that
loads leucine to tRNA with high fidelity. LeuRS binds to RagD
and acts as a GAP. Thus, RagD stays in a GDP-bound form, which
is necessary for mTORC1 activation. This may be the mecha-
nism that cells sense leucine and activates mTORC1. However,
there are still unsolved questions (Segev and Hay, 2012), such as
why among the 20 aminoacyl-tRNA synthetases only LeuRS works
in the mTORC1 system. Because other amino acids also activate
mTORC1, additional players must be involved.

mTORC1 converges nutrients and growth factor signals, and
there is cross-talk between them. Reports suggest that amino
acid(s) sufficiency is essential for the insulin-induced activation
of mTORC1 in several cell lines (Hara et al., 1998; Campbell et al.,
1999). Leucine activates mTORC1 in neurons after influx through
system L amino acid transporter (LAT), consisting of LAT1 or
LAT2 and 4F2hc (CD98; Ishizuka et al., 2008). Uptake of argi-
nine by cationic amino acid transporters CAT1 and CAT3 has
also been reported to activate mTORC1 in neurons (Huang et al.,
2007). However, contrary to the above-mentioned essential role of
amino acids, starvation of amino acids is less effective on BDNF-
induced mTORC1 activation in neurons (Ishizuka et al., 2013).
This discrepancy is unclear; however, cell-type specific amino
acid contents or autophagy mechanisms may influence the system
responses.

mTORC1 signaling in neurons seems to be more sensitive to
energy status. For instance, glucose starvation increases the ratio of
AMP/ATP. Increased AMP activates AMPK (Witters et al., 2006).
AMPK directly phosphorylates TSC2 and enhances TSC1/2 activ-
ity, leading to the inhibition of mTORC1 (Inoki et al., 2003b,
2006). Another target to inhibit mTORC1 by AMPK is raptor.
Raptor is directly phosphorylated by AMPK at Ser722/Ser792
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Table 1 | Stimulants of mTOR in CNS neurons.

Stimulants Validation Responses Reference

Growth factors

BDNF mTOR kinase activity Protein synthesis Takei et al. (2001)

Substrates phosphorylation Liao et al. (2007), Manadas et al. (2009)

Rapamycin Local protein synthesis Takei et al. (2004)

siRNA Translation elongation Inamura et al. (2005)

CNTF mTOR kinase activity, rapamycin

STAT3 phosphorylation and activation Yokogami et al. (2000)

IGF Rapamycin

Substrate phosphorylation Protein synthesis Quevedo et al. (2002)

MCT2 level Chenal et al. (2008)

Insulin Rapamycin

Substrate phosphorylation PSD95 level Lee et al. (2005)

MCT2 level Chenal et al. (2008)

Neuregulin Rapamycin

Kv4.2 level, outward K+ current Yao et al. (2013)

VEGF Substrate phosphorylation

Kim et al. (2008a)

Guidance molecules

Reelin Substrate phosphorylation

Rapamycin Dendritic growth Jossin and Goffinet (2007)

Semapholin-3 Rapamycin

Netrin-1 Substrate phosphorylation Growth cone collapse and turning Campbell and Holt (2001)

Slit-2

Piper et al. (2006)

EphrinA1 Substrate phosphorylation

(Inhibitory action) Rapamycin Axon guidance Nie et al. (2010)

Protein synthesis

Neurotransmitters

Glutamate Substrate phosphorylation

Rapamycin Lenz and Avruch (2005)

Local protein synthesis Gong et al. (2006)

mGluR agonist mTOR phosphorylation

(DHPG) Rapamycin LTD Hou and Klann (2004)

Substrate phosphorylation

Page et al. (2006)

mOpioid R agonist Substrate phosphorylation

(DAMGO) S6K kinase activity Polakiewicz et al. (1998)

Rapamycin

5-HT Rapamycin

eEF2 dephosphorylation LTF Casadio et al. (1999)

Substrate phosphorylation Carroll et al. (2004)

Translation Carroll et al. (2006)

Cannabinoid Substrate phosphorylation

(THC) Rapamycin Cognitive test Puighermanal et al. (2009)
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and this leads to the inhibition of mTORC1 activity (Gwinn
et al., 2008). In neurons, AMPK activation completely abro-
gated growth factor-induced mTORC1 activation and protein
synthesis, with TSC2 and raptor phosphorylation (Ishizuka et al.,
2013). AMPK is phosphorylated and activated by LKB1 (Woods
et al., 2003) and calcium/calmodulin-dependent protein kinase
kinase (CaMKK; Hurley et al., 2005). Because CaMKK activ-
ity is dependent on calcium, both ionotropic and metabotropic
receptor ligands (neurotransmitters) may participate in mTORC1
signaling through the Ca2+-CaMKK-AMPK pathway in neu-
rons.

DOWNSTREAM SIGNALING OF mTORCs
Many substrates lead to diverse cellular responses downstream of
mTOR. p70 ribosomal protein S6 kinase (p70S6K) and eukary-
otic initiation factor 4E (eIF4E)-binding protein (4EBP) are the
best-characterized substrates for mTORC1 that regulate trans-
lation. In contrast, ULK1 and ATG13 phosphorylation suppress
autophagy. PRAS40, an inhibitory component of mTORC1,
is a substrate of mTORC1 itself (Oshiro et al., 2007). All
these mTORC1 substrates contain TOR signaling (TOS) motif.
TOS motif is recognized by raptor and utilized for substrates
recruitment to mTORC1 for optimal phosphorylation (Schalm
and Blenis, 2002; Nojima et al., 2003). As mTORC2 substrates,
Akt mediates a variety of actions including mTORC1 activa-
tion and the inhibition of apoptosis, among others. Protein
kinase C (PKC) also mediates a myriad of cellular responses,
and serum- and glucocorticoid-induced protein kinase (SGK)
affects transcription through FoxO. Recent phosphoproteomic
analyses revealed many mTOR substrates that may link to the
known cellular responses such as ribosome biogenesis, mito-
chondrial biogenesis, metabolism, mRNA splicing etc. The
flow sheet of mTORCs cascades is summarized in Figure 2.
The physiological roles of these events in neural functions are
less understood. In contrast, translational control mediated by
mTORC1 is well studied in the aspect of neural development,
plasticity, and diseases. Thus we review this process in detail
below.

Translational control
Upon activation, mTOR phosphorylates p70S6K at Thr389 and
4EBPs [there are three 4EBPs (4EBP1–3), and 4EBP2 is a major
isoform in neurons] at Thr37/46 and Ser65 directly. These sub-
strates bind to the scaffold protein raptor by a TOS motif (Schalm
and Blenis, 2002; Nojima et al., 2003) and are phosphorylated
by the kinase mTOR. Phosphorylation of 4EBPs liberates eIF4E
and allows eIF4E to bind to eIF4G and form an eIF4F com-
plex together with eIF4A, an RNA helicase. eIF4E recognizes
the 7-methylguanosine 5-triphosphate cap structure of 5′-UTR
and poly(A)-binding protein (PABP) binds to the poly(A) tail of
mRNAs so that the eIF4F complex makes mRNA circular. Indeed,
the circular form of mRNA is thought to stabilize it and facil-
itate translation. Phosphorylation and activation of p70S6K by
mTORC1 induced by insulin facilitates the association of eIF3 (a
large molecular complex consisting of 13 subunits) with eIF4G
(Holz et al., 2005; Harris et al., 2006). The process is thought to be
important for recruiting the 40S ribosome to the mRNA-eIF4F

FIGURE 2 |The flow sheet of upstream and downstream of mTORCs.

Representative substrates and cellular responses mentioned in the text are
shown. Note that mTORC2 activates mTORC1 through Akt.

complex. eIF4B is phosphorylated at Ser422 by Akt directly
(van Gorp et al., 2009) and by Ser406 and Ser422 in MEK and
mTOR/p79S6K-dependent manner (Raught et al., 2004; Shah-
bazian et al., 2006). Phosphorylated eIF4B enhances eIF4A helicase
activity, suggesting that mTORC2 also participates in transla-
tional control. eIF4G phosphorylation at Ser1108, Ser1148, and
Ser1192 is reportedly rapamycin-sensitive (Raught et al., 2000)
(Figure 3, Upper panel). In addition, p70S6K phosphorylates
eukaryotic elongation factor 2 kinase (eEF2K) and suppresses its
activity (Wang et al., 2001), This causes the downregulation of
eEF2 phosphorylation thus induces its activation (Figure 3, Lower
panel).

In neurons, BDNF (Takei et al., 2001, 2004; Liao et al., 2007;
Manadas et al., 2009), insulin (Lee et al., 2005; Chenal et al.,
2008), and IGF1 (Quevedo et al., 2002; Chenal et al., 2008) have
been shown to enhance translation by activating initiation pro-
cesses through mTORC1 signaling. In addition, BDNF enhances
translation elongation processes through mTORC1-dependent
downregulation of eEF2 phosphorylation (Inamura et al., 2005).
Enhancement of translation by dephosphorylation of eEF2 is
also induced by 5-HT (Carroll et al., 2004). A neuron-specific
feature of mTORC1-dependent translational control is its spa-
tial property. For example, the mTORC1 system is localized in
dendrites as well as in cell bodies (Takei et al., 2004). BDNF
(Takei et al., 2004) and transmitters (Casadio et al., 1999; Car-
roll et al., 2004; Gong et al., 2006) have been shown to induce
“local” activation of mTORC1 and translation (see review in this
issue).

In summary, mTORC1 (and possibly mTORC2) modulates
translational processes by the following: mTOR 1) phosphorylates
4EBP and induces cap-dependent translation; 2) phosphorylates
p70S6K and allows eIF3 to bind eIF4G; 3) induces eIF4B phospho-
rylation through p70S6K and Akt; and 4) activates eEF2 through
p-70S6K/eEF2K. Therefore, mTOR regulates translation both at
initiation and elongation steps.
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FIGURE 3 | Scheme of translation processes that are regulated by

mTORC1. Upper panel: translation initiation. mTORC1 directly
phosphorylates 4EBP and liberates eIF4E. eIF4E with mRNA then binds to
eIF4G to form eIF4F complex. Phosphorylation of eIF4G and eIF4B is
mTORC1-dependent. Assembly of eIF3 subunits and eIF4G is also thought
to be mTORC1-dependent. Lower panel: translation elongation. p70S6K
downstream of mTORC1 phosphorylates eEF2K and suppresses its activity
to phosphorylate eEF2. Non-phosphorylated form of eEF2 is an active form
thus enhances elongation process.

A recent report suggested that mTORC1 specifically controls
the translation of a certain subset of mRNAs (Thoreen et al.,
2012). eIF4E preferentially binds to mRNAs that harbor 5′-
terminal oligopyrimidine tract (5′-TOP) or related sequences.
These mRNAs encode proteins of translation machinery such
as ribosomal proteins and translation factors. It has been pos-
tulated that p70S6K/S6 regulates translation of 5′-TOP mRNAs.
However, although these events occur in parallel, genetic and bio-
chemical analysis have refuted a direct relation between them
(Shima et al., 1998; Ruvinsky and Meyuhas, 2006). This new
insight can explain the direct interaction of mTORC1 and 5′-
TOP mRNA translation. Indeed, acute signal(s) that activates
mTORC1 enhances the production of proteins necessary for trans-
lation machinery and may prepare the succeeding and continuous
activation of translation that leads to cellular growth. The authors
concluded that 4EBP and eIF4G were the master regulators of
mTORC1-dependent translation. However, further research must
be conducted in postmitotic neurons, because the elongation
process was the rate limiting step for translation in neurons
(Takei et al., 2009).

Many reports have suggested that mTORC1-dependent trans-
lational control is crucial in the development and plasticity of neu-
rons. However, in the majority of the studies, conclusions are based
on pharmacological approaches using inhibitors. Rapamycin, the
most commonly used tool for analyzing mTORC1 signals, does not
effectively inhibit all mTORC1-dependent translation (Kang et al.,
2013). An ATP-competitive mTOR inhibitor such as Torin1 both
inhibits rapamycin-resistant mTORC1 reactions and mTORC2
activity. Chronic rapamycin also inhibits mTORC2. The effective-
ness is somewhat cell-type specific, and the efficacy of rapamycin
on mTORC2 in neurons has not yet been verified. In any case,
we suggest caution when making conclusions using simple phar-
macological approaches. Although it is technically challenging,
monitoring the actual translation processes together with analysis
of translation machinery as well as mTORC1 signaling is desired
in combined with certain biological/physiological responses.

Lipogenesis
In addition to protein synthesis, mTORC1 also enhances lipid
biosynthesis (see review by Laplante and Sabatini, 2009). mTORC1
has been reported to activate SREBP (sterol regulatory element
binding protein) 1 and 2, transcription factors responsible for
the expression of many lipid metabolic enzymes (Düvel et al.,
2010). SREBPs are cleaved and the processed forms are translo-
cated to the nuclei and promote gene transcription. Transcriptome
and metabolome analysis have shown that SREBP-dependent
lipid biosynthesis is rapamycin-sensitive (Düvel et al., 2010).
Rapamycin inhibited lipid biosynthesis and the expression of lipid
synthetic enzymes including acetyl-CoA carboxylase (Brown et al.,
2007), fatty acid synthase (Peng et al., 2002), and HMG-CoA
reductase (Yamauchi et al., 2011). Fatty acid oxidation (Brown
et al., 2007) and cholesterol synthesis (Yamauchi et al., 2011) have
also been shown to be rapamycin-sensitive. A recent report showed
that mTORC1-mediated activation of SREBP1 and 2 was medi-
ated by p70S6K (Düvel et al., 2010). Deletion of p70S6K induces
the small body and small cell phenotype but does not affect trans-
lation; thus, the phenotype may be the result of inhibition of lipid
synthesis, rather than protein synthesis. Because lipids are nec-
essary to form plasma and organelle membrane component, as
well as energy storage source and intracellular signaling, there is
no doubt that lipid synthesis is essential to cell growth. Indeed,
SREBP1 knockdown, as well as rapamycin treatment, can reduce
cell size (Porstmann et al., 2008). Thus, both protein and lipid
synthesis controlled by mTORC1 must be necessary for cell size
regulation.

In the CNS, BDNF, the most potent activator of mTORC1 in
neurons, has been shown to enhance cholesterol synthesis (Suzuki
et al., 2007), as well as protein synthesis. Thus, mTORC1 must
contribute to BDNF-mediated neuronal cell growth and den-
dritic arborization (e.g., McAllister et al., 1995, see review by
Lewin and Barde, 1996). Cancer cells that exhibit uncontrolled
growth factor signaling often show activation of SREBPs and
lipogenesis. Enough (or excess) lipids required for membrane
synthesis are a critical process of cancer progression including
migration and invasion along with membrane expansion. These
cellular responses give us insight into the characteristics of neu-
ritis extension and spine formation during development and
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synaptic plasticity. Thus, BDNF-mediated neuronal growth may
be dependent, at least in part, on de novo lipid synthesis.

BRAIN DEVELOPMENT AND mTOR
ROLES OF mTOR IN NORMAL BRAIN DEVELOPMENT
mTOR plays a pivotal role in growth, proliferation, and migration
of every cell; thus, it is thought to be essential for the develop-
ment of an organism. Indeed, a knockout (KO) mouse study
showed that mTOR was indispensable for normal development
and viability (Murakami et al., 2004). The first genetic evidence
that mTOR plays an important role in brain development came
from an ethyl-nitroso-urea-induced mouse mutation screening
(Hentges et al., 2001). This mutant, named flat-top, was a loss of
function mutant of mTOR by missplicing; it showed a defect in
telencephalon formation and died in mid-gestation. The milder
phenotype compared to full KO may result from the incomplete
loss of mTOR function. Indeed, the mutant still had about 10%
p70S6K activity compared to the wild-type mouse.

Complete ablation of mTORC components in mice resulted in
embryonic lethality (Guertin et al., 2006; Shiota et al., 2006). In
addition to mice lacking mTOR itself, raptor KO mice died very
early in development, while mLST8 or rictor-null mice died at
embryonic day 10.5. Therefore, a conditional KO (CKO) strat-
egy was applied for analyzing the function of mTORCs in brain.
Elimination of mTORC1 function in brain was achieved by cross-
ing raptor-floxed mice and nestin-Cre mice (Cloëtta et al., 2013).
Nestin is a marker of neural progenitors. Although the raptor-
CKO mice died soon after birth, they showed microcephaly via
reductions in cell size and cell number. In addition, gliogenesis was
affected in parallel with the downregulation of STAT3 phospho-
rylation at Ser727. This is plausible because STAT3 is pivotal for
gliogenesis (Bonni et al., 1997) and is phosphorylated by mTORC1
(Yokogami et al., 2000).

The conditional deletion of rictor in several tissues shows a rel-
atively mild phenotype compared with that of raptor. Mice with
brain-specific deletion of rictor by crossing nestin-Cre mice have
been shown to survive but with smaller brain size, like raptor-
KO mice (Thomanetz et al., 2013). Brain weight of this rictor-KO
mouse was about 60% (nestin-Cre) of the wild-type mouse brain.
Total dendritic lengths and soma sizes of pyramidal neurons of
hippocampus and Purkinje neurons of cerebellum were reduced.
Purkinje cell-specific deletion of rictor via an L7/Pcp-2-cre mouse
showed impairments in synaptic function and morphology of
these neurons, which are correlated with the ataxia-like phenotype
of this mouse (Thomanetz et al., 2013). Another report employed
Emx1 promoter to drive Cre (Carson et al., 2013). Emx1 expresses
only in dorsal neural progenitor cells that generate excitatory neu-
rons and astrocytes in the dorsal cortex. The Emx1-Cre:rictor CKO
mice also showed a small brain but to a lesser extent (about 80%
of the wild-type mice), because the rictor-deficient cell population
was more limited than that in the nesti-Cre:rictor mice. Neurons
in cortical layers II–IV of the Emx1-Cre:rictor conditional mice
were smaller than that of wild-type mice. These results implicate
mTORC2 in the progression of neuronal size and morphology
during brain development. To put it simply, because mTORC2
activates Akt, it will cause mTORC1 activation. If mTORC2 is
inhibited, mTORC1 activity may be downregulated. However,

mTORC1 activity looked normal in this rictor CKO mouse. In
addition, in other cell types in other organs, for example muscle
cells, mTORC2 inactivation has little effect on cell size compared
to the mTORC1 inactivation (Bentzinger et al., 2008). The precise
mechanism of how mTORC2 regulates cell size is still unresolved.

ROLES OF mTOR IN DENDRITE FORMATION
Detailed morphological analysis of mTOR on neurite formation
comes from a culture study. Specifically, transfection of consti-
tutively active or dominant negative forms of PI3K, Akt, and Ras
revealed that PI3K-Akt increased the size of the soma and dendrites
(Jaworski et al., 2005). Ras combined with PI3K-Akt enhanced
the complexity of dendrites of hippocampal neurons (Kumar
et al., 2005). Similarly, knockdown of phosphatase and tensin
homolog (PTEN), the phosphatase for Akt, by siRNA induced
arborization of hippocampal dendrites (Jaworski et al., 2005). The
dendritic growth induced by these manipulations was antagonized
by chronic rapamycin treatment, siRNA-mediated knockdown
of mTOR and p70S6K, and overexpression of phosphorylation-
defective mutant 4EBP (Jaworski et al., 2005). These results
indicate that mTOR, especially mTORC1, play pivotal roles in
dendritic growth/maturation. Mice with neuron-specific dele-
tion of PTEN showed macrocephaly and hypertrophy of neurons
with enhanced mTORC1 signaling (Kwon et al., 2006). Enhanced
mTORC1 signaling and dendritic arborization by extracellular
stimuli like BDNF (Jaworski et al., 2005) and Reelin (Jossin and
Goffinet, 2007) are both inhibited by rapamycin. In addition
to mTORC1, mTORC2 is implicated in the dendritic growth of
hippocampal neurons. The dendritic arbor was disturbed not only
by raptor but also by rictor small hairpin (sh) RNA, as well as
by mTOR inhibitor Ku-006379A, which inhibits both mTORC1
and 2.

ROLES OF mTOR IN AXON ELONGATION
Axon guidance during development is regulated by bal-
anced chemotactic cues by attractive and repulsive molecules.
Semaphorin-3 and netrin-1 have been shown to induce growth
cone collapse and repulsive turning in Xenopus retinal neurons.
The response was abrogated by rapamycin, as well as by protein
synthesis inhibitors, cycloheximide and anisomycin. Phospho-
rylation of 4EBP was observed in growth cones in response to
semaphorin-3 and netrin-1 (Campbell and Holt, 2001). Slit2 has
been shown to act on growth cone collapse and 4EBP phosphory-
lation similarly, but at later stage, in a rapamycin-sensitive manner
(Piper et al., 2006). TSC2 haploinsufficiency in mice (TSC-/+)
caused aberrant retinogenicular projection, suggesting the dis-
ruption of axon guidance. Since axon guidance of this tract is
known to depend on ephrin-Eph signaling, the effect of eph-
rinA on mTOR pathway was investigated. In contrast to the case
with semaphorin-3, the ephrinA-EphA signal that induced growth
cone collapse suppressed the MAPK-TSC2-mTORC1 cascade and
inhibited novel protein synthesis. TSC deficiency and constitu-
tively active Rheb expression have been reported to counteract
the actions of ephrinA-EphA (Nie et al., 2010). These results indi-
cate that mTORC1-mediated translational control of growth cones
plays pivotal roles in axon guidance during development.
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These studies reveal the universal and specific roles of mTORCs
in neurons. mTORC1 activation induces protein and lipid synthe-
sis so that it increases cellular mass with expansion of plasma
membrane. Local protein (and possibly lipid) synthesis mediated
by mTORC1 may participate in the extension of an axon and den-
drites of a neuron. mTORC2 may be the a putative facilitator of
growth cone motility, including neurite pathfinding and elonga-
tion because it is known to affect actin dynamics. Although the
precise mechanisms are still not fully understood, regulated and
coordinated activities of mTORC1 and 2 must be necessary for
normal development of neurons and a brain.

BRAIN PATHOLOGY CAUSED BY mTORC1 SIGNALING
ABNORMALITY
TUBEROUS SCLEROSIS (TSC)
mTOR has been implicated as a cause of various diseases. Among
them, most famous and directly related to mTOR disease is TSC. As
mentioned previously, this disease is caused by the genetic muta-
tion (including nonsense, missense, insertion, and deletion) of
TSC1 or TSC2, the genes encoding TSC1 (hamartin) or TSC2
(tuberin), respectively. TSC was first described in late 19th cen-
tury and the mutations have been identified in TSC1 (9q34) and
TSC2 (16p13.3) in the 1990s. In 2002, several groups reported that
TSC1/2 complex is a suppressor of mTOR. TSC1/2 complex is a
GAP for Rheb so it inhibits mTORC1.

Tuberous sclerosis complex is an autosomal dominant, mul-
tisystem disorder that affects brain, lung, heart, skin, and
kidney. The neurological symptoms are intractable epilepsy,
autism, and mental retardation. Pathological features are cortical
tubers, subependymal nodules (SENs), and subependymal giant
cell tumors (SGCTs) and subependymal giant cell astrocytomas
(SEGAs). The characteristic features are abnormal cell pro-
liferation and growth (see review Crino et al., 2006; Crino,
2013). Because TSC is caused by a loss-of-function of TSC1
or TSC2, mTORC1 must be constitutively active in these
cells. Indeed, highly phosphorylated p70S6K (Thr389), S6
(Ser235/236), and 4EBP (Thr37/46) have been observed immuno-
histochemically in pathologically abnormal, enlarged cells that
may be of progenitor cell origin (Tsai et al., 2012; Prabowo
et al., 2013). Although the direct interaction of TSC1/2 and
mTORC2 is still unclear, phosphorylation of mTORC2 sub-
strates PKCa at Ser657, Akt at Ser473, and SGK1 at Ser422
have also been observed in the fetal TSC brain (Tsai et al.,
2012). The relationship between the activation of mTORC1 and
cell (over)growth observed in human disease corroborates the
experimental findings. In fact, the rapamycin analogue (called
“Rapalog”) everolimus (RAD-001) is clinically approved for the
medication of TSC (http://www.fda.gov/Drugs/InformationOn
Drugs/ApprovedDrugs/ucm317490.html).

ANIMAL MODELS OF TSC
There have been many reports about the KO of TSC1 or TSC2
genes. Homozygotes of these gene deficiency are lethal, and het-
erozygotes do not have tubers, although the mice show some
abnormalities. Several CKO mice carrying biallelic deletion in
certain cells have been generated, and they mimic some symp-
toms and pathology of human TSC. This may be because biallelic

mutation is necessary to induce severe morphological alteration
such as tubers or giant astrocytomas. In fact, so-called “two-hit”
mechanisms of germline mutation and somatic mutation have
been proposed for human tubers of TSC patients (Crino et al.,
2010), although another report argued that the second hit was
rare (Qin et al., 2010). The two-hit mechanism has been eval-
uated with homozygous deletion of TSC2 only in radial glia,
and heterozygous deletion in all other cells by crossing Tsc2+/-,
Tsc2flox, and GFAP-Cre mice (Way et al., 2009). The mice showed
cytomegaly, defects in lamination, astrogliosis, and hypomyelina-
tion. mTORC1 activation was confirmed by S6 phosphorylation.
Another approach of double hit of TSC1 gene by in utero elec-
troporation has been reported. The mice were made by crossing
TSC1+/- mice and TSC1flox mice. TSC1 in the cells of certain
brain regions were biallelically deleted via in utero electroporation
of Cre plasmid. The offspring showed tuber-like lesions and cor-
tical hyperexcitability (Feliciano et al., 2011). Other conditional
homozygotic deletion of either TSC1 or 2 represented some of the
features of TSC (Magri et al., 2011). All the animal models indicate
that biallelic deletion (or dysfunction) is necessary to induce TSC
pathology. We have learned a lot about mTOR biology from TSC
including the signaling mechanism of mTORCs; however, there are
still many unsolved questions like the above-mentioned two-hit
hypothesis. Further comprehensive genetic analysis (not limited
in TSC genes) in the TSC brain may address the pathological
obscurity of genotype-phenotype interaction.

DISEASES PATHOLOGICALLY RELATED TO TSC
There are two diseases with neurological symptoms and brain
pathology similar to TSC – hemimegalencephaly and focal cortical
dysplasia. Genetic mutations of these diseases have not been iden-
tified until now. Recently, somatic mutations of Akt, PI3K, and
mTOR were reported in the hemimegalencephaly brain (Lee et al.,
2012; Poduri et al., 2012). Two of the cases are a trisomy of 1q that
contains Akt3, and one is an activating mutation of Akt3 (G49A;
Poduri et al., 2012). This mutation encompasses the amino acid
substitution E17K in a coding region, which converts Akt to a
constitutively active form. Another group found same somatic
mutation of Akt3 in one case, and constitutively active PI3K
mutations (G1633A, E545K) in four cases. In addition, an mTOR
somatic mutation at C4448T that causes C1483Y substitution was
observed in hemimegalencephaly brain (Lee et al., 2012). In con-
trast to some mTOR active mutations developed in laboratories
in mammalian cell (Urano et al., 2007; Ohne et al., 2008; Hardt
et al., 2011), whether C1483Y mutation makes mTOR active or
not is unknown. This is the first report of mTOR mutation in
neurological disease so that the validation of activity is awaited.
Dysmorphic cells in the brain of focal cortical dysplasia type IIB
patient showed hyper-phosphorylation of S6 (Baybis et al., 2004;
Miyata et al., 2004). Although genetic analysis forthcoming, it is
likely that there may be somatic mutations of unknown genes
in mTORC1 signaling pathways that are responsible for cellular
abnormality in focal cortical dysplasia.

CONCLUSION AND FUTURE PERSPECTIVE
In this review, we summarize the updated molecular interaction
of mTOR signaling. We focus on the growth and size regulation
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of neurons during development as a biological output of mTOR
signaling. Diseases that are picked are limited to this aspect.
TSC is caused by the mutation of TSC1 or 2 that are regula-
tors of mTORC1. TSC and other pathologically related disease,
hemimegalencephaly and forcal cortical dysplasia are character-
istics of enlarged and dysmorphic neurons and glia. These are
diseases of dysregulated cell growth.

Although mTOR governs various processes, we describes much
on the translational control and a bit about lipid biogenesis,
because these two processes seem to be related with cell growth
regulation directly. In addition, mTOR-mediated translational
control is most (or almost only) studied in the field of neuro-
science as a mechanism behind the neural plasticity, learning and
memory.

Pathology of TSC has given us a hit of link between mTORC1
activity and size control in the brain. Overactivation of mTORC1
(and potentially mTORC2) induces enlargement and dysmor-
phism of neurons and glia (or their progenitors). On the other
hand, it has been well known that fetal and neonatal malnutri-
tion causes reduced brain size (Morgane et al., 1993). Insufficient
intake of proteins and carbohydrates causes reduced amino acid
and glucose. Because these nutrients are essential factors to induce
mTORC1 function, it is likely that mTORC1 inhibition is related to
dysgenesis of a brain. Beside these unusual situations, size differ-
ences are found in neurons. One characteristic feature of neurons
is its high heterogeneity in function and morphology. Soma sizes

FIGURE 4 | A graphic of hypothetical neuronal development governed

by mTORC1. Neurons receive nutrients globally and growth factors/
transmitters locally. Both inputs coordinately activate mTORC1 that leads
normal neuronal development. Suppression or overactivation of mTORC1
result dysregulation of neuronal morphology and function. (note that
photographs of a neuron was image processed).

vary from about 10 (cerebellar granule neurons) to 100 (Betz cell)
micrometers in diameter. The cell size is thought to be determined
genetically (and/or epigenetically). The concept includes timing
and levels of expression of nutrients transporters and growth
factor receptors that may affect mTORC1 activity. Although
mTOR signaling components are ubiquitously expressed, rheb,
for example, is an activity-inducible molecule in neurons. It sug-
gests that neural activity may enhance mTORC1 through the
upregulation of rheb level.

mTOR is undoubtedly a master regulator of cell growth from
yeast to human. However, how mTOR controls cell size is still not
clear enough. Enhanced protein and lipid synthesis, and inhibition
of protein degradation controlled by mTORC1 surely increase cel-
lular mass that includes cell volume, axon elongation, and dendrite
arborization. Conceptual scheme is shown in Figure 4. It must be
clarify whether novel protein and/or lipid synthesis are necessary
and sufficient for cell growth in the brain. Further studies will
reveal the correspondence to mTOR downstream signaling path-
way to phenotype (cell growth). It will shed light on the biology of
cell size and may also contribute to the drug discovery for the TSC
and related diseases more selective than rapamycin and rapalogs.
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