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The role of inflammation in the development of cancer was described as early as the
nineteenth century. Abundant evidence supports the preposition that various cancers are
triggered by infection and chronic inflammatory disease whereas, evading immune destruc-
tion has been proposed as one of the new “hallmarks of cancer.” Changes of the tumor
microenvironment have been closely correlated to cancer-mediated inflammation. Hyaluro-
nan (HA), an important extracellular matrices component, has become recognized as an
active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes.
This review discusses how HA and specific HA-binding proteins participate in and regulate
cancer-related inflammatory processes.
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CANCER MICROENVIRONMENT
The role of inflammation in the development of cancer was
described as early as 1863, by Rudolf Virchow, who hypothesized
that cancer arises from inflammatory sites,“lymphoreticular infil-
tration” (1). In the last decades, Virchow’s postulation has been
supported by abundant evidence that various cancers are trig-
gered by infection and chronic inflammatory disease (2). On the
other hand, an inflammatory response is also detectable in tumors
that are not causally related to inflammation (3). Following cell
transformation to a malignant state, the inflammatory mediators
are involved in tumor growth, by stimulating the proliferation
of tumor cells and by evading immunosurveillance. Notably, the
inflammation orchestrated by the tumor is aberrant and promotes
the recruitment and/or the induction of cells that, besides hav-
ing a role in the direct promotion of the tumor progression, are
also endowed with immunosuppressive properties. Indeed, evad-
ing immune destruction has been proposed as one of the new
“hallmarks of cancer” (4).

The consecutive steps of tumor growth, local invasion, intrava-
sation, extravasation, and invasion of anatomically distant sites as
well as immunosuppression are obligatorily perpetrated through
specific interactions of the tumor cells with their microenvi-
ronment (3, 5). Extracellular matrices (ECMs) represent a com-
plex network of proteins and glycosaminoglycans (GAGs), which
define the structure of tissues in vivo and are critically impor-
tant for cell growth, survival as well as differentiation, and key

Abbreviations: DAMP, damage-associated molecular-pattern; ECMs, extracellular
matrices; GAGs, glycosaminoglycans; HA, hyaluronan; HAS, hyaluronan synthases;
HMWHA, high molecular weight HA; LMWHA, low molecular weight hyaluro-
nan; HYAL, hyaluronidases; RHAMM, receptor for hyaluronan-mediated motility;
ICAM-1, intercellular adhesion molecule 1; MAPKs, mitogen-activated protein
kinases; MMP, matrix metalloprotease; TNF, tumor necrosis factor; TNF-alpha,
tumor necrosis factor-alpha.

to various disease processes including inflammation and cancer
(6–10). During cancer progression, significant changes can be
observed in the properties of ECM components, which deregulate
the behavior of stromal cells, promote tumor-associated angio-
genesis and inflammation, and lead to generation of a tumorigenic
microenvironment (11–14).

Hyaluronan (HA), an important ECM component, has become
recognized as an active participant in inflammatory, angiogenic,
fibrotic, and cancer promoting processes. HA and its binding pro-
teins regulate the expression of inflammatory genes, the recruit-
ment of inflammatory cells, the release of inflammatory cytokines
and thus,ultimately can attenuate the course of inflammation (15).
Surprisingly, HA is a relatively simple molecule being an anionic,
non-sulfated GAG in the 5000–20,000,000 Da molecular weight
range. It is a polymer of disaccharides composed of alternating
N -acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) units
(16). HA is unique among GAGs because it neither contains sul-
fate groups nor is it covalently linked with a core protein (17).
This GAG is synthesized by three types of integral membrane pro-
teins denominated HA synthases: HAS1, HAS2, and HAS3. The
HAS enzymes synthesize different HA sizes by repeatedly adding
glucuronic acid and N -acetylglucosamine to the nascent poly-
saccharide while it is extruded through the cell membrane into
the extracellular space (18). Specifically, HAS1 and HAS2 produce
very high molecular weight HA (HMWHA) up to 2000 kDa (19).
The degradation of HA within tissues, on the other hand, is per-
formed by enzymes known as hyaluronidases (HYAL). In humans,
there are at least seven types of hyaluronidase-like enzymes with
HYAL1 and 2 being the most important. HYAL hydrolyzes the
β(1–4) glycoside bond between N -acetyl-d-glucosamine and d-
glucuronic acid, which results in the production of fragments
of different sizes (20). It is noteworthy that the size of HA
chains affects its biological functions. Indeed, oligosaccharides
that result from HA degradation and low-molecular-weight HA
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(LMWHA), defined as fragments in the 5–500 kDa range (20) are
able to induce the processes of inflammation and angiogenesis.
HMWHA (1000–2000 kDa), on the other hand, is present in
intact tissues and is antiangiogenic as well as immunosuppressive
(21–23).

HYALURONAN ACCUMULATION AND TURNOVER IN CANCER
TISSUE
The alteration of HA deposition in various malignancies has been
well established (13, 24). Thus, a significant number of studies
show that HA deposition is elevated in various types of cancer
tissues including colon, breast, lung, and prostate cancer (25–
27). The magnitude of the HA accumulation both around the
tumor cells and in the surrounding stroma strongly correlates
with the aggressiveness of cancers by enhancing processes involved
in malignant growth, like cell proliferation, invasion, metastasis,
and tumor–stroma interactions (13, 24, 28). It is widely accepted
that HAS mRNA levels determine the synthesis of HA (29, 30).
The mechanisms, however, of HA accumulation vary. Thus, it has
been suggested that fibroblast growth factor receptor (FGFR) acti-
vation induces accumulation of HA within the ECM, through
HAS upregulation (31, 32). Furthermore, abnormal pre-mRNA
splicing, leading to intracellular or extracellular HA synthesis by
HASs, is suggested to contribute to the initiation and progres-
sion of various types of cancer (33). Importantly, an increased
HYAL expression has been associated with tumor progression in
a number of cancer types (34, 35). It is noteworthy that, tumor
tissues are characterized by increased production of reactive oxy-
gen species (ROS) resulting from increased metabolic activity,
enhanced activity of NADPH oxidase (NOXs), or mitochondrial
dysfunction of tumor tissues (12, 36). GAGs are very susceptible to
ROS-induced degradation either via •−OH radical action, which
is a product of ONOO− decomposition (37) or through radi-
cal •NO action. Importantly, the balance between radical •NO
and O•2 radical determines which GAG component of the ECM
is destroyed and this selective degradation may be important in
regulating specific aspects of the disease processes (38, 39). There-
fore, on one hand, there is an established upregulation of HA
deposition in tumor tissues whereas simultaneous overexpression
of HYALs and overproduction of ROS induces HA degradation.
Indeed, taking into account HA-size-dependent biological effects,
this complex turnover pattern is in fact suggested to confer tumori-
genic potential (40). The generation of various HA fragments sizes
and their highly specific action on tumor cell functions has been
widely established (24, 41–43). The majority of reports up to date
indicate that LMWHA fragments support tumor growth and dis-
semination whereas, HMWHA is suggested to have anti-tumor
effects (24, 44, 45). Indeed, excess deposition of HA was found to
suppress tumor growth in the absence of HYAL. Thus, the overex-
pression of HAS in prostate carcinoma cells that are characterized
by very low endogenous HA deposition and HAS expression signif-
icantly reduces tumor growth kinetics in both the subcutaneous
(46, 47) and the orthotopic primary injection site (48). In con-
trast, results obtained in the fibrosarcoma cell model suggest that
HMWHA may be pro-proliferative and enhance motility (49).
This may be an unusual property of fibrosarcoma tumors that
is opposite to effects observed in tumors that originate within

the epithelial compartment. In line with the established pattern
of HA effects, the majority of reports suggest that HMWHA
protects the integrity of the endothelial barrier. HMWHA was
shown to decrease permeability in cancer lymphatic endothe-
lial cell monolayers (45) and actually promote enhancement of
vascular integrity, indicative of anti-metastatic effects (44). Oppo-
site effects of LMWHA have been documented (44, 45). A recent
report, however, indicates that the augmentation of CXCR4 sig-
naling by HMWHA resulted in increased vessel sprouting and
angiogenesis in a variety of assays (50). When interpreting data
relevant to HA action, it is important to note that in general HA
signaling is cancer type/cell line-specific as HAS3-dependent HA
synthesis has been found to suppress cell proliferation by elevat-
ing cell cycle inhibitor expression and suppressing G1- to S-phase
transition (51) whereas, LMWHA inhibits colorectal carcinoma
growth by decreasing tumor cell proliferation and stimulating
immune response (42).

IMMUNOLOGICAL ASPECTS OF HA IN CANCER
PROGRESSION
Intriguingly, a recently proposed driver model for the initia-
tion and early development of solid cancers associated with
inflammation-induced chronic hypoxia and ROS accumulation
focuses on HA action. Namely, inflammation-induced chronic
hypoxia can ultimately result in the production and export of
HA, which will be degraded into fragments of various sizes, serv-
ing as tissue-repair signals, which lead to the initial proliferation
of the underlying cells (52). In addition, HA degradation prod-
ucts have the ability to induce specific gene expression programs
for proteases and cytokines that are necessary for inflammation
and matrix remodeling. Several studies have shown that HA frag-
ments activate innate immune responses by interacting with TLR2
and TLR4 and inducing inflammatory gene expression in a variety
of immune cells (53–55). There appear to be a feedback regula-
tion here as, proinflammatory cytokines induce HA synthesis and
monocyte adhesion in human endothelial cells through HAS2
and the nuclear factor κ-B (NF-κB) pathway (56). As regarding
tumor cells, exposure of human melanoma cells to HA frag-
ments leads, via TLR4, to NF-κB activation followed by enhanced
expression of matrix metalloprotease (MMP) 2 and interleukin
(IL)-8, factors that can contribute to melanoma progression (57).
In a recent study, LMWHA (but not HMWHA) was found
to preferentially stimulate a physical association between CD44
and TLRs followed by a concomitant recruitment of AFAP-110
and MyD88 into receptor-containing complexes in breast tumor
cells. This results in MyD88/NF-κB nuclear translocation, NF-κB-
specific transcription, and target gene IL-1β and IL-8 expression.
Therefore, LMWHA signaling events lead to proinflammatory
cytokine/chemokine production in the breast tumor cells (58).
Another example of contrasting LMWHA and HMWHA effects
is illustrated by a study performed on human SW-1353 chon-
drosarcoma cells. HMWHA antagonized the effects of IL-1β by
increasing PPARγ and decreasing cyclooxygenase (COX)-2, MMP-
1, and MMP-13 levels. Furthermore, in this model, HMWHA
promoted Akt, but suppressed mitogen-activated protein kinases
(MAPKs) and NF-κB signaling, indicating anti-inflammatory
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effects. In contrast, chondrosarcoma cells had overall stimula-
tory responses to oligo-HA as regarding inflammatory genes (59).
Inflammation establishes a tissue microenvironment, which toler-
ates tumor growth and metastasis by setting immunosuppressive
mechanisms (60). Therefore, inflammation not only induces car-
cinogenesis but also makes immune cells incapable of destroying
tumor cells (61). It is indicative that LMWHA fragments are able,
in a TLR4/IFN-β-dependent pathway, to accelerate the elimina-
tion of inflammatory neutrophils by promoting their apoptosis
(62). Moreover, in the tumor microenvironment, HA fragments
can reprogram neutrophil action. Thus, tumor cell-derived HA
fragments through TLR4/PI3K signaling induce early activation
and longevity of tumor neutrophils, which in turn stimulate the
motility of malignant cells. This skewed inflammatory mechanism
represents an example of the positive regulatory loop between
tumors and their stroma during neoplastic progression (63). On
the other hand, LMWHA treated dendritic cells increased IFN-γ
production, and secreted lower levels of the immunosuppressive
IL-10 coupled with higher proliferation rates and increased motil-
ity. Moreover, these preconditioned dendritic cells elicited induced
immunity in a murine colorectal cancer model (42).

Recently, the importance of HA-coated extracellular vesicles
in carcinogenesis has been suggested. HA is suggested to be car-
ried on the surface of these vesicles in tissues and body fluids,
creating beneficial environments by itself, or by associated mol-
ecules, for the invasion and metastasis of cancer cells (52, 64).
HA transferred by these vesicles could putatively contribute to
cancer-related inflammatory processes.

HA RECEPTORS IN INFLAMMATION
Biological functions of HA are mediated by its molecular interac-
tion with HA-binding proteins, called hyaladherins, and as a result,
gain new biological identities (65, 66). In more detail, HA binds
to its specific cell-surface receptors, including CD44, receptor
for hyaluronan-mediated motility (RHAMM), and intercellular
adhesion molecule 1 (ICAM-1), activating the transduction of a
wide range of intracellular signals (67, 68). These HA receptor
interactions are implicated in both physiological and pathological
conditions, as they regulate cellular processes such as morpho-
genesis, wound healing, and inflammation (68–70). CD44 is a
cell-surface glycoprotein encoded by a single gene, although there
are a number of isoforms expressed in a number of cells and tis-
sues as a result of alternative splicing (71). Importantly, it has been
shown that some splice variants such as CD44v-9 and CD44v-
6 are involved in tumor metastasis (72, 73) even though CD44
expression pattern cannot always be correlated with malignant
progression (74). Moreover, inflammation and malignancy are
often associated with sequential proteolytic cleavage of CD44
resulting in a soluble extracellular part of CD44 that most likely
regulates cell migration, and to a CD44 intracellular domain that
translocates to the nucleus and promotes transcription of differ-
ent genes including the CD44 gene itself (75, 76). Noteworthy, at
sites of inflammation, a concomitant increase in HA synthesis
and release of inflammatory mediators can increase the bind-
ing avidity of CD44 for HA. Post-translational modifications of
CD44 have also been implicated in the transition of an “inac-
tive” low affinity state to an “active” high affinity state of the

CD44–HA binding capacity. Other molecules, also produced in
the inflammatory milieu, including IL-2, tumor necrosis factor
(TNF), and chemokines including MIP-1β, IL-8, and RANTES,
can stabilize and increase HA–CD44 interactions (77, 78). Another
inflammatory marker, SHAP protein that corresponds to the heavy
chains of inter-alpha-trypsin inhibitor family molecules circulat-
ing in blood, also stabilizes HA–CD44 interactions (79). More-
over, recently it was suggested that HAS1-dependent HA coat is
induced by inflammatory agents and glycemic stress, mediated
by altered presentation of either CD44 or HA and can offer a
rapid cellular response to injury and inflammation (80). Such
interactions are important for the regulation of CD44-mediated
leukocyte migration to sites of inflammation (78, 81) as well as
monocyte/macrophage retention and activation in inflammatory
sites (82). Moreover, an alternate immune evasion mechanism,
based on the interaction between CD44 on lung cancer cells and
extracellular HA has been proposed. In this study, CD44/HA
interactions, which reduce both Fas expression and Fas-mediated
apoptosis of the cells, result in decreased susceptibility of the cells
to T lymphocytes-mediated cytotoxicity through Fas–FasL path-
way (83). On the other hand, engagement of CD44 was found
to upregulate Fas ligand expression on T cells leading to their
activation-induced cell death (84). The versatility of HA/CD44
interactions are illustrated by HA-mediated CD44 interaction with
RhoGEF and Rho kinase, which promotes Grb2-associated binder-
1 phosphorylation and phosphatidylinositol 3-kinase signaling
leading to cytokine (macrophage-colony stimulating factor) pro-
duction and breast tumor progression (85). There appears to be a
backfeed interaction between inflammatory mediators and CD44
expression as, tumor necrosis factor-alpha (TNF-alpha), a major
inflammatory cytokine, abundant in the ovarian cancer microen-
vironment was found to differentially modulate CD44 expression
in ovarian cancer cells (86). Some reports, however, propose that
CD44 negatively regulates in vivo inflammation mediated by TLRs
via NF-κB activation, which ultimately leads to proinflammatory
cytokine production (87).

Receptor for hyaluronan-mediated motility has been suggested
to contribute to “cancerization” of the tumor microenviron-
ment through its wound repair functions including inflamma-
tory cues (69, 88). It is hypothesized that RHAMM could be a
member of the damage-associated molecular-pattern (DAMP)
molecules, which function as proinflammatory signals (89).
This is corroborated by data showing that RHAMM expres-
sion was strongly positively correlated to severe infection in
immune atopic diseases (90). Moreover, central to the inflam-
mation process, macrophage chemotaxis was found to be upreg-
ulated in a RHAMM- and HA-dependent manner (91). Indeed,
upon utilization of a RHAMM mimetic peptide, which specif-
ically blocks HA signaling a strong reduction of inflammation
and fibrogenesis in excisional skin wounds was determined (69).
Furthermore, RHAMM has been identified as an immunologi-
cally relevant antigen, strongly expressed in several hematologic
malignancies, and associated with both cellular and humoral
immunity (92, 93). Indeed, persistent RHAMM expression and
decreasing CD8+ T-cell responses to RHAMM in the frame-
work of allogeneic stem cell transplantation or chemotherapy
alone might indicate the immune escape of leukemia cells (94).
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FIGURE 1 | (A) Ha fragments through specific interactions with hyaladherins activate intracellular pathways including MAPKs, NF-κβ, and PI3K/Akt, which
support tumor cell growth; (B) HA by modulating TLR2/4 downstream signaling reprograms inflammatory cells to create a tumor-permissive environment.

These aspects of RHAMM/HA signaling can be utilized as tar-
gets of novel cell-based strategies in cancer. Thus, vaccination
with a highly immunogenic peptide, which was derived from
RHAMM and, respectively, denominated R3, has demonstrated
positive and safe effects in generating CD8+ cytotoxic cellular
responses and anti-tumor traits in patients with myelodysplastic
syndrome, acute myeloid leukemia, multiple myeloma, as well as
chronic lymphocytic leukemia (95, 96).

ICAM-1 is of great importance for immune response, inflam-
mation, and wound healing. Indeed, it is a key molecule for leuko-
cyte adherence and transendothelial migration with significant
HA participation in this regulation (68, 97). ICAM-1/HA inter-
actions have been implicated in various inflammatory processes.
Thus, a reduction of ICAM-1 expression, mediated by HA may
have an anti-inflammatory role in a rat model of severe non-
bacterial cystitis (98). Indeed, the anti-inflammatory effect of
HMWHA is suggested to be perpetrated through interactions with
more than one hyaladherin, including ICAM-1 (99). These authors
show that the inhibition of inflammation promoting cathepsin K
and MMP-1 activities is accomplished through joint TLR4, CD44,
and ICAM-1 actions. Up to date, however, ICAM-1/HA interac-
tions have not been examined in cancer-induced inflammation.
The cancer inflammation-related effects of HA and its respective
receptors are schematically depicted in Figure 1.

CONCLUSION AND PERSPECTIVES
The tumor microenvironment plays a key role in cancer pro-
gression. Specifically, HA-rich tumor microenvironments reg-
ulate important host–tumor interactions and have significant
impact on cancer-related inflammatory processes. One area,
which holds promise for cancer immunotherapy, is the manip-
ulation of immune responses, ultimately providing a therapy that

might “switch” back on the immune system to target the tumor
cell. Therefore, by determining the mechanisms through which
inflammatory HA fragments are generated in cancer and the
respective role of HA receptors will enable us to understand bet-
ter the contribution of inflammation in malignant disease and
perhaps reveal new therapeutic strategies.
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