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Current concern about biodiversity change associated with human impacts has raised

scientific interest in the role of biodiversity in ecosystem functioning. However, studies

on this topic face the challenge of evaluating and separating the relative contributions

of biodiversity and environment to ecosystem functioning in natural environments. To

investigate this problem, we collected sediment cores at different seafloor locations in

Saanich Inlet and the Strait of Georgia, British Columbia, Canada, and measured benthic

fluxes of oxygen and five nutrients (ammonium, nitrate, nitrite, phosphate, and silicate).

We also measured 18 environmental variables at each location, identified macrofauna,

and calculated a suite of species and functional diversity indices. Our results indicate

that, examined separately, macrobenthic functional richness (FRic) predicted benthic flux

better than species richness, explaining ∼ 20% of the benthic flux variation at our sites.

Environmental variables and functional diversity indices collectively explained 62.9% of

benthic flux variation, with similar explanatory contributions from environmental variables

(21.4%) and functional diversity indices (18.5%). The 22.9% shared variation between

environmental variables and functional diversity indices demonstrate close linkages

between species and environment. Finally, we also identified funnel feeding as a key

functional group represented by a small number of species and individuals of maldanid

and pectinariid polychaetes, which disproportionately affected benthic flux rates relative

to their abundance. Our results indicate the primary importance of environment and

functional diversity in controlling ecosystem functioning. Furthermore, these results

illustrate the consequences of anthropogenic impacts, such as biodiversity loss and

environmental changes, for ecosystem functioning.

Keywords: biodiversity, ecosystem functioning, functional diversity, environmental variables, benthic fluxes,

organic matter remineralization, Salish Sea

INTRODUCTION

The loss of biodiversity and its impact on humanity (Cardinale et al., 2012) have raised considerable
interest on potential links between biodiversity and ecosystem functioning in a wide range of
ecosystems (Loreau et al., 2001, 2002; Solan et al., 2004; Loreau, 2010). This work points to a strong
role for functional groups in controlling ecosystem functions (Hooper et al., 2005; Cardinale et al.,
2006; Danovaro et al., 2008) but also a potential role for environment (Yachi and Loreau, 1999;
Godbold and Solan, 2009; Belley et al., 2016). Although most of these studies focus on biodiversity
loss by manipulating species in experiments (Cardinale et al., 2012; Naeem et al., 2012), natural

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82874342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
https://doi.org/10.3389/fmars.2016.00242
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2016.00242&domain=pdf&date_stamp=2016-11-18
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:renald.belley@mun.ca
https://doi.org/10.3389/fmars.2016.00242
http://journal.frontiersin.org/article/10.3389/fmars.2016.00242/abstract
http://loop.frontiersin.org/people/157709/overview
http://loop.frontiersin.org/people/132980/overview


Belley and Snelgrove Contributions of Biodiversity and Environment to Ecosystem Functioning

gradients in environments offer an alternative “in situ” approach
to linking function, biodiversity, and environment (Snelgrove
et al., 2014).

In the world’s ocean, seafloor habitats and the organisms that
reside in and on marine sediments provide important ecosystem
functions. These include recycling of organic matter that drives
benthic-pelagic coupling and fuels surface waters with nutrients
essential for primary production (Snelgrove et al., 2014). Despite
a general consensus that biodiversity and environmental factors
may both play a role in benthic ecosystem functioning, relatively
few studies have attempted to separate abiotic and biotic
contributions to ecosystem functioning. In fact, manipulative
laboratory studies (i.e., changing species composition but
not environmental conditions) typically underestimate the
contribution of biodiversity to ecosystem functions (Duffy,
2009; Godbold, 2012). Nonetheless, studies that have tried to
separate abiotic and biotic contributions generally found that
both played an important role (Hiddink et al., 2009; Queirós
et al., 2011; Godbold, 2012; Braeckman et al., 2014; Strong et al.,
2015).

Measurements of benthic fluxes at the sediment-water
interface offer one means of quantifying organic matter
remineralization, an important ecosystem function in
seafloor habitats (Giller et al., 2004). Multiple biological
and environmental factors influence benthic fluxes. Previous
studies point to the importance of environmental variables
such as temperature (Hargrave, 1969; Cowan et al., 1996;
Alonso-Pérez and Castro, 2014), and the quality and quantity
of organic matter sinking to the seafloor (Berelson et al.,
1996; Jahnke, 1996). Previous studies also report a strong
positive influence of biological factors such as the presence
of bio-irrigators and bioturbators on benthic fluxes and
organic matter remineralization (Aller, 1982, 2014; Aller and
Aller, 1998), and that focus has expanded to consider the
importance of functional diversity on ecosystem functioning
(Snelgrove et al., 1997, 2014; Raffaelli et al., 2003; Solan
et al., 2004). Indeed, some studies report that functional
diversity, defined as “the value and range of those species
and organismal traits that influence ecosystem functioning”
(Tilman, 2001), promotes organic matter remineralization
and consequently, increases benthic fluxes (Braeckman et al.,
2014).

Our study focuses on four different sites in the Salish Sea,
a semi-enclosed sea between Vancouver Island and British
Columbia, Canada (Figure 1). The large variation in species
diversity (Macdonald et al., 2012) and environmental variables
(Johannessen et al., 2005; Masson and Cummins, 2007) within
the Salish Sea over a relatively small spatial scale provides
an ideal location for a study that uses natural gradients to
identify the influences of biodiversity and environment on
ecosystem functioning. Saanich Inlet, a seasonally hypoxic
fjord, supports a relatively low diversity benthic community
that specializes on low-oxygen environments (Tunnicliffe, 1981;
Matabos et al., 2012; Chu and Tunnicliffe, 2015). Strong
seasonal variation in dissolved oxygen concentrations and
temperature also characterizes the Strait of Georgia (Masson
and Cummins, 2007; Johannessen et al., 2014). Finally, the

FIGURE 1 | Map of stations sampled in Saanich Inlet and in the Strait of

Georgia, British Columbia, Canada. Delta Dynamic Laboratory (DDL) and

Strait of Georgia Central (SoGC) were sampled in July 2011. Saanich Inlet (SI)

sampling occurred in July 2011 and September 2013, and Strait of Georgia

East in May 2011 and September 2013.

Delta Dynamic Laboratory site within the Strait of Georgia
offers a highly dynamic environment characterized by high
organic and inorganic loading resulting from its proximity to
the Fraser River outflow (Burd et al., 2008; Macdonald et al.,
2012).

The primary objective of this comparative field study was to
evaluate the contributions of species and functional diversities,
and environmental variables to benthic fluxes of oxygen and
nutrients (ammonium, nitrate, nitrite, phosphate, and silicate)
at contrasting sites. We addressed our objective by exploring
the following questions at our study sites: (i) do benthic fluxes
vary spatially, (ii) does benthic community composition vary
spatially, (iii) which environmental variables explain benthic flux
variation and remineralization, (iv) which species and functional
diversity indices, if any, explain benthic flux variation and
remineralization, and (v) how much benthic flux variation do
biodiversity and environmental variables explain, respectively?
This study builds from Belley et al. (2016), which investigated
the effects of environmental variables on benthic flux variation
at these and other deeper sites in the Northeast Pacific
ocean.

METHODS

Field Sampling
Samples were collected near the VENUS Observatory nodes in
Saanich inlet and the Strait of Georgia, British Columbia, Canada
(Figure 1). We collected push core sediments using the Remotely
Operated Vehicle (ROV) ROPOS (www.ropos.com) on board the
Canadian Coast Guard Ship John P. Tully (May 7–14, 2011),
and the Research Vessels Thomas G. Thompson (June 30-July
3, 2011) and Falkor (September 6–18, 2013). Sampling occurred
at the VENUS Delta Dynamic Laboratory (DDL) and the Strait
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of Georgia Central (SoGC) sites in July 2011, Saanich Inlet (SI)
in July 2011 and September 2013, and the Strait of Georgia
East (SoGE) in May 2011 and September 2013 (Table 1). The
ROV collected 4–5 push-cores at each site (i.d. = 6.7 cm, L =

35.6 cm) at random locations within a bottom area that spanned
∼ 25 × 25m near the observatory nodes. One core per site
served to determine prokaryotic cell abundance and biomass as
well as sediment properties (summarized in Table 1), and the
remaining cores were used for incubations to measure fluxes.
A SBE 19plus V2 CTD mounted on the ROV recorded near-
bottom dissolved oxygen (DO), temperature, and salinity. No
specific permissions were required for these locations/activities
and field studies did not involve endangered or protected
species. Below we provide a brief overview of methodologies,
but a more detailed description can be found in Belley et al.
(2016).

Incubations
At each sampling site, we acclimated 3–4 sediment cores (0.68
L ± 0.10 and 0.42 L ± 0.10, mean volume ± SD of sediment
and water, respectively) for 4–24 h, allowing sufficient time
for any sediment particles in suspension to settle back to the
sediment surface. We used different acclimation times because
of the high sampling intensity, tight dive schedule, and limited
number of incubations that could be run simultaneously, but
all acclimation times fall within the range of acclimation times
typically reported in the literature (Valdemarsen et al., 2012; Link
et al., 2013a; Nunnally et al., 2013). Moreover, comparison of
results in relation to acclimation times showed no consistent
pattern. We aerated the overlying water in each core for a
minimum of 1 h using aquarium air pumps to avoid suboxic
conditions during incubations. A previous study in this region
revealed no significant effect of the overlying water aeration on
benthic flux rate measurements (Belley et al., 2016). Sediment
cores were then sealed with caps equipped with magnetic stirrers
and gas-tight sampling ports, prior to incubating in the dark at in
situ temperatures (8–9◦C) for 12–24 h until 15–30% of available
oxygen was consumed. Hall et al. (1989) showed a linear decrease
in oxygen during the initial stage of incubations, which therefore
provided reliable estimates of oxygen uptake rates.

Oxygen Uptake
Wemeasured oxygen consumption periodically (4–8 h intervals)
using a 500-µm diameter oxygen microsensor (Unisense,
Aarhus, Denmark) inserted through a small resealable hole on
the top of the cap in May and July 2011, and with a non-
invasive optical oxygen meter used in conjunction with oxygen
optode patches (Fibox 4, PreSens, Regensburg, Germany) in
September 2013. PreSens provided calibration details for each
oxygen optode patch and we used the two-point calibration
method for the oxygen microsensors recommended by Unisense,
aerating water collected in situ for a minimum of 5min and
taking readings only after the signal stabilized for the fully
saturated reading. The zero reading was obtained using a solution
of sodium ascorbate and NaOH, both at final concentrations of
0.1 M.We determined oxygen uptake from the slope of the linear
regression of oxygen concentration vs. time of incubations after
correction for oxygen concentration in the replacement water
(see example in Appendix 1 of Supplementary Material).

Nutrient Fluxes
At the beginning, midpoint, and end of the incubations we
collected water samples with 60-mL, acid-rinsed plastic syringes,
except in the SI, SoGC, and DDL incubations in July 2011, where
high oxygen consumption shortened the incubation period to
12 h and we limited water sampling to the beginning and
end of the incubations. We immediately replaced withdrawn
water with an equivalent volume of bottom water of known
oxygen and nutrient concentrations. Syringes and sample
containers were initially rinsed with ∼5 mL of sample water.
At each sampling time we collected and stored two 25-mL
water samples in acid-rinsed twist-cap 30-mL HDPE bottles.
Upon collection, water samples were immediately placed in
an upright position at −20◦C until analyzed. We determined
the concentrations of nutrients (NH+

4 , NO
−

3 , NO
−

2 , Si(OH)4,

PO3−
4 ) in the water samples using a Technicon Segmented

Flow AutoAnalyzer II, following the method recommended
by Technicon Industrial Systems (1973, 1977, 1979) with
the exception of ammonia (hereafter referred as ammonium)
analysis, which followed Kerouel and Aminot (1997). Nutrient
fluxes were determined from the slope of the linear regression of

TABLE 1 | Station names, sampling dates, number of incubations performed, locations, and environmental variables measured.

Station Date Inc

(#)

Lat (N) Long (W) Depth

(m)

Temp

(◦C)

Bottom

DO

(mL−1)

OPD

(mm)

Chl a:

Phaeo

C:N Porosity

(%)

MGS

(µm)

Prok.

abun.

(cells

g−1)

SI 07-2011 3 48◦39.25 123◦29.20 97 8.72 1.51 4.7 0.23 8.42 66.28 78.62 3.45E+08

SI 09-2013 4 48◦39.25 123◦29.17 97 9.24 0.97 3.7 0.23 10.01 73.48 87.76 7.66E+07

SoGE 05-2011 4 49◦02.56 123◦19.15 173 8.25 4.88 13.0 0.22 9.51 64.31 87.29 1.01E+08

SoGE 09-2013 4 49◦02.55 123◦18.97 167 9.65 2.42 5.8 0.18 34.89 64.40 112.86 7.57E+07

SoGC 07-2011 3 49◦02.42 123◦25.51 301 8.63 2.86 12.0 0.21 8.77 83.64 27.30 9.07E+07

DDL 07-2011 3 49◦05.05 123◦19.75 107 8.91 3.23 14.7 0.59 16.97 60.79 95.66 1.48E+08

Inc #, incubation number; Lat, latitude; Long, longitude; Depth, sample depth; Temp, temperature; Bottom DO, dissolved oxygen concentration at ∼ 1m above bottom; OPD, oxygen

penetration depth; Chla:Phaeo, chlorophyll a to phaeopigment ratio; C:N, carbon to nitrogen ratio; porosity, sediment porosity; MGS, sediment mean grain size and Prokabun, prokaryotic

cell abundance.
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nutrient concentrations vs. time of incubations after correction
for the solute concentration in replacement water (see example
in Appendix 1 of Supplementary Material).

Macrofaunal Identification and Taxonomic
Diversity
After incubations, sediment cores were sectioned onto 0–2, 2–
5, and 5–10 cm layers and processed over a 300 µm sieve prior
to preservation in a 4% seawater-formaldehyde solution and
subsequent transfer to 70% ethanol for identification. Specimens
were sorted under a dissection microscope in the laboratory
and identified to the lowest possible taxonomic level, usually
to species. We determined abundance (N) for each taxon
and taxonomic richness (S) as the number of taxa present
in each sediment core. We also determined diversity indices
including Simpson’s index (Simp or 1 - D), Pielou’s evenness
(J’), Rarefaction (es25), and the Shannon-Wiener index (H’) for
each sediment core. All analyses presented in this study were
performed on data from whole cores (0–10 cm), not in separate
layers. Diversity indices were computed in R (RCore Team, 2016)
using the package “vegan” (Oksanen et al., 2013).

Biological Traits and Functional Diversity
We selected five biological traits and 24 modalities based on
their presumed influence on benthic fluxes and availability
for all taxa (Table 2). These reflected behavior (bioturbation
mode, feeding type, habitat, and mobility) and morphology
(size). Biological traits were collected for each taxon from
published sources (MarLIN, 2006; Macdonald et al., 2010; Link
et al., 2013b; Queirós et al., 2013; Jumars et al., 2015; WoRMS
Editorial Board, 2015). When biological traits information was
unavailable for a specific taxon, we obtained information from
one taxonomic rank higher. For example, the absence of species-
specific information on the feeding type of the crustacean
Diastylis abboti required us to use genus-level information.
We used fuzzy coding that allowed more than one functional
trait for a given taxon for each category, and scored from
0 to 1 based on the extent to which they displayed each
trait. For example, the polychaete Paraprionospio pinnata can
alternate between filter and surface deposit feeding depending on
environmental conditions, so these two traits each scored 0.5 for
the feeding type category. Trait category scores for each taxon
and taxa abundance matrices were used to obtain functional
diversity (FD) indices using the “FD” package (Laliberté and
Legendre, 2010) in R (R Core Team, 2016). We then computed
the following multidimensional FD indices for use in our
analyses: functional richness (FRic), functional evenness (FEve),
functional divergence (FDiv) (Villéger et al., 2008), functional
dispersion (FDis) (Laliberté and Legendre, 2010), Rao’s quadratic
entropy (RaoQ) (Botta-Dukat, 2005), and an index of functional
composition, the community-level weightedmeans of trait values
(CWM) (Lavorel et al., 2008). In the statistical analyses described
below, we included CWM as diversity variables because they
provide measures of the range and distribution of functional
traits value in sediment cores, and therefore represent good
indicators of functional diversity (Lavorel et al., 2008).

TABLE 2 | Biological traits used in the functional diversity analysis.

Category Level

Feeding type C = Carnivore/predator

Dt = Detritus feeder

F = Filter/suspension feeder

Fn = Funnel feeder

G = Grazer

O = Omnivore

P = Parasitic

Sc = Scavenger

SD = Surface deposit feeder

SSD = Sub-surface deposit feeder

Size S = Small (<1 cm)

M = Medium (1–5 cm)

L = Large (>5 cm)

Reworking (Ri) Epifauna

Surficial modifier

Up/Down conveyor

Biodiffusor

Mobility (Mi) Live in fixed tube

Limited movement

Slow movement in sediment matrix

Free movement in burrow system

Habitat Epifauna

Infauna

Pelagic

Oxygen Penetration Depth (OPD)
Immediately after recovery of the ROV we profiled oxygen
concentrations as a function of depth in the sediment for one
sediment core from each site. In each core, we performed three
replicate profiles with Unisense oxygen microsensors (500 and
250µm tip sizes in 2011 and 2013, respectively) in vertical
increments of 1000 and 500 µm in 2011 and 2013, respectively.
We defined the oxygen penetration depth (OPD) in the sediment
as the mean depth at which oxygen concentration decreased
below the suboxic level of 5µmol L−1 (Thibodeau et al., 2010).

Prokaryotic Cells
We subcored the sediment cores with a cut off 10-mL
sterile plastic syringe at depths of 0–2, 2–5, and 5–10 cm to
sample sediment prokaryote abundances (hereafter abbreviated
as prokabun). We placed 1mL of sediment from each depth in
a 20-mL scintillation vial containing 4mL of a filtered-sterilized
2% seawater-formalin solution. Samples were frozen at −20◦C
until analysis. Sediment prokaryote abundance and biomass
were determined following Danovaro (2010). In the statistical
analyses described below, we included prokaryotic abundance
as an environmental variable because we obtained site averages
from one sample at each site and sampling time (i.e., core) as
with other environmental variables; furthermore, we considered
prokaryotic abundance a critical component of the biological
environment for macrofauna.
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Sediment Properties
We sectioned the upper 2-cm layer of sediment from one
sediment core using inert plastic spatulas to characterize
sediment properties. Each sediment layer was carefully placed
in a Whirl-Pak bag and stored at −20◦C until analyzed. We
determined total organic matter (TOM) by ignition loss, and
water content as the difference between the wet and dry sediment
weights divided by the sediment wet weight (Danovaro, 2010).
Sediment porosity and dry bulk density were calculated using
formulas from Avnimelech et al. (2001) with a particle density of
2.65 g cm−3. We determined granulometric properties (sediment
mean grain size; MGS) with a HORIBA Partica LA-950 laser
diffraction particle size analyzer (Horiba Ltd. Kyoto. Japan). No
sieving was performed prior to analysis because no large particles
were present in our sediment samples. Samples were prepared
for analyses of total organic carbon (TOC) and total nitrogen
(TN) by drying for 24 h at 80◦C, fuming with 1 M HCl for 24 h,
and drying again for a minimum of 24 h. Finally, approximately
2mg of sediment samples were weighed into a tin capsule and
stored at 80◦C until analyzed in a Perkin-Elmer 2400 Series II
CHN analyzer. We used the carbon to nitrogen (C:N) mass ratio
as a measure of organic matter nutritional quality on a long time
scale (Le Guitton et al., 2015), where lower ratios indicate fresher
and higher quality organicmatter (Vidal et al., 1997; Godbold and
Solan, 2009).

Chlorophyll-a and Phaeopigments
Concentrations of chlorophyll-a (chl a) and phaeopigments
(phaeo) were quantified fluorimetrically following a modified
version of Riaux-Gobin and Klein (1993). We placed 1–2 g of wet
sediment in 90% acetone (v/v) at 4◦C for 24 h and then analyzed
the supernatant prior to and following acidification using a
Turner Designs 10-AU-005-CE fluorometer (Turner Designs.
Sunnyvale. USA). The remaining sediment was dried at 60◦C for
24 h and weighed in order to standardize pigment concentrations
per gram of sediment. The chl a:phaeo ratio provides a measure
of organic matter quality on a short time scale (Le Guitton
et al., 2015), where higher ratios indicate more recently settled
phytoplankton particles and therefore fresher organic matter
(Morata et al., 2011; Suykens et al., 2011).

Statistical Analyses
We examined spatial variation in benthic fluxes and taxonomic
community composition using a permutational multivariate
analysis of variance (PERMANOVA) performed with 9999
random permutations of appropriate units (Anderson, 2001;
McArdle and Anderson, 2001). Previous benthic flux analyses
(Belley et al., 2016) and preliminary analyses of benthic
communities indicated no significant temporal variation at SI
(July 2011 and September 2013) and SoGE (May 2011 and
September 2013). We therefore grouped data from a single
site collected on the two different occasions (i.e., SI and
SoGE). Two separate analyses addressed two research questions:
(1) a one-way PERMANOVA design using all benthic flux
data with the factor “Site” (four levels: DDL, SI, SoGC and
SoGE) tested for benthic flux spatial variation among sites,
and (2) a one-way PERMANOVA design using all macrofaunal

taxonomic data with the factor “Site” (four levels: DDL, SI,
SoGC, and SoGE) tested for spatial variation in macrofaunal
community composition among sites. Taxa that appeared only
once were removed from the latter analysis (Clarke and
Warwick, 1994), although this removal had little effect on
overall patterns. We calculated the resemblance matrices from
Euclidean distances of standardized benthic flux and from Bray-
Curtis distances of fourth root transformed benthic community
data. This transformation was applied to bring all taxa to a
similar relative scale of abundance and therefore, increase the
contribution of rare species (Anderson, 2001; Anderson et al.,
2008). We verified homogeneity of multivariate dispersion using
the PERMDISP routine (Anderson et al., 2008). When there
were too few possible permutations for a meaningful test, we
calculated a p-value based on 9999 Monte Carlo draws from the
asymptotic permutation distribution (Terlizzi et al., 2005). We
further analyzed significant terms within the full models using
appropriate pair-wise comparisons. Multivariate patterns were
visualized using non-metric multidimensional scaling (nMDS)
ordinations of similarity matrices, and similarity percentage
analyses (SIMPER) determined which taxa contributed most to
dissimilarity between sites (Clarke, 1993). We completed nMDS,
SIMPER, PERMANOVA, and PERMDISP analyses in PRIMER
6 (Clarke and Gorley, 2006) with the PERMANOVA+ add-on
(Anderson et al., 2008).

We used two separate redundancy analyses (RDA) to
identify the environmental variables (RDA #1) and functional
diversity indices (RDA #2) that best explained benthic flux
variation. RDA, a multivariate (i.e., multi-response) analysis,
combines regression, and principal component analysis (PCA)
and offers a key advantage over regression alone in that it
determines which predictor variables explain the most variation
in multiple response variables (Legendre and Legendre, 2012).
First, RDA performs a multivariate multiple linear regression
followed by a PCA of the fitted values. Therefore, it allows
identification of linear combinations of variables that best
explain the response matrix variation. Finally, RDA tests the
significance of the explained variation using a permutation
procedure (Legendre and Legendre, 2012). We used stepwise
selection with a significance level of 0.05 and 9999 random
permutations to obtain the model with the most parsimonious
set of variables. This procedure can deal with a large number
of explanatory variables by allowing only the selection of
explanatory variables with the strongest contributions (Legendre
and Legendre, 2012). Predictor variables containing outliers
were transformed, and highly correlated (r > 0.85) predictor
variables were excluded from the analyses (RDA #1 =

chlorophyll-a, phaeopigments, total organic matter, nitrogen,
water content, bulk density, and prokaryotic biomass; RDA #2
= Shannon-Wiener index, taxonomic richness, Rao’s quadratic
entropy, community-level weighted mean of epifauna). The
optimal environmental model selection included 11 predictor
variables: bottom water temperature, salinity, and dissolved
O2 concentration, seafloor depth, sediment O2 penetration
depth, chl a:phaeo ratio, carbon content, carbon:nitrogen ratio,
porosity, mean grain size, and prokaryotic abundance. To
correct for data skewness, we applied a natural logarithmic
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(Ln) transformation to three predictor variables (chl a:phaeo,
carbon:nitrogen and prokaryotic abundance). The optimal
diversity model selection included 25 predictor variables:
abundance, Simpson’s diversity, Pielou’s evenness, Expected
Species, functional richness, functional evenness, functional
divergence, functional dispersion, community weighted means
of carnivores, omnivores, scavengers, grazers, detritivores, filter
feeders, surface, and sub-surface deposit feeders, funnel feeders,
and predators, small, medium, and large-sized organisms,
surficial modifiers, organisms with limited and slow movement
through sediment, and infauna. We further analyzed multi-
collinearity of the predictor variables from the full models with
a variance inflation factor (VIF) test using the “vif ” function
from the “car” package (Fox and Weisberg, 2011), removing
predictor variables with the highest VIF so that the best model
selected contained only predictor variables with VIF < 5 and
therefore, removed the negative effect of multi-collinearity on
our results (Zuur et al., 2009). We verified the homogeneity
of multivariate dispersion assumption using the PERMDISP
routine (Anderson et al., 2008). Contributions of each predictor
variable to benthic fluxes reported here are based on R2 and not
on Adj. R2 calculations.

Finally, we performed variation partitioning (Legendre
and Legendre, 2012) to determine relative contributions of
environmental variables and functional diversity indices to
benthic flux variation. Variation partitioning analysis allowed
quantification of the portion of benthic flux variation explained
by the two subsets of explanatory variables (diversity and
environmental subsets) when controlling for the effect of the
other subset. This is done by: (1) performing a RDA of the flux
by diversity data (same steps as described for RDA#2 above), (2)
performing a RDA of the flux by environmental data (same steps
as described for RDA#1 above), (3) performing a RDA of the flux
by diversity and environmental data, (4) computing the adjusted
R2 of the three RDAs, and finally (5) computing fractions of
adjusted variation by subtraction (Legendre and Legendre, 2012).
Variation partitioning analysis is most often used when variables
included in each RDA models differ at different scales (see
examples in Legendre and Legendre, 2012).

We completed RDA and variation partitioning analyses in R
(R Core Team, 2016) using the package “vegan” (Oksanen et al.,
2013) and calculated the contribution of each predictor variable
to benthic flux variation in PRIMER 6 (Clarke and Gorley, 2006)
with the PERMANOVA+ add-on (Anderson et al., 2008).

RESULTS

A total of 21 incubations spanned four different sites and three
different time periods (Appendix 2 in Supplementary Material).
In total, we identified 1942 specimens representing 119 different
taxa (Appendix 3 in Supplementary Material). The most diverse
and abundant animal Class was Polychaeta; the most abundant
species,Mediomastus cf. californiensis (Capitellidae), occurred in
highest densities in SoGE cores. The spionid Prionospio lighti also
occurred in high densities, but mostly in the Strait of Georgia
sites (i.e., DDL, SoGC, and SoGE). Malacostraca was the second

most diverse and abundant animal Class;Cumella sp. (Cumacea),
the most abundant taxon, occurred only at SoGE (Appendix 3
in Supplementary Material). SIMPER analysis revealed greatest
dissimilarity between the SI benthic community and other
sites (average dissimilarity of 73.8, 73.9, and 74.4% for SoGE,
SoGC, and DDL, respectively). The taxa that contributed most
to these dissimilarities were Cumella sp. (5.7% contribution),
Levinsenia gracilis (5.9% contribution), and Prionospio lighti
(6.4% contribution), which were more abundant at SoGE, SoGC,
and DDL, respectively.

PERMANOVA indicated significant differences in benthic
community assemblages among the four sampling sites and thus
significantly greater variability in assemblages among sites than
within sites [P (perm) < 0.01, Table 3]. Pair-wise comparisons
showed significantly different benthic communities at each of our
sampling sites [SI and SoGE, P (perm) < 0.001; SI and SoGC,
P (perm) = 0.010; SI and DDL, P (perm) = 0.008; SoGE and
SoGC, P (perm) = 0.006; SoGE and DDL, P (perm) = 0.005;
SoGC and DDL, P (MC)= 0.039] (Figure 2A).

PERMANOVA indicated significant differences in benthic
fluxes among the sampling sites and also significantly greater
variability in flux among sites than within sites [P (perm) < 0.01,
Table 3]. Pair-wise comparisons showed that benthic fluxes at
SoGE differed significantly from fluxes measured at all the other
sites [DDL, P (perm) = 0.0073; SI, P (perm) = 0.0002; SoGC,
P (perm) = 0.0345]. Pair-wise comparisons also showed that
benthic fluxes at DDL differed significantly from fluxes measured
at SoGC [P (MC) = 0.0339] (Figure 2B). Moreover, the nMDS
plot clearly showed greater similarity in benthic fluxes within
than across sites (Figure 2B).

Environmental Variables Explaining
Multivariate Benthic Flux Variation
The best model that emerged from our redundancy analysis
between benthic fluxes and environmental variables explained
58.3% (R2 = 0.583, Adj. R2 = 0.444) of the total multivariate
benthic flux variation and included five environmental variables
(Appendix 4 in Supplementary Material). Chl a:phaeo ratio
contributed most to the variation (18.8%), followed by

TABLE 3 | Permutational analysis of variance (PERMANOVA) results

testing the effect of site on benthic communities based on Bray-Curtis

similarity matrices performed on fourth root transformed data, and on

benthic fluxes based on Euclidean similarity matrices performed on

normalized data.

Source of variation df MS Pseudo-F P (perm)

BENTHIC COMMUNITY TAXONOMIC COMPOSITION VARIATION

Site 3 7815.9 6.921 0.0001

Residuals 17 1129.3

Total 20

BENTHIC FLUX VARIATION

Site 3 16.141 3.8335 0.0001

Residuals 17 4.2104

Total 20
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FIGURE 2 | Non-metric multi-dimensional scaling (nMDS) plot of (A)

benthic community taxonomic assemblages at each study site based on

Bray-Curtis similarity matrices performed on fourth root transformed data, and

(B) benthic fluxes at each study site based on Euclidean similarity matrices

performed on normalized data.

prokaryotic abundance (14.5%), depth (8.8%), temperature
(8.8%), and porosity (7.4%) (Appendix 4 in Supplementary
Material).

The first and second axes of the redundancy model accounted
for 27.3 and 14.6% of total flux variation respectively (Appendix 5
in SupplementaryMaterial). The first axis mostly separated SoGE
from SoGC, DDL, and SI fluxes (Figure 3A). Chl a:phaeo ratio,
prokaryotic abundance and depth contributed primarily to the
first axis and explained 46.9% of fitted flux variation (Figure 3A,
Appendix 5 in Supplementary Material). In explaining 25.0% of
the fitted variation in fluxes, the second axis mostly separated
DDL from SoGE, SoGC, and SI fluxes (Figure 3A) and correlated
most strongly with prokaryotic abundance, and to a lesser extend
with the chl a:phaeo ratio and temperature (Figure 3A, Appendix
5 in Supplementary Material).

Functional Diversity Indices and
Multivariate Benthic Flux Variation
The best model that emerged from our redundancy analysis
between benthic fluxes and functional diversity indices explained
67.8% (R2 = 0.678, Adj. R2 = 0.414) of total multivariate benthic
flux variation and included nine functional diversity indices
(Appendix 6 in Supplementary Material). Functional richness
(FRic) contributed most to the variation (19.7%), while the eight
other functional diversity indices contributed to a lesser extent,

with contributions ranging between 4.5 and 8.3% (Appendix 6 in
Supplementary Material).

The first and second axes of the redundancy model accounted
for 30.2 and 19.6% of total flux variation respectively (Appendix
7A in Supplementary Material). Again, the first axis mostly
separated SoGE from SoGC, DDL, and SI fluxes (Figure 3B).
Functional richness (FRic), community weighted means of
sub-surface deposit feeders (CWM.Feed.SSD), abundance (N)
and Simpson’s diversity (Simp) contributed primarily to the
first axis and explained 44.6% of the fitted flux variation
(Figure 3B, Appendices 7A,B in Supplementary Material). As
with the first axis, the second axis mostly separated SoGE
and SoGC from DDL and SI fluxes (Figure 3B), explaining
28.9% of the fitted variation in fluxes and correlating most
strongly with community weighted means of surficial modifiers
(CWM.Ri.S.mod), Simpson’s diversity (Simp) and functional
richness (FRic) (Figure 3B, Appendices 7A,B in Supplementary
Material).

Benthic Flux Variation Partitioning
Variation partitioning analysis of benthic fluxes between
environmental variables and functional diversity indices
identified by RDA indicated that environmental variables and
functional diversity indices together explained 62.9% of benthic
flux variation (R2 = 0.889, Adj. R2 = 0.629) (Figure 4, Appendix
8 in Supplementary Material). Environmental variables alone
explained 21.4% of benthic flux variation, whereas functional
diversity indices alone explained 18.5%; environmental variables
and functional diversity indices shared 22.9% of the variation
(Figure 4, Appendix 8 in Supplementary Material).

DISCUSSION

In this study we determined the environmental variables and
functional diversity indices influencing benthic flux rates using
redundancy analyses, and further evaluated their contributions
using variation partitioning analysis. Our study is the first to
use a powerful tool—variation partitioning analysis—to examine
the contribution of environmental variables and functional
diversity indices to multivariate flux rates and organic matter
remineralization, in our case for soft sedimentary habitats.
Our results show that environmental variables and functional
diversity indices collectively explain the majority of the flux
variation in our system and that they play a similar role in the
control of flux rates. Furthermore, our results also indicate that
environmental variables and functional diversity indices share
a large proportion of the flux variation, which demonstrates
the close links between the environment and resident species in
delivery of key ecosystem functions.

Benthic Fluxes and Benthic Community
Spatial Variation
Most studies have investigated the effects of abiotic and biotic
factors influencing ecosystem processes and functions separately,
but relatively few have attempted to separate the contribution
of abiotic and biotic factors in the field (Hiddink et al., 2009;
Queirós et al., 2011; Godbold, 2012; Braeckman et al., 2014;
Strong et al., 2015). Our analyses demonstrate that despite
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FIGURE 3 | Plot of the redundancy analysis (RDA) models of (A) environmental variables, and (B) functional diversity indices best explaining variation in Salish

Sea benthic fluxes measured in May/July 2011, and September 2013.

significantly different macrofaunal communities at each of our
sampling sites, differences in benthic fluxes were less consistent.
On the one hand, SoGE fluxes differed significantly from the
three other sites, and DDL fluxes also differed significantly
from SoGC. On the other hand, SI fluxes were similar to those
at DDL and SoGC. A previous study reported no consistent
changes in ecosystem function with changes in functional
diversity (Frid and Caswell, 2015) and we also found consistent
differences in benthic communities at our study sites but not in
benthic flux rates. Therefore, the specific attributes of our study
system provide an opportunity to evaluate the contribution of

environmental variables and functional diversity to benthic flux
variation. Because communities consistently varied among all
sites whereas functions did not, this might suggest that between-
site differences in environmental variables and biodiversity have
their own influence on ecosystem functions as reported by Strong
et al. (2015).

Functional Diversity Effects on Multivariate
Benthic Flux Variation
Based on the functional traits and modalities selected, functional
richness (FRic), defined as “the amount of functional space filled
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FIGURE 4 | Venn diagram illustrating results of variation partitioning of

benthic fluxes explained by environmental variables and functional

diversity (FD) indices. X1 = environmental variables and X2 = functional

diversity indices. Numbers correspond to variation explained by different

fractions: environmental variable only = 0.21, FD indices only = 0.19, and

intersection of environmental variables and functional diversity indices = 0.23.

by the community” (Villéger et al., 2008), influenced multivariate
benthic flux variation more than any other functional diversity
index, alone explaining 19.7% of the variation. This result
indicates the primary importance of functional trait richness for
benthic fluxes as suggested by Braeckman et al. (2014) for fine
sandy sediments in the Southern North Sea. Our redundancy
analysis indicated that, with the exception of ammonium, high
fluxes of O2 and nutrients characterized sediment cores with
the highest functional richness (FRic) (e.g., SoGE, Figure 3B).
Similarly, we found positive relationships between functional
richness and nutrient effluxes, especially phosphate and silicate,
where efflux rates increased with increasing functional richness
(Appendix 9 in Supplementary Material).

The larger influence of functional richness (FRic) on benthic
flux variation than measures of species diversity (Simp, 5.0%)
and abundance (N, 4.5%), suggests that a community composed
of a few species in relatively low abundance could match
or enhance benthic flux rates relative to another community
comprised ofmore species in higher abundance if their functional
trait diversities are similar (similar FRic). In our study, lower
abundance (Mean± SE= 28± 9, Appendix 10 in Supplementary
Material) and Simpson’s diversity (0.88 ± 0.3, Appendix 10 in
Supplementary Material) at SI compared to DDL (N = 116 ±

44 and Simp = 0.93 ± 0.01, Appendix 10 in Supplementary
Material) but similar functional richness (SI= 21.57± 25.50 and
DDL = 19.13 ± 6.52, Appendix 10 in Supplementary Material)
corresponded to similar benthic fluxes, as identified by our
PERMANOVA. This result could have important implications
for future studies and conservation efforts because it suggests
greater importance of richness of functional traits (i.e., FRic)
than species diversity (i.e., Simpson’s diversity index) and species
abundance in maintaining benthic ecosystem functioning (i.e.,
benthic fluxes). Similarly, a recent review of the biodiversity-
ecosystem functioning (BEF) literature (Strong et al., 2015) also
concluded that measures of functional diversity produced better
BEF relationships compared to other measures of biodiversity
such as species richness. Finally, a recent study using coastal
marine benthic macrofaunal data from the Skagerrak-Baltic
Sea region showed that although functional diversity usually

decreases with decreasing taxonomic richness, in some cases
functional diversity may remain high even at low taxonomic
richness, suggesting that ecosystem processes and functions
could potentially be maintained at lower taxonomic richness
but similar functional diversity (Törnroos et al., 2015). This
finding led them to suggest the primary importance of functional
characteristics of species in maintaining ecosystem functions.

Our redundancy analysis indicated the importance of
other functional diversity indices which demonstrate the
important contribution of bioturbation and bio-irrigation of
the sediment matrix to benthic flux variation. Functional
diversity indices related to reworking of the sediment matrix
(i.e., bioturbation), namely the community weighted means of
taxa with limited (CWM.Mi.Lmt) and slow (CWM.Mi.Slow)
movement through the sediment matrix, and of surficial
modifiers (CWM.Ri.S.mod) explained 8.3%, 6.0% and 4.5%
of benthic flux variation, respectively. Particle reworking and
solute transport caused by infaunal movement through surface
sediments are also known to increase microbial activities, organic
matter degradation rates, and nutrient recycling (Aller et al.,
2001). In their study, Lohrer et al. (2004) also showed a large
positive effect of bioturbation activities of spatangoid urchins
on benthic-pelagic fluxes. Moreover, the sediment resuspension
created by groundfish activities (primarily the flatfish Lyopsetta
exilis) plays a major role in ammonium, phosphate, and silica
cycles in Saanich Inlet, with a lesser role for infauna (Yahel et al.,
2008; Katz et al., 2009). In our study, many taxa contribute to
bioturbation activities and increased benthic fluxes cannot be
attributed to a single species. Nonetheless, a small subset of traits
related to bioturbation activities clearly exhibited an important
positive influence on benthic flux rates. In particular, these traits
correspond to the taxa contributing the most to dissimilarity
between SI and the other sites (SoGE, SoGC, and DDL) identified
in our SIMPER analysis. For example, Cumella sp. (slow
movement through the sediment and surficial modifier) played
a particularly important role in differentiating SoGE, whereas
L. gracilis (slow movement through the sediment and surficial
modifier) differentiated SoGC, and P. lighti (limited movement
through the sediment) differentiated DDL. Therefore, our results
suggest that, among others, these taxa contributed not only to
between-site differences in fauna but also to differences in benthic
flux variation documented by our redundancy analysis. When
combining the reworking and mobility categories, which both
contribute to bioturbation, our redundancy analysis identified
surface modifiers as our bioturbation trait least affecting
benthic flux variation, a finding consistent with previous studies
suggesting that surficial modifiers have the lowest impact on
bioturbation among functional groups other than sediment
stabilizers (Queirós et al., 2013). Interestingly, surficial modifiers
comprised 69 of the 135 taxa (51.1%) identified in our study, with
particularly high abundances at SoGE and SoGC (Appendix 10 in
Supplementary Material) where we recorded the highest effluxes
of phosphate and silicate. Our results suggest that despite their
modest effect on bioturbation, the high abundances of surficial
modifiers positively affected (though explaining only 4.5% of
benthic flux variation) phosphate and silicate effluxes at SoGE
and SoGC. Thus, weak bioturbators may contribute significantly
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when present in sufficiently high abundances, in this case at
SoGE and SoGC where high functional richness in particular
contributed to elevated effluxes of phosphate and silicate. More
generally, Godbold and Solan (2009) showed that increased
biodiversity (i.e., species richness) increased bioturbation activity
(i.e., sediment mixing depth) in sediments near a fish farm in
Scotland. Similarly, our results indicate that increased presence
of bioturbating taxa led to increases in ecosystem processes
measured (i.e., benthic flux rates; Figure 3B).

Functional diversity indices related to biological irrigation
of sediment (i.e., bio-irrigation), namely the community
weighted mean of funnel feeders (CWM.Feed.Fn) and sub-
surface deposit feeders (CWM.Feed.SSD) explained 8.1 and
6.0% of benthic flux variation, respectively. Many taxa were
classified as sub-surface deposit feeders, including Cumella
sp. and L. gracilis identified as particularly important in
differentiating SoGE and SoGC, respectively. However, the
presence of key taxa and their specific functions apparently
disproportionately (relatively to their abundance) impacted flux
rates (Appendices 6,7 in Supplementary Material). For instance,
funnel feeders, a sub-group of deposit feeding animals that feed
on surficial sediments but from below the sediment surface
(Jumars et al., 2015), comprised only six polychaete taxa
spanning two families (Maldanidae: Maldanidae spp., Maldane
sp., Maldane sarsi, Praxillella sp., and Praxillella gracilis, and
Pectinariidae: Pectinaria californiensis) represented by a total
of only 12 specimens in our sediment cores. Yet, these taxa
occurred mainly at SoGE (Appendix 10 in Supplementary
Material), where we recorded particularly large silicate and
phosphate releases, as well as nitrite intakes. Tube-building
maldanids (i.e., Praxillella sp.) in particular can rapidly subduct
freshly deposited organic matter that becomes available for
deep-dwelling microbes and other infauna, and consequently
enhance organic matter remineralization (Levin et al., 1997).
Maldanids were therefore proposed as geochemical keystone
species because of their feeding (Levin et al., 1997) and
irrigation (Waldbusser et al., 2004) activities. The analysis
of the three-dimensional organization of M. sarsi tubes also
revealed increased concentrations of Fe, Mn, organic carbon,
and bacteria, potentially resulting from tube irrigation, mucous
secretion, and feeding activities (Dufour et al., 2008). Our
results and previous studies point to the primary importance
of functional traits related to bio-irrigation of sediments for
the biogeochemical cycling of nutrients in sedimentary habitats.
Moreover, these results point to the disproportionate importance
(relative to their abundance) of some taxa and associated traits
in sustaining ecosystem functions. Although our results show
that overall, functional diversity influences benthic flux variation
most strongly, they also suggest a strong identity effect, where a
small number of taxa (i.e., six funnel feeder taxa) substantially
impact ecosystem functions (Loreau et al., 2001; Strong et al.,
2015).

Mobile bioturbators are known to increase bio-irrigation
(Woodin et al., 2010) and organisms sediment reworking
activities can also affect fluid transport within the sediment
(Meysman et al., 2006). In our study, some taxa clearly influenced
both bioturbation (i.e., particle mixing) and bio-irrigation (i.e.,

fluid exchange). For example, Cumella sp. and L. gracilis, which
differentiated SoGE and SoGC, respectively, are sub-surface
deposit feeders (a bio-irrigation trait) that move slowly through
the sediment and act as surficial modifiers (bioturbation traits).
This result suggests that some traits related to bioturbation and
bio-irrigation can covary (e.g., increases in L. gracilis mean an
increase in the following traits: sub-surface deposit feeders, slow
movement through the sediment, and surficial modifiers). Taken
together, biological sediment reworking and irrigation activities
explained 32.9% of variation in benthic flux. These results mirror
previous studies indicating that biological mixing of sediments
and solute transport during feeding and irrigation stimulates
microbial activity and organic matter remineralization (Aller and
Aller, 1998; Aller, 2014).

Environmental Variables Explaining
Multivariate Benthic Flux Variation
Of the environmental variables we examined, the chl a:phaeo
ratio most strongly influenced benthic fluxes (i.e., 18.8%); this
ratio reflects organic matter quality on a short time scale of
days to weeks (Veuger and van Oevelen, 2011; Le Guitton
et al., 2015). Prokaryotic cell abundance was the second most
important environmental variable, explaining 14.5% of the
variation in flux. Redundancy analysis indicated that high fluxes
of ammonium (e.g., DDL) and nitrite (e.g., SI) characterized
sites with the highest chl a:phaeo ratio and abundance of
prokaryotic cells (Figure 3A). Similarly, most environmental
variables explaining benthic flux variation identified in our
study (i.e., chl a:phaeo ratio, temperature, and porosity) were
previously reported as strong predictors for this region (see
Belley et al., 2016). However, the redundancy analysis performed
in our study identified prokaryotic abundance as an important
variable explaining benthic flux variation not identified in our
previous study (Belley et al., 2016). The fact that prokaryotic
abundance remained an important variable explaining single flux
variation (from multiple linear regression results) for all but
silicate fluxes over a broad geographic area in our previous study
(Belley et al., 2016) (i.e., Salish Sea but also sites in the open
waters of the Northeast Pacific) can explain this discrepancy. We
included water depth in our analysis because it often correlates
well with other environmental variable known to influence
benthic flux rates, such as organic flux to the seafloor (Jahnke,
1990; Berelson et al., 1996) and temperature (Hargrave, 1969;
Cowan et al., 1996; Alonso-Pérez and Castro, 2014). Our model
specifically accounted for differences in water depth, which
explained 8.8% of the variation in benthic flux, and high fluxes
of O2, nitrate, phosphate, and silicate (e.g., SoGE) generally
characterized deeper sites. Overall, our results align with previous
studies that reported increased fluxes of seafloor oxygen and
nutrients with increased flux of fresh organic matter following
phytoplankton blooms (Whitledge et al., 1986) and increased
microbial abundance (Pfannkuche, 1993; Gooday, 2002).

Benthic Flux Variation Partitioning
Environmental variables and functional diversity indices
collectively explained 62.9% of variation in benthic flux at our
study sites. Environmental variables alone explained 21.4%
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of this variation, functional diversity indices alone explained
18.5%, whereas the two variable groups shared 22.9% of the
variance. These results indicate that the abiotic and biotic
variables measured in our study explained the majority of the
variation in benthic flux, and that environment and macrofaunal
functional diversity weigh almost equally in contribution. The
meta-analysis conducted by Godbold (2012), who reported
positive and similar abiotic and biotic (i.e., species identity and
species richness) effects on ecosystem functions measured in the
majority of experiments included in their analysis, support our
results. However, the many field experiments that manipulated
diversity and used species that comprised only a fraction of
the natural community usually report higher influence of
environmental variables on ecosystem functions. Godbold and
Solan (2009) and Duffy (2009) propose that including a low
number of species in manipulative experiments reduces the
observed effect of biodiversity on ecosystem functions relative to
environmental variables. Based on our results, and those from
the few similar observational studies, we also advocate the use
of natural communities in future studies to fully appreciate the
full effect of biodiversity on ecosystem functioning. Although we
acknowledge that correlative and regression analysis do not fully
demonstrate causality, which requires manipulative experiments,
we believe that mensurative data such as those we present here
should inform manipulative experiments (which bring other
limitations), in order to focus promising experimental directions.

We also measured many abiotic variables at the scale of
sites (<25 m) and biotic variables at the scale of cores (10 s
of cm). Although this approach may have underestimed small-
scale (within site) variation in environmental variables relative to
biotic variables, we argue that most abiotic variables measured
in our study vary little in magnitude in any consistent way,
noting the homogenizing effect of tidal exchange over the small
(25 × 25 m) areas sampled within our study sites (e.g., bottom
water temperature, dissolved O2 concentration, bottom depth).
Admittedly, our RDA models identified five environmental and
nine diversity variables best explaining benthic flux variation,
and the inclusion of a larger number of diversity variables
arguably may have increased the contribution of diversity
variables to explaining the response variation. However, the
stepwise selection of explanatory variables in both RDAs was
based on their significance in explaining benthic flux variation.
Therefore, both RDA models retained only significant predictors
of benthic flux variation. Moreover, because we measured the
environmental and diversity variables recognized by a wide range
of studies as those most important for benthic fluxes, we believe
our results provide an accurate estimate of the contributions of
environmental and diversity variables to benthic flux variation
at our study sites. Finally, examination of the stepwise analysis
indicates that the top five diversity variables alone explained
44.2% of the variation in fluxes (based on R2 values from RDA
#1), which is roughly comparable to the 58.3% explained by the
environmental variables (based on R2 values from RDA #2).

The large proportion (22.9%) of the explained variation shared
between environmental variables and functional diversity indices
demonstrates the close interactions between resident species
and their environment. Environmental variables greatly impact

benthic community composition, however, the community also
plays an important role in controlling ecosystem functioning.
For example, the rate of particulate organic matter export to
the seafloor strongly impacts benthic community composition
(Wei et al., 2010). Decreases in dissolved oxygen concentration
can also modify benthic community composition and can
lead to lower sediment bioturbation and bio-irrigation rates
(Levin et al., 2009; Belley et al., 2010; Rabalais et al., 2010)
which, in turn, can decrease benthic flux rates (Aller, 1982;
Link et al., 2013b; Aller, 2014). With increasing anthropogenic
pressures on marine ecosystems (Halpern et al., 2008, 2015)
and resulting decreases in marine biodiversity (Worm et al.,
2006), the important proportion of the explained variation
shared between the environment and the species inhabiting the
sediments point to the need to limit anthropogenic impacts that
might change the marine environment and potentially lead to
loss of biodiversity and associated ecosystem functions in marine
sedimentary habitats.

Effect of Other Variables on Benthic Flux
Variation
The biological and environmental variables we measured
could not explain approximately 37.1% of the benthic flux
variation. Therefore, other factors not measured in our
study presumably contribute to variability in benthic fluxes.
Scavenging by trace metals (e.g., iron, manganese) (de la
Rocha, 2003), and concentration gradients and molecular
diffusion in sediment porewater and overlying water result in
spatial and temporal variation in oxygen and nutrient fluxes
at the seafloor (Schulz, 2000). For example, the dissolved
oxygen contained in the bottom water penetrates the sediment
following a diffusion gradient (i.e., from higher to lower
concentration). Microorganisms such as bacteria and archaea
(i.e., prokaryotes) utilize oxygen and other electron acceptors
to degrade organic material within the sediment and therefore
affect local concentrations. These changes in local concentrations
generate nutrient fluxes directed either toward the water
column or deeper in the sediment, depending on the specific
chemical compound (Jorgensen, 2006). Moreover, macrobenthic
organisms influence the distribution of chemical compounds and
reaction rates by: (1) moving particles during feeding, burrowing,
and tube construction, (2) disrupting the otherwise vertically
stratified distribution of biogeochemical compounds during
burrow and fecal pellet formation, (3) introducing new reactive
organic substances during mucus secretion, (4) influencing
bacterial communities that mediate chemical reactions during
feeding and sediment mechanical disturbance, and (5) altering
sediment during gut passage (Aller, 1982). Through their
activities, macrofauna control pore water solute concentration
profiles (Aller, 1982), increasing benthic fluxes by a factor
of 3–4 in continental shelf sediments (Archer and Devol,
1992; Devol and Christensen, 1993). Although we measured
bottom water dissolved oxygen concentrations at our study sites
(environmental variable not retained by our RDA analysis), we
did not measure in situ bottom water nutrient concentrations.
Hence, differences in bottom water nutrient concentrations
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across our study sites could have influenced benthic flux rates
and contributed to the 37.1% unexplained benthic flux variation
at our study sites. However, we believe such a scenario unlikely
for explaining within-site benthic flux variation because tidal
currents would tend to minimize horizontal variation in bottom
water properties within the 25× 25m sites that we sampled.

SUMMARY

Our study indicates that environmental variables and functional
diversity indices we measured explain the majority of flux
variation in our Salish Sea sedimentary sites. Lability of organic
matter, microbial abundance, benthic macrofaunal functional
richness, and indices related to bioturbation and bio-irrigation
were the most important variables in explaining benthic flux
variation and organic matter remineralization at our seafloor
study sites. Moreover, our results suggest that functional
richness better predicts benthic flux rates than species diversity
and abundance. We also identified funnel feeding as a key
function provided by activities of a small number of species
and individuals of maldanids and pectinariids polychaetes,
which can affect benthic flux rates disproportionately relative
to their abundance. Our results indicate that biodiversity and
environment play a similar role in the control of organic matter
remineralization. However, larger flux rates were recorded at sites
with higher functional richness (e.g., SoGE) and funnel feeders,
suggesting greater efficiency in organic matter processing with
higher biodiversity. Given the increasing negative anthropogenic
impacts on natural ecosystems and corresponding changes in
biodiversity, our results point to the need to maintain functional
richness in order to maintain ecosystem functioning. Results
of this and other studies could help to predict the impact
of non-random species loss associated with environmental
changes (e.g., decrease of dissolved oxygen concentrations) on
ecosystem functions such as nutrient flux rates and organic
matter remineralization.
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