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The Rb1 gene was the first bona fide tumor suppressor identified and cloned more than
25 years ago. Since then, a plethora of studies have revealed the functions of pRb and the
existence of a sophisticated and strictly regulated pathway that modulates such func-
tional roles. An emerging paradox affecting Rb1 in cancer connects the relatively low
number of mutations affecting Rb1 gene in specific human tumors, compared with the
widely functional inactivation of pRb in most, if not in all, human cancers. The existence
of a retinoblastoma family of proteins pRb, p107, and p130 and their potential unique and
overlapping functions as master regulators of cell cycle progression and transcriptional
modulation by similar processes, may provide potential clues to explain such conundrum.
Here, we will review the development of different genetically engineered mouse models,
in particular those affecting stratified epithelia, and how they have offered new avenues to
understand the roles of the Rb family members and their targets in the context of tumor
development and progression.

Keywords: pRb, p107, p130, epidermis, E2F, p53, SCC, transgenic mice

GENETICALLY ENGINEERED MOUSE MODELS
Mouse models are essential tools to analyze the molecular mech-
anisms underlying any physiological event that take place in the
organism. They provide information about gene function, allow
the analysis of specific genetic changes and, under appropriate
circumstances, might mimic human diseases. This characteristic
enables the close analysis of pathology and the identification and
validation of candidate therapeutic targets.

Several approaches are used to generate genetically engineered
mouse models (GEMMs). The traditional methodology, based on
the elimination of the gene of interest in the whole animal (knock-
out mice) (1), allows the functional characterization of the gene
product during the organism development. However, this may
result in embryonic lethality, precluding the study in adult animal
tissues. This problem can be circumvented by the use of condi-
tional transgenic gene knockout (e.g., involving cre-loxP system),
which allows studies of gene function in specific cell and tissue
types, including adult ones (2). Additionally, both experimental
systems also provide valuable information about potential com-
pensatory mechanisms, since the possible functions of the specific
ablated gene can be carried out by other genes. Such compensation
could occur directly, if “compensatory” genes are up-regulated or
down-regulated as a direct result of the loss of the gene under study.
The existence of such overlapping roles may also help to deter-
mine possible cooperative events in disease onset or progression.
The Rb and E2F families represent a paradigm of direct compen-
satory mechanisms revealed using conventional and conditional
knockouts (3).

The conditional knockout mice are engineered in such way that
genes can be inactivated in a tissue-specific manner. This approach
requires the use of specific gene promoters, which in some cir-
cumstances may represent a problematic issue due to ectopic
expression or poorly characterized control elements. Nonetheless,

these GEMMs enable much more sophisticated pathology mod-
eling, as they provide essential information of the potential role
of a particular gene or group of genes in a determined cell type.
This is of a particular relevance in cancer research where it is pos-
sible to determine whether the loss of a particular gene is involved
in tumor susceptibility, initiation, or progression to malignancy.
On the other hand, in sporadic cancer, initiating mutations prob-
ably occur in a unique or very few cells in a certain tissue.
These initiated cells acquire proliferative or pro-survival advan-
tages through subsequent genetic alterations and by a cross-talk
with the microenvironment lead to tumor development and pro-
gression. Accordingly, most of the conventional or tissue-specific
mouse models reproduce familial forms of cancer but not sporadic
tumors, as mutations are present in every cell of the body or in vast
majority of cells in a certain tissue (3). An interesting progress in
the field was the development of a ligand-dependent Cre recombi-
nase that can be activated by tamoxifen administration (4). These
inducible mouse models,besides allowing the space-temporal con-
trol of recombination, also provide a better suited model of human
sporadic cancer, as the recombination can be only limited to few
cells in a given tissue.

SKIN AS A MODEL SYSTEM
Skin is an essential organ that forms a protective barrier against the
environment. This function is primarily exerted by the epidermis,
a stratified epithelium in the outermost layer of the skin, and relies
on a finely tuned process of coupled differentiation and prolif-
eration. Both processes are compartmentalized in this tissue, and
can be characterized by the sequential expression of highly specific
markers. The proliferative cells are confined to a single cell basal
layer and the non-proliferative differentiating cells are located in
the suprabasal layers. This represents one of the main character-
istics that make epidermis an ideal model system. In particular,
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the expression of highly specific proteins in these compartments
has allowed the characterization of specific promoters for different
epidermal layers. In this context, it is remarkable the predominant
use of the basal cell specific keratin K5 (5–7) and keratin K14
promoters (8), including the inducible specific forms (9).

Another attractive biologic characteristic of the epidermis
resides in the cell replenishment and renewal processes occurring
throughout the individual entire life. Terminally differentiated or
damaged epidermal cells are shed from the skin, requiring a per-
manent tissue renewal fulfilled by epidermal stem cells. In mouse
epidermis, these stem cells lie mostly in the hair follicle bulge,
display a low proliferative rate and upon specific stress conditions
(i.e., wound healing) can give rise to all the epidermal cell subtypes
(10–12). Importantly, the hair follicle stem cells are also responsi-
ble for the hair cycling, which is coordinated by extremely relevant
signaling pathways such as Wnt, BMP, Notch, etc. and they are
considered the cells of origin in non-melanoma skin cancer (13–
17). Epidermal stem cells can be isolated and characterized using
different cell surface markers (18, 19) and they also express K5 and
K14 genes. Accordingly, the use of the K5 and K14 control elements
may also cause genetic alterations in these long-lived cells.

Besides the above commented attributes, epidermis is also per-
fectly suited to allow in vitro studies. Keratinocytes can be obtained
and cultured in vitro as monolayer cell cultures. In these, differen-
tiation can be achieved in response to external signals in a manner
resembling that observed in vivo (20, 21). In humans, cultured
keratinocytes, which can also be genetically modified, can be used
to engineer skin equivalents (22–24), which can be grafted onto
different receptors allowing the evolution of the skin transplant.
In mice, skin transplants can avoid specifically complex technical
approaches associated with compromised viability (25).

Finally, for the cancer field, the two-stage mouse skin car-
cinogenesis is perhaps the best characterized experimental car-
cinogenesis protocol and represents a suitable model for the
understanding the multistage nature of tumorigenesis (26). This
approach, besides allowing to define the relevance of multiple
oncogenic and/or tumor suppressor activities, has also led to the
establishment of fundamental molecular aspects of cancer, and
has contributed in an essential manner to an ideal conceptual
framework to understand many molecular aspects of tumorigene-
sis such as tumor angiogenesis, epithelial-mesenchymal transition
and metastasis, and the role of adult stem cells (27).

RETINOBLASTOMA FAMILY GENES
The retinoblastoma gene (Rb1), localized in chromosome 13q14.2,
was the first tumor suppressor identified more than 25 years ago
(28). Years later, other similar genes were discovered encompass-
ing Rb family. They are the retinoblastoma-like 1 (Rbl1) and
retinoblastoma-like 2 (Rbl-2) genes, localized in 20q11.2 and
16q12.2, and encoding p107 and p130 proteins, respectively (29–
31). pRb, p107, and p130 share structural homology. These pro-
teins are defined by a conserved pocket domain which serves as
a binding site and provides the family name “pocket proteins.”
The pocket domain consists of A and B domains separated by a
spacer region, and is a region where viral oncoproteins bind (Ad-
E1A, SV40 LT-antigen, or HPV-E7) (32, 33). Rb family proteins
interact with proteins containing a LeuXCysXGlu (LXCXE) motif,

found in several viral transforming proteins, such as HPV E7, and
in cellular proteins (34). The structure of pRb (and probably of
other members of the family) is altered by phosphorylation events,
changing its binding affinities (35, 36). Despite the well conserved
pocket protein domain,p107 and p130 are closer to each other than
either is to pRb (37). They share a motive in the spacer region, not
present in pRb, which binds cyclin A-CDK2 and cyclin E-CDK2
complexes. Moreover, they also share a sequence, absent in pRb,
next to the N-terminal region (38–40).

THE FUNCTIONS OF Rb PROTEINS
The most relevant function of Rb family is to control cell cycle
progression (34). This role, which depends on phosphorylation,
is determined by the interaction with other proteins, includ-
ing different transcription factors and nuclear matrix domains.
Phosphorylation is carried out by cyclin-dependent kinases (41)
which, in turn, are regulated by cyclins and cyclin-dependent
kinase inhibitors (42). Hypophosphorylated Rb family members
bind to distinct E2F transcription factor family members, thus
promoting their inhibition. Moreover, the pocket protein-E2F
complexes can act as an active mechanism for transcriptional
repression (43, 44). Sequential phosphorylation of the pocket pro-
teins leads to E2F release, allowing gene expression and cell cycle
progression (43, 44).

E2Fs transcription factors form a superfamily consisting of E2F
and DP (dimerization partner) proteins (45). DP family proteins
are cofactors of E2F factors and DP-E2F dimerization increases
DNA affinity and gets efficient regulation of the transcription.
There are 8 E2F gene members that produce 10 different proteins
(E2F3 and E2F7 have two isoforms). They display different affinity
to pocket proteins. pRb binds principally E2F1–4; p107 binds E2F4
and 5, mostly in cycling cells, whereas p130 preferentially binds
E2F5. E2F family members have unique and redundant functions
in cell cycle regulation and also show cell cycle-independent roles
(46). Functionally, E2Fs are divided in activators (E2F1–E2F3a)
and repressors (E2F3b–8) based on structurally and affinity dif-
ferences. E2F1–E2F6 factors have a domain to bind DP and DNA,
E2F1–5 have a pocket protein binding domain, and E2F7 and 8
can bind DNA without DP proteins. E2Fs have transactivation and
repression domains. When retinoblastoma proteins are bound to
E2F factors mediate transcriptional repression.

During cell cycle, the three Rb family members can interact
with E2Fs in a distinct, specific fashion. Activator E2Fs associate
exclusively with pRb, whereas p107 or p130 bind mainly to repres-
sors E2Fs. Importantly, pocket proteins are differentially expressed
along the cell cycle, probably reflecting specific functions for each
protein during the different cell cycle phases. In general, pRb and
p107 are expressed in cycling cells, while p130 is preferentially
expressed in quiescent cells, but this aspect is also cell type specific
(43, 47, 48).

Besides their cell cycle functions, pocket proteins are involved
in other cellular process such as differentiation, apoptosis, angio-
genesis, or senescence modulating gene transcription (49–53).
Some of these functions are also mediated by interaction with
specific E2F family members (54, 55). However, they can do it
both directly and indirectly, and in a very broad scale, recruiting
co-repressors/activators to specific transcription factors. Recent

Frontiers in Oncology | Cancer Genetics December 2013 | Volume 3 | Article 307 | 2

http://www.frontiersin.org/Cancer_Genetics
http://www.frontiersin.org/Cancer_Genetics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Costa et al. Rb family in epidermal homeostasis and carcinogenesis

studies propose Rb proteins to bind co-repressors: histones
deacetylases (HDAC1, HDAC2) (56–58), histone de-methylases
(RBP2) (59), DNA methyl transferases (DNMT1) (60), helicases
(Brg1, Brm) (61, 62), histone methyl transferases (Suv39h1, RIZ,
suv4-20h1/h2) (63–65), and histone binding proteins, like HP1,
regulating chromatin structure and transcription (63, 66). In
this context, the interaction with E2F directs pocket proteins to
DNA domains leads to transcriptional repression. Finally, a recent
work suggests a role for Rb family in influencing the chromatin
structure of larger genomic regions, and also in genome stability
maintenance (67).

POCKET PROTEINS AND CANCER
Rb family functions in multiple processes may exemplify their role
as potential tumor suppressors. Most, if not all, of the so called
hallmarks of cancer (68, 69) are regulated by this family. Accord-
ingly, the Rb/E2F pathway is disrupted in probably all tumors (34).
This subversion occurs mainly by overexpression or mutation of
cyclin-dependent kinases, inactivation of CKIs, increased expres-
sion of cyclins and, in some cases, amplification and increased
expression of specific E2F members. Deletion and inactivating
mutations of pRb are restricted to very few specific cancer types,
whereas alterations of p107 and/or p130 in human cancers is still
a matter of debate, being rarely mutated in human tumors (70,
71), probably due to pRb controls E2F activity in a broad manner
(72). The reason why different tumors preferentially display one
or another alteration of the Rb pathway is still unknown. However,
the most frequent alterations tend to the functional inactivation
of the three Rb family members, indicating their potential over-
lapping function as tumor suppressors. In spite of this, due to the
specific functions of pRb in cell differentiation and senescence,
it appears to exert specific tumor suppressor activities over p107
and p130. This has been highlighted by the findings in GEMMs
(Table 1).

GERMLINE KNOCKOUTS OF Rb FAMILY MEMBERS
Retinoblastoma was the first tumor suppressor gene eliminated by
targeted deletion in mice (73–75). Rb-null mice die during embry-
onic development due to multiple embryonary and extraembry-
onary tissue defects. However, their progress until late stages of
development, indicating that pRb is not essential during early nor-
mal mouse development. This aspect was particularly emphasized
by the generation of chimeric mice with a very high component
of Rb-null cells (Table 1 and references therein).

Nevertheless, the early lethality precludes the analysis of the
Rb1 gene roles in adult mice. This is in contrast with the targeted
deletion of any of the other pocket protein family members, as
p107 or p130 deficient mice do not show any obvious phenotype
and no tumor predisposition has been observed in any mutant ani-
mal (79, 80). In contrast, mice having simultaneous inactivation
of p130 and p107 genes show neonatal lethality and limb devel-
opment defects (80). These findings demonstrate the existence of
compensatory roles among the pocket protein family members
(i.e., p130 fulfills p107 functions in its absence or vice versa) and
also that, in certain tissues and cellular settings, p107 and p130
perform shared growth-regulatory functions that are not fulfilled
by pRb. In agreement, the embryonic lethality of Rb-null mice

occurs earlier when is accompanied by the deletion of any other
pocket protein (79, 96).

Genetically deficient cells for all the three Rb family members
(TKO mouse embryonic fibroblasts) are resistant to G1 arrest (97,
98). Chimeric embryos composed of TKO cells develop until day
9 of gestation and some cells are able to arrest in G0/G1, to exit cell
cycle and to differentiate (in teratomas and in culture), pointing to
a cell type dependent mechanism and illustrating the robustness of
cell cycle regulatory networks (99). Regarding the role of Rb family
in cancer, KO mice have also provided important clues. To circum-
vent the embryonic lethality due to Rb1 deficiency, heterozygous
mice have been widely employed. Different studies gave evidences
of compensatory roles between retinoblastoma family members
(see Table 1). Lee and colleagues provided in vivo evidence that
p107 and pRb have overlapping functions in development and
adult tissues of mutant mice for the first time (79). pRb and p107
interact with E2Fs in a different manner, which could explain spe-
cific and related functions (100). As the Rb+/− and Rb−/− chimeric
mice do not develop retinoblastoma, additional mutations besides
loss of pRb function are needed to induce this type of tumor.
p107 plays a tumor suppressor function in absence of pRb (101),
and is responsible for a limited tumor spectrum observed in mice
which have lost pRb in a variety of tissues (93). In Rb−/− mice,
the lack of E2F4 suppresses pituitary and thyroid tumors forma-
tion, with enhancement of p107 and p130 levels associated with
the activator E2Fs. This may indicate that Retinoblastoma fam-
ily acts as a tumor suppressor possibly regulating activator E2Fs
rather than establishing repressive E2F complex. Accordingly, in
those tissues with very low p107 and p130 expression levels, pRb
compensation is unlikely, making those tissues more susceptible to
tumor development as a consequence of Rb1 loss (102). In addi-
tion, the different phenotypes observed could be related to the
diverse capacity of the Rb family members to interact with target
proteins (103).

Rb FAMILY AND SKIN
Although numerous indirect evidences have suggested a role of
pRb pathway in epidermal homeostasis (104–108) and in skin
carcinogenesis (109–115), the early lethality of Rb-null mice pre-
cluded the study of actual Rb1 functions in skin. Nonetheless,
conventional knockout models allowed us to demonstrate that
the simultaneous absence of p107 and p130 produces severe skin
abnormalities affecting terminal differentiation and the expression
of several morphogens involved in the inductive signals between
epithelium and underlying mesenchyme (81, 116). Importantly,
these signals are essential in epidermal stem cell homeostasis and
have been also involved in epidermal tumor development (13).

Long-lived adult stem cells have more chances to accumulate
the number of genetic hits essential for tumor development (13),
and many pathways implicated in stem cell quiescence are dereg-
ulated in tumor progression. Remarkably, Rb family activity also
plays a critical role to balance proliferation and cell survival in
human embryonic stem cells (117). In epidermis, tissue home-
ostasis is strictly dependent on the functionality of epidermal stem
cells. Whole transcriptome analysis and bioinformatic approaches
using these purified epidermal stem cells revealed that the Rb-E2F
axis is also an essential mediator of stem cell quiescence (118).
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Table 1 | Phenotypic abnormalities observed in germline-ablated mouse models affecting retinoblastoma family members.

Genotype Strategy Lethality Phenotype Reference

Rb−/− Germline Embryonic (13.5) Developmental defects, increased apoptosis (73–75)

Rb+/− Germline Viable Intermediate lobe pituitary tumors-cell adenomas, c-cell hyperplasia in the

thyroid gland

(74, 76–78)

Rb+/−; p107−/− Germline Viable Growth retardation, increased mortality rate during the first 3 weeks after

birth. Multiple retina dysplastic lesions. No more tumor prone when

compared with Rb+/− mice

(79)

Rb−/−; p107−/− Germline Embryonic (11.5) Accelerated apoptosis in the liver and the central nervous system (79)

p107−/−; p130−/− Germline Birth Deregulated chondrocyte growth, defective endochondral bone

development, shortened limbs, and neonatal lethality. Impaired terminal

differentiation. Decreased number of follicles, developmental delay in hair,

whiskers, and tooth germs

(80, 81)

E2F1−/− Germline Viable Tissue-specific tumor induction, tissue atrophy (82–84)

E2F2−/− Germline Viable T lymphocyte homeostasis defects leading to a lupus-like autoimmune

disorder. Negative regulator of the immune response suppressing cellular

proliferation of activated lymphocytes

(85)

E2F3−/− Germline

C57BL/6

Neonatal Congestive heart failure. No tumor development (86, 87)

E2F3−/− Germline 129/sv Embryonic Proliferation defects (86, 87)

E2F1−/−; E2F2−/− Germline Viable Limited lifespan, polyuria, polydipsia, and appeared lethargic prior to death (85, 88)

E2F1−/−; E2F3−/− Germline Embryonic Impaired development. Overlapping roles in development/maintenance of

several tissues

(87, 88)

E2F2−/−; E2F3−/− Germline Embryonic Central role of E2F3 in mouse development (88)

Rb+/−; E2F3−/− Germline Smaller pituitary tumors. Novel tumorigenic lesions

Rb+/−; E2F1−/− Germline Viable Increase lifespan of Rb+/−. Reduce frequency of pituitary and thyroid

tumors

(84)

Rb+/−; E2F3+/− Germline 129/Sv Viable Little increase lifespan of Rb+/−. Smaller pituitary tumors; E2F3 acts to

promote the development of tumors in Rb mutant mice

(89)

Rb+/−; E2F3+/− Germline mixed

129/SvXC57BL/6

Weaning Increase lifespan of Rb+/− (89)

E2F3a−/− Germline Viable No detectable effects. Low penetrance proliferation defect in vitro (90)

E2F3b−/− Germline Viable No detectable effects (90)

E2F3a−/−; E2F1−/− Germline Birth (neonatal) Cartilage defects, proliferation defects in vitro; overlapping functions of

E2F3a and E2F1. E2F3a could substitute E2F1 and E2F3 in most murine

tissues

(90)

DP1−/− Chimera Embryonic Failure of extra-embryonic development (91)

Rb−/− Chimera Viable Die 3–11 months of age due to pituitary gland tumors; no retinoblastoma

tumor development

(92)

Rb+/−; p107−/− Chimera Viable Wide spectrum of tumors (pituitary gland, cecum, bone, lymphoid tissue).

No retinoblastoma development but retinal dysplasia

(93)

Rb−/−; p107−/− Chimera Viable Development of retinoblastoma at early age (93)

Rb+/−; p130−/− Chimera Viable Thymoma, hepatoma, Leydig cell tumor, insulinoma, and adrenal gland

tumor. None of the tumors were seen in more than one animal

(93)

(Continued)
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Table 1 | Continued

Genotype Strategy Lethality Phenotype Reference

Rb−/−; p130−/− Chimera Viable Retinoblastoma, pheochromocytoma, and hyperplasia of neuro-endocrine

epithelial cells of the bronchus. Early death

(93)

Rb−/−; E2F3−/− Chimera Viable Suppresses the formation of cataracts while aggravating the retinal

dysplasia; dispensable for the development of pRb-deficient pituitary and

thyroid tumors; suppresses the pulmonary neuro-endocrine hyperplasia of

Rb−/− chimeric mice

(94)

Rb−/−; E2F4−/− Chimera Viable Reduce incidence of pituitary tumors. Delay development of tumors (95)

Moreover, transgenic mouse models showed that the aberrant
accumulation of altered stem cells in hair follicles and their sub-
sequent migration to the interfollicular epidermis contribute to
HPV-induced tumor development (17), which is also mediated by
Rb family inactivation (24).

The development of an epidermal-specific Rb-deficient mouse
model and its combination with several other GEMMs has allowed
us to establish a comprehensive framework for a better under-
standing of the functions of the Rb-dependent signaling in
different aspects of epidermal homeostasis, carcinogenesis, and
metastatic development (Table 2).

We and others demonstrated that pRb absence in epidermis is
characterized by moderate hyperplasia and hyperkeratosis associ-
ated with increased proliferation and altered differentiation (121,
127). Although these characteristics might suggest a cancer-prone
phenotype, no spontaneous tumor development was observed
even after a long latency (121, 127). This might indicate the possi-
ble overlapping roles of the other retinoblastoma family members,
p107 and p130, in suppressing skin tumorigenesis in the absence of
pRb. In support of this, the phenotypic changes observed in pRb-
deficient skin are aggravated by concomitant HPV E7 oncogene
expression (127), indicating the involvement of other E7 targets
(such as p107 and/or p130). Importantly, similar findings suggest-
ing this compensatory or/and overlapping mechanisms have been
also suggested for multiple tissues including retina, mammary
gland, muscle, bone, etc. (128).

Loss of p130 did not further aggravate the phenotypic conse-
quences of pRb ablation in skin, suggesting a potential absence
of functional compensation between these two proteins in skin
(120). In agreement, multiple cell cycle and proliferation genes
showed a similar pattern between keratinocytes lacking pRb alone
or both pRb and p130 (120). In spite of this, gene profiling analy-
ses demonstrated that the combined absence of pRb and p130
generated changes in a large number of genes compared to pRb,
indicating a primary role of p130 in modulating transcription
through the specific interaction with particular E2F proteins in
the absence of pRb (120). Further studies also showed a poten-
tial link between p130, specific E2Fs and chromatin remodeling
machinery through the cyclin-cdk inhibitor p27 (129).

In contrast with the moderate epidermal phenotype produced
by the absence of pRb or combined pRb and p130 epidermal loss,
the lack of p107 and pRb in epidermis produced a severe phe-
notype consisting of dramatic growth retardation, no hair, and

death by postnatal day 10 (121). Importantly, whilst the phe-
notype was aggravated with the progressive loss of one or both
alleles of p107, a single functional copy of pRb was sufficient
to rescue all epidermal defects (121). These data demonstrated
a functional overlap between pRb and p107 in epidermis and
illustrated a dose dependent effect of p107 in vivo in the con-
text of Rb1 deficiency, suggestive of a potential tumor suppressor
role for p107 in the absence of pRb. This was further supported
by the findings obtained with skin grafts (used to circumvent
the perinatal lethality), which invariably evolved to differentiated
SCC (122). Furthermore, primary double deficient keratinocytes
displayed a high sensitivity to Ha Ras-mediated transformation
and a particular resistance to oncogene-induced senescence (122).
Importantly, biochemical and whole transcriptome analysis sug-
gested a possible impaired p53 function in these double deficient
keratinocytes (122).

Two-stage chemical carcinogenesis protocols in epidermal-
specific Rb-deficient mice showed that the absence of pRb lead
to the generation of fewer and smaller tumors than in control
animals (119), but with increased malignant conversion to SCCs.
Biochemical analyses indicated that, in the absence of pRb, mul-
tiple pathways, including the aberrant p53 induction mediated by
E2F/p19ARF, are activated, leading to increased tumor apoptosis
(119). Importantly, the increased expression and activity of p53
generates a selective pressure leading to premature p53 loss and
then increased malignant conversion (119, 130). This hypothesis
was also reinforced by the observation of restored susceptibility
to tumor development obtained in mice lacking pRb and a single
p107 allele, upon similar carcinogenesis protocols (131).

The above commented findings pointed to a primordial role
of p53 in suppressing skin tumorigenesis, as suggested previously
(8, 132, 133), and also indicated a possible cooperative roles of
both tumor suppressors in skin, in agreement with the findings
in other tissues (76, 134–139). To demonstrate such hypothesis,
we generated mice lacking both Rb1 and Trp53 genes in epider-
mis (123). We observed that the spontaneous SCC development
due to epidermal loss of p53 (8) is severely accelerated in mice
lacking pRb and p53 (123), whereas the epidermal proliferation
and differentiation phenotype due to pRb loss is not enhanced
by the simultaneous inactivation of pRb and p53 (123). Detailed
analyses indicated that tumorigenesis due to p53 loss was associ-
ated to early chromosome instability, and under these settings the
increased proliferation promoted by the absence of Rb1 resulted in
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Table 2 | Phenotypic Skin abnormalities observed in mouse models lacking pRb in epidermis.

Genotype Strategy Lethality Phenotype Reference

Rbf/f; K14cre Conditional Viable Enhanced proliferation, abnormal differentiation. No spontaneous tumor

development

(119)

Rbf/f; K14cre; p130−/− Conditional Viable No differences with Rbf/f; K14cre mice. Altered genomic profile (120)

Rbf/f; K14cre; p107−/− Conditional Postnatal day 10 Transplants of newborn skin lead to spontaneous tumors development (121, 122)

Rbf/f; K14cre; p53f/f Conditional Viable Develop spontaneous squamous cell carcinoma, accelerated respect

p53-deficient mice in epidermis

(123)

Rbf/f; K14cre; p21−/− Conditional High mortality

rate

Hyperplasia, hyperkeratosis, inflammatory infiltrates (pnd 30). Phenotype

aggravated compared with Rb1- or p21-deficient mice. Spontaneous

epithelial tumors, preferentially in tongue and oral tissues

(124)

Rbf/f; K14cre; Ptenf/f Conditional Increase mortality

at postnatal life

Transplants of newborn skin lead to the development of spontaneous

tumors. All die by 2 months of age

(125)

Rbf/f; K14creERTM Inducible Viable Enhanced proliferation, abnormal differentiation. No spontaneous tumor

development

(125)

Rbf/f; K14creERTM;

p107−/−

Inducible Viable Aggravated phenotype of Rbf/f; K14cre mice: impair terminal differentiation

and abnormal proliferation. Spontaneous squamous cell carcinomas in oral

areas. Lifespan 5–6 months due to animal fragility

(125)

Rbf/f; K14creERTM;

E2F1−/−

Inducible Viable Impair terminal differentiation and abnormal proliferation. Spontaneous

squamous cell carcinomas with high penetrance

(126)

an accelerated process (140). Of note, the transcriptome analysis
of tumors arising in these deficient mice revealed a highly sig-
nificant overlap with human tumors. These were characterized
by p53 mutation, poor prognosis and/or very high predisposi-
tion to develop distant metastasis (141), regardless the tissue of
origin, and including clinically relevant human cancers such as
breast and lung tumors (141, 142). In agreement, squamous cell
carcinomas generated in these mouse models are highly metasta-
tic and displayed early signs of epithelial-mesenchymal transition
and deregulated expression of specific miRNAs (143). The possi-
ble link between Rb family and deregulated miRNA expression has
also been reported in other tissues, such as muscle and retina (144,
145), and also upon HPV E7 expression in human keratinocytes
(24). Remarkably, the specific upregulation of miR-21 dependent
in p53-deficient metastatic tumor cells, which appears to be medi-
ated by increased mTOR and Stat3 activity (143), was also found
in human metastatic lung tumors bearing mutated p53 gene (143),
thus supporting a potential mechanism of metastatic spreading in
human tumors. Nonetheless, the possible relative contribution of
Rb1 and Trp53 tumor suppressor genes to this process remains
unsolved.

The cyclin-cdk inhibitor p21 is a bona fide transcriptional
target of p53 (146, 147). It has been reported as responsible
for the potential mechanism mediating cell cycle arrest in the
absence of pRb (148–150), and it has been also involved in epi-
dermal homeostasis and carcinogenesis (151–157). Consequently,
we have recently generated mice lacking p21 in the absence of
epidermal pRb. Remarkably these mice developed skin inflam-
matory processes followed by spontaneous tumor development,
with strong resemblance to human head and neck SCCs by

histopathology and transcriptome characteristics (124). Further,
these mice also showed aberrant Stat3 signaling, thus reinforcing
our previous findings connecting pRb, p53, and Stat3 (143).

ACUTE VS. CHRONIC RETINOBLASTOMA GENE LOSS
Most sporadic cancers are originated by several mutations, includ-
ing loss of function of tumor suppressors, occurring only in very
few cells of adult tissues. To mimic such situation Sage and co-
workers developed an experimental approach that allows Rb1
elimination in an acute manner in primary mouse embryonic
fibroblasts (158). This revealed a significant functional difference
between such acute loss of pRb and that achieved by inactiva-
tion during embryonic development (158). Importantly, one of
the main molecular bases of such difference relies on the acclima-
tization of the tissues to a permanent loss of pRb that allows the
induction of compensatory genes, such as p107 (158). Remark-
ably, the proliferative arrest mediated by differentiation stimuli in
keratinocytes in vitro also displayed similar characteristics upon
acute or chronic Rb1 loss (121). These results might have impor-
tant implications for the interpretation of Rb-loss in GEMMs, and
in particular in the context of epidermal tumor development.

To find out possible differences between acute and chronic Rb1
loss in adult mice, we have recently generated a new mouse model
lacking pRb in epidermis in an inducible manner by topical tamox-
ifen administration (125, 126). Acute pRb deletion in epidermis
in vivo caused moderate hyperplasia due to changes in epidermal
proliferation and differentiation similar to those observed after
chronic pRb loss (116). This phenotype is durable along mice
lifespan (125), indicative of efficient targeting in adult stem cells.
However, no tumor development was observed even 1 year after

Frontiers in Oncology | Cancer Genetics December 2013 | Volume 3 | Article 307 | 6

http://www.frontiersin.org/Cancer_Genetics
http://www.frontiersin.org/Cancer_Genetics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Costa et al. Rb family in epidermal homeostasis and carcinogenesis

recombination induction (125). These observations indicated that,
although the acute loss of pRb is sufficient to overcome some
processes associated to prolonged pRb ablation, the extended time
required for the development of spontaneous tumors allows the
induction of compensatory genes and thus tumor suppression.

In order to analyze whether p107 is responsible for this tumor
suppression, we generated a mouse model susceptible of acute pRb
loss in the absence of p107 (125). These mice displayed abnormal
epidermal differentiation, hair loss, frail appearance, and lesions
in the cheek, neck, eyelids, and snout, leading to lifespan reduc-
tion up to 6 months after recombination induction. Moreover, all
mice developed spontaneous tumors starting from 2 months after
recombination and affecting preferentially perioral areas (125).
Biochemical and genomic analyses of these tumors and primary
keratinocytes demonstrated that combined pRb and p107 absence
limits the transcriptional tumor suppressive functions of p53, lead-
ing to a reduced Pten gene expression. Consequently, this mouse
model confirmed the existence of an in vivo novel functional con-
nection between the three major suppressor genes TP53, Pten, and
Rb1, previously suggested from in vitro experiments (159). Simi-
larly, Lambert and colleagues have reported that loss of pRb and
p107 can predispose to oral tumors in mice after chemical carcino-
genesis (160). However, the inactivation of all three family mem-
bers was unable to induce cervical cancer (161). These findings
support a tissue context role for the Rb family in tumor suppres-
sion in stratified epithelia, and the different results observed in
distinct mouse strains may also point to possible genetic and/or
epigenetic factors affecting their tumor suppressor functions.

The loss of pRb is accompanied by increased E2F activity
and deregulated expression of several E2F members, including
increased E2F1 expression (116). E2F1 is the best described E2F
family member. Although initially considered as a potential onco-
gene due to its ability to drive S-phase progression in quiescent
cells (162, 163), data obtained in E2F1-null mice (82, 83) revealed
a potential tumor suppressor role associated with impaired apop-
tosis induction (82, 83). Such apoptosis takes place through p53-
dependent and -independent mechanisms (119, 164, 165). Such
functional difference is also emphasized in epidermal carcino-
genesis. E2F1 overexpression in transgenic mouse epidermis leads
to spontaneous tumor development, which is accelerated by p53
loss (166, 167). However, such transgenic expression of E2F1 was
found to inhibit ras-driven skin carcinogenesis in part through a
p53/p19arf dependent process (114, 168, 169). This process is also
reminiscent to that observed upon chemical carcinogenesis proto-
cols in mice lacking epidermal pRb (119). Importantly, loss of E2F1
reduces tumorigenesis and extends the lifespan of Rb1 heterozy-
gous mice indicating that an important part of the several tumor
suppressor activities of pRb depend on its ability to repress E2F1
(170, 171). Of note, E2F1 is dispensable for the normal skin devel-
opment and homeostasis, but plays important roles during wound
healing in vivo (107). As the elimination of Rb1 in epidermis
leads to increased E2F1 expression and activity (116), which also
partially explain the abnormal susceptibility to chemical carcino-
genesis protocols (119), we obtained a mouse model of epidermal
inducible Rb1 loss in an E2F1-deficient background (126). The
epidermis of mice lacking Rb1 and E2F1 was characterized by gen-
eralized hyperplasia and abnormal differentiation similar to that

observed in mice under acute or chronic epidermal Rb1 loss (126).
This suggests that some of the functions of Rb1 in epidermis are
E2F1-independent. Nonetheless, the combined deficiency in Rb1
and E2F1 results in spontaneous epidermal carcinomas with high
penetrance (126). These tumors displayed a hair follicle origin and
a functional p19/p53 axis (126). Whole transcriptome analysis of
these tumors revealed a potential involvement of Wnt signaling,
as well as a significant overlap with human tumors (126). These
results demonstrated, for the first time, that tumor suppressor
functions of pRb in vivo are partially E2F1-dependent in specific
tissues.

CONCLUDING REMARKS AND FUTURE PERSPECTIVE
The retinoblastoma pathway is an essential mechanism allowing
proper cell cycle progression. Therefore, not surprisingly, most
human tumors show aberrant disruption of this pathway rather
than mutation in Rb1 per se. Nonetheless, it is composed by a
large number of different proteins with specific and diverse func-
tions, and the different tumor types usually show distinct type of
alterations. The analysis of mouse models bearing different combi-
nations of genetic alterations in a tissue-specific manner, and in an
acute or chronic mode, will continue to provide invaluable infor-
mation on the retinoblastoma pathway and its involvement in the
control of different cancer hallmarks. Such studies may highlight
the significant events and the molecular entities involved in ini-
tiation and progression of the disease in different tissue contexts.
In skin, the findings on the retinoblastoma family proteins and
the Rb-dependent pathway support this type of studies for spe-
cific squamous cancers. Nonetheless, similar or different molecular
events may take place in other tissues, and it is essential to consider
that tumor development may differ in mice or humans. These fac-
tors require extremely refined comparative studies to validate the
models in order to identify potential biomarkers and/or molecular
targets for new therapies. Nonetheless, these mouse models could
provide a highly valuable tool for preclinical research.
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