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The present study examined directional connections in the brain among resting-state
networks (RSNs) when the participant had their eyes open (EO) or had their eyes closed
(EC). The resting-state fMRI data were collected from 20 healthy participants (9 males,
20.17 ± 2.74 years) under the EO and EC states. Independent component analysis (ICA)
was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary
sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-
mode networks), and the Gaussian Bayesian network (BN) learning approach was then
used to explore the conditional dependencies among these RSNs. The network-to-network
directional connections related to EO and EC were depicted, and a support vector machine
(SVM) was further employed to identify the directional connection patterns that could
effectively discriminate between the two states. The results indicated that the connections
among RSNs are directionally connected within a BN during the EO and EC states. The
directional connections from the salience network (SN) to the anterior/posterior default-
mode networks and the high-level to primary-level visual network were the obvious
characteristics of both the EO and EC resting-state BNs. Of the directional connections
in BN, the directional connections of the salience and dorsal attention network (DAN) were
observed to be discriminative between the EO and EC states. In particular, we noted that
the properties of the salience and DANs were in opposite directions. Overall, the present
study described the directional connections of RSNs using a BN learning approach during
the EO and EC states, and the results suggested that the directionality of the attention
systems (i.e., mainly for the salience and the DAN) in resting state might have important
roles in switching between the EO and EC conditions.

Keywords: resting-state fMRI, independent component analysis (ICA), Gaussian Bayesian network (BN), support
vector machine (SVM), eyes closed, eyes open

INTRODUCTION
The human brain is a self-organized system in which multiple
sub-systems complexly interconnect within a network
(Bullmore and Sporns, 2009; Park and Friston, 2013). Many
studies have demonstrated that eye behavioral states, such
as when subjects have their eyes open (EO) or eyes closed
(EC), could effectively modulate the spontaneous activity
in various subsystems, e.g., the visual (Yang et al., 2007),
sensorimotor (Marx et al., 2004; Liang et al., 2014), and
default-mode network (DMN; Marx et al., 2004; Yang et al.,
2007; Yan et al., 2009; Liang et al., 2014), the intersystem
functional connectivity (Yan et al., 2009; Jao et al., 2013),
and even the space organization of the interaction of these

subsystems (Jao et al., 2013; Xu et al., 2014). However, the
directional connections among these sub-systems within a
network and their relation to eye behavioral states are not well
understood.

Neuroimaging studies have demonstrated that spontaneous
brain activity of functional subsystems overlaps highly with task-
induced activity (Fox et al., 2006; Mantini et al., 2007; Zuo
et al., 2010). These inherent spontaneous activities were intra-
dependently organized within the subsystem but also functionally
cooperated and communicated interdependently (Tononi et al.,
1994; Sporns, 2013). In particular, the directional connectivity
among these subsystems has been shown to be an important
characteristic of the dynamics of the spontaneous activity
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(Friston et al., 2003; Liao et al., 2011; Liu and Duyn, 2013).
The directional connections reflect the dependence relationships
among subsystems when passing messages through the system.
In fact, several models (e.g., the hierarchical brain systems model
(Carhart-Harris and Friston, 2010) and the triple-network model
(Menon, 2011)) have been proposed to depict the relationship
among these subsystems (e.g., DMN, attention system, and
executive-control systems). All these models focused on the
directional interaction of these sub-systems during information
transfer.

Recently, multi-variate pattern analysis (MVPA) approach has
been widely applied to explore the linkage between the distributed
functional signal and the brain states in fMRI studies (Craddock
et al., 2009; Poldrack et al., 2009; Dosenbach et al., 2010; Shen
et al., 2010; Naselaris et al., 2011; Zeng et al., 2012; Vergun
et al., 2013). By using the MVPA approach, the category of
the EO and EC conditions could be decoded from the spatially
distributed neural activities patterns (Liang et al., 2014). In the
present study, we hypothesized that the directional connections
of brain subsystems could be discriminative between the EC and
EO conditions. To this end, the independent component analysis
(ICA) approach was used to identify the independent components
(ICs) corresponding to the separate subsystems. Then, the
directional connections among these subsystems related to EO
and EC were measured by using the Gaussian Bayesian network
(BN) learning approach. In order to investigate the difference
of the directional connections between the two conditions, a
MVPA approach, the recursive feature elimination (RFE)-based
support vector machine (SVM) was further applied to identify the
directional connection patterns that could effectively discriminate
between the EO and EC states.

MATERIALS AND METHODS
PARTICIPANTS
In the present study, a total of 20 right-handed, healthy
undergraduates/postgraduates (9 males/11 females, 20.45 ± 2.76
years) were recruited from the campus of Beijing Normal
University. This study was approved by the Institutional Review
Board of the Beijing Normal University Imaging Center for Brain
Research. Written informed consent was given by each participant
before the experiment.

DATA ACQUISITION
The resting-state functional magnetic resonance imaging
(rsfMRI) data were acquired on a 3T Siemens Trio TIM MR
scanner equipped with a 12-channel phased array receiver-only
head coil at the Imaging Center for Brain Research, Beijing
Normal University. The rsfMRI data were obtained using a
gradient-echo EPI sequence with the following two parameter
sets: (A) TR = 2000 ms, TE = 30 ms, 33 transverse slices, slice
thickness = 3.5 mm, gap = 0.7 mm, flip angle = 90◦, FOV
= 224 mm × 224 mm, matrix = 64 × 64, and 240 volumes
covering the whole brain; (B) TR = 3000 ms, 40 transverse
slices, slice thickness = 3.5 mm, no gap, 160 volumes, and
the other parameters were identical to those of (A). For each
parameter set, all participants were scanned under EC and
EO conditions in turn. A total of 4 types of rsfMRI scans

(i.e., AO, AC, BO, and BC) were obtained for each participant
in the same session. In order to reduce the sequence effect,
the order of data acquisition was counterbalanced across all
participants. In addition, a high-resolution 3D brain structural
image was also acquired for each participant using the MP-RAGE
sequence with the implementation of the parallel imaging scheme
GeneRalized Autocalibrating Partially Parallel Acquisitions
(GRAPPA; Griswold et al., 2002) and an acceleration factor of 2.

DATA PREPROCESSING
Only the rsfMRI data corresponding to TR = 2000 ms was
analyzed for the present study. Data preprocessing was performed
using DPARSF1 based on REST2 and SPM8.3 The first 10 volumes
of the functional images were discarded to account for signal
equilibrium and the participant’s adaptation to the scanning
environment. We then corrected the remaining functional images
for within-scan acquisition time differences between slices and
realigned all images to the first volume to correct for head motion.
This realignment procedure provided us with a record of head
motion during each rsfMRI scan. None of the participants was
excluded for excessive head motion based on criteria of >1 mm
displacement or an angular rotation of >1◦ in any direction. The
summary scalars of both gross (maximum and root mean square)
and micro (mean frame-wise displacement) head motion were
matched between the two conditions (all p > 0.14). The corrected
functional images were subsequently spatially normalized to
the MNI standard template using an optimum 12-parameter
affine transformation and non-linear deformations and were re-
sampled to a voxel size of 3 × 3 × 3 mm3. The resulting MRI
data were smoothed by a Gaussian filter with a full width at
half maximum of 4 mm and were further temporally band-pass
filtered (0.01–0.08 Hz) to reduce the effects of low-frequency drift
and high-frequency physiological noise.

GROUP ICA
The resting-state networks (RSNs) of the brain were identified by
using ICA analysis, which were further used for the subsequent
RSNs interconnectivity analysis via the BN approach. Here, the
Group ICA program was completed using the fMRI Toolbox
GIFT.4 The preprocessed data after band filter of all participants in
the two conditions were first analyzed using principle component
analysis (PCA) to reduce the data dimension. Here, two-step PCA
was used: the data for each individual participant was temporally
dimension-reduced, and then the dimensions were again reduced
to the optimal numbers after concatenation across subjects within
groups. The optimal number of ICs was estimated at 35 based
on the minimum description length (MDL). Then, the data
were separated by ICA using the Extended Infomax algorithm
(Lee et al., 1999). After ICA separation, the mean ICs and the
corresponding mean time courses over all the participants were
used for the back-reconstruction of the ICs and the time courses
for each individual participant (Calhoun et al., 2001). Then, the

1http://www.restfmri.net/forum/DPARSF
2http://restfmri.net
3http://www.fil.ion.ucl.ac.uk/spm/
4http://icatb.sourceforge.net/
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Table 1 | Details of the selected RSNs.

Index RSNs Regions Coordinates t-value r-value

X Y Z

1 PVN Lingual_R 6 −84 −3 18.75 0.52∗

2 HVN Occipital_Sup_R 24 −102 9 19.24 0.34∗

3 PSMN Supp_Motor_Area_R 3 −15 69 17.98 0.37∗

4 VMN Postcentral_R 60 −6 33 18.88 0.50∗

5 DAN Parietal_Sup_L −18 −75 51 19.68 –
6 CEN Frontal_Inf_Tri_R 51 27 27 14.33 0.46∗

7 aDMN Frontal_Sup_Medial_L 0 54 15 18.59 0.55∗

8 pDMN Cingulum_Mid_R 3 −30 30 25.31 0.64∗

9 SN Cingulum_Ant_L −9 39 −3 24.27 0.50∗

Note: The RSNs are the same as those in Figure 2. The coordinates are the peak voxel value of each RSN in MNI space. The regions are those in which the

peak voxels were located. The brain regions are reported according to the Anatomical Automatic Labeling (AAL) template. The t value indicates the scores of the

one-sample t-test on the individual IC pattern (p < 0.001, FDR corrected). The r value indicates the scores of the spatial similarity index between the individual IC

pattern and resting-state fMRI templates derived from previous studies5, *p < 0.05.

intensity values in each IC spatial map were converted to Z-scores,
and a one sample t-test (False Discovery Rate, FDR, p = 0.01)
was then performed under two conditions to determine the RSNs.
The present study identified in total of 9 RSNs (Table 1) which
would be used as the nodes of the BN models. Notably, these
nodes were depicted by using a sphere (radius = 6 mm) in the
peak of each RSN t map. There were two main considerations
for selecting these RSNs. First, all of them have already been
documented to be modulated by switching between EC and EO
conditions (Yang et al., 2007; Yan et al., 2009; Jin et al., 2013;
Xu et al., 2014; Yuan et al., 2014). Second, they are spatially
distributed across different systems (i.e., default mode, attention,
and unimodal sensory systems). Previous studies (Carhart-Harris
and Friston, 2010) have suggested that these brain systems
exhibit an obvious hierarchical organization attribute which is
the physiological principle of brain region interaction. Thus, we
speculated that directional connections among these identified
RSNs could effectively reflect the modulation effect of brain states
(EC or EO) on brain spontaneous activity.

GAUSSIAN BN METHOD
The directional connections among the RSNs within a large-
scale BN were measured related to EO or EC conditions. As we
know, BN is a data-driven statistical technique that can measure
the condition dependencies among nodes within a network. The
dependencies are qualified by the conditional probability of each
node given its parent nodes in the network. In fact, the BN
learning approach has already been widely applied in the fMRI
studies (Kim et al., 2008; Li et al., 2008, 2011; Wu et al., 2011).

In the present study, the time series of the RSNs were extracted
for the BN analysis, to this end, a linear regression was performed
to remove the effects of 9 nuisance covariates (i.e., the global
mean signal, the white matter signal, the cerebrospinal fluid
signal, and 6 head motion parameters) of the preprocessed fMRI
data which were used the RSN identification. Then, the resting-
state time series of each node were extracted by averaging the

5http://www.brainnexus.com/resources/resting-state-fmri-templates

intensities over all voxels within the sphere (radius = 6 mm) at
each time point for each individual under EO and EC conditions.
Finally, the Gaussian BN method was applied, and the identified
ICs corresponded to the node in the BN; their time series was
assumed to be Gaussian distributed. A Bayesian information
criterion (BIC)-based (Schwarz, 1978) BN learning approach was
adopted to identify the optimal BN. In this process, the optimized
BIC score among the space of possible candidate networks was
selected. The structure and parameters of the BN were evaluated
using the L1-Regularization Paths algorithm (Schwarz, 1978)
and maximum likelihood (ML) estimate implemented by the
collection of Matlab functions called L1 DAGLearn6 and Bayesian
Net Toolbox (BNT).7 Herein, several radius sizes (i.e., 3 mm,
6 mm, and 12 mm) were applied to define each node sphere for
extracting time series in BN analyses, to evaluate the radius-size
effect on the final BN properties.

MACHINE LEARNING METHOD
The LIBSVM toolbox8 with the linear support vector classification
(SVC) was applied as the classifier for the MVPA (Zhang
et al., 2013). In the present study, the RFE-based SVC was
used to identify the directional connection pattern that could
effectively discriminate between the EO and EC states. The
directional connectivity in the BN (n = 81, i.e., 9 RSNs ×

9 RSNs) were extracted to be as the discriminative feature.
The RFE approach was first applied to rank these features
according to their ability to discriminate between EO and
EC. Then, we recursively selected the most important features
(e.g., the first one, the first two, the first three, and so on)
to constitute the discriminative patterns. The performance of
these constituted patterns in state (EC and EO) classification
was further investigated using the SVC classifier. Here, the
leave-one-out approach was used to validate these patterns’
performance in state classification. More detailed information

6http://www.cs.ubc.ca/∼murphyk/Software/DAGlearn/
7http://code.google.com/p/bnt/
8http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 81 | 3

http://www.brainnexus.com/resources/resting-state-fmri-templates
http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/
http://code.google.com/p/bnt/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Zhang et al. Brain directionality to eyes conditions

is described in a previous study by our group (Zhang et al.,
2013). The whole framework for the present study is shown in
Figure 1.

RESULTS
RSN MAPS FOR EC AND EO STATES
The group ICA method was used to identify the RSNs of the
spontaneous activity of the resting state during the EO and EC
states. Figure 2 shows the spatial maps of the RSNs derived from
the two states from 20 young participants. RSNs from the 35 ICs
were selected for the present study, and these RSNs were spatially
distributed across the cerebral cortex and maximally overlapped
with the previously reported primary visual network (PVN)
(e.g., the bilateral calcarine regions and lingual regions), high-
level visual network (HVN) (e.g., the bilateral supperior occipital
regions and middle occipital regions), primary sensory-motor
network (PSMN) (e.g., the bilateral paracentral lobule (PCL)),
ventral motor network (VMN) (e.g., the bilateral postcentral
regions), salience network (SN) (e.g., the bilateral anterior
cingulum regions, medial frontal regions, and insula regions),
dorsal attention network (DAN) (e.g., the bilateral superior
parietal regions and inferior temporal regions), central executive
network (CEN) (e.g., the bilateral superior medial frontal regions,
inferior frontal regions, and supplementary motor area), anterior
default-mode networks (aDMN) (e.g., the left angular region,

the bilateral superior medial frontal regions and precuneus
regions), and posterior default-mode networks (pDMN) (e.g., the
bilateral angular regions, post cingulum cortex, and precuneus
regions). Table 1 shows the detailed information of each RSN.
These identified RSNs are highly consistent with those previously
reported (Damoiseaux et al., 2006; Mantini et al., 2007; Sridharan
et al., 2008; Jann et al., 2010; Li et al., 2011).

DIRECTIONAL CONNECTIVITY OF RSNs
After identifying the RSNs using the Group ICA method, we
further applied the BN approach to explore the directional
connectivity among these RSNs. We found that there was
directional connectivity among these RSNs during the EO and
EC states. Figure 3 shows the BN-based connectivity pattern
among these RSNs (sphere radius = 6 mm) in the BN. Detailed
information is listed in Table 2. The BNs related to the three
radius sizes are highly consistent.

Our results demonstrated that the directional connectivity
from the SN to the DMN (i.e., aDMN and pDMN) and from
the HVN to the PVN were salient in the resting-state BN based
on the directional connectivity weights in the BN. In particular,
the most weighted directional connectivity was observed in the
SN outgoing connections to aDMN and to pDMN, as well as
HVN outgoing connections to PVN. Moreover, we also noted
that the directional connectivity mentioned above was consistent

FIGURE 1 | Flowchart of data processing. (A) The preprocessed
data after band filter of two conditions (EC and EO). (B) The mean
ICs. (C) BN connectivity patterns on the selected 9 ICs in EO and

EC. (D) The RFE-based SVC was used to identify the discriminative
pattern. (E) The pattern able to effectively discriminate between the
EO and EC states.
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FIGURE 2 | Spatial map of each RSN. PVN, primary visual network; HVN,
high-level visual network; PSMN, primary sensory-motor network; VMN,
ventral motor network; SN, salience network; DAN, dorsal attention network;

CEN, central executive network; aDMN; anterior default-mode network; and
pDMN, posterior default-mode network. Each RSN map was the result of a
one-sample t-test on the individual IC pattern (p < 0.001, FDR corrected).

FIGURE 3 | Directional connectivity patterns related to the EO and EC
states in the BN model. The RSNs (sphere radius = 6 mm) are graphically
connected to depict their conditional dependencies in a BN model. Only

connections that survived the significance testing (p < 0.05) are shown. Solid
and dashed arcs correspond to the positive and negative connections,
respectively. Line width is proportional to the connection weights.

between the EO and EC states (Figure 3). Of course, the consistent
directional connectivity between states was observed not only in
those with high weights but also in connections from PSMN to
PVN.

In addition to the robust directional connectivity with
high weights in the BN network, the dynamic and directional
properties of several RSNs were also consistent. We found that
the SN and DAN were unique among these RSNs. The SN and
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Table 2 | Directional connectivity and its weight in BNs related to EC
and EO.

Direct Connections Weight coefficients

EC EO

SN→ADMN 1.42 1.59
SN→PDMN 0.85 0.87
HVN→PVN 0.8 0.67
PSMN→PVN 0.37 0.34
ADMN→DAN 0.32 −0.21
VMN→DAN 0.43 –
SN→CEN 0.41 –
SN→PSMN 0.35 –
HVN→ADMN 0.28 –
CEN→DAN – 0.44
SN→PVN – 0.36
PSMN→DAN – 0.33
VMN→CEN – 0.31
PDMN→DAN – 0.30
PVN→DAN – 0.29
ADMN→VMN – 0.16
CEN→PVN – −0.16
PSMN→VMN 0.33 –
VMN→PSMN – 0.35
CEN→PSMN 0.24 –
PSMN→CEN – 0.19
HVN→CEN 0.21 –
CEN→HVN – 0.14

Note: All the listed connections survived significance testing (p < 0.05) during

the stepwise regression analysis within each condition.

DAN perform oppositely in the BN network: the former mainly
sent out connections to other networks, while the latter mainly
received connections from other networks.

There were significantly discriminative directional
connectivity patterns in the BN networks related to EO and
EC. We found that several specific connections, including SN to
CEN, VMN to DAN, SN to PSMN, and HVN to aDMN, were
observed in the BN network related to EC. The connections such
as CEN to DAN, pDMN to DAN, PVN to DAN, CEN to PVN,
PSMN to DAN, VMN to CEN, aDMN to VMN, and SN to PVN
were found in the EO state. In addition, we noted that EO and EC
changed the directional connectivity between RSNs. For instance,
the connections between PSMN and VMN, CEN and PSMN, and
CEN and HVN were all existing connections in the BN network,
but the direction was reversed between the EO an EC states. In
particular, we found that the connection pattern of the PVN was
quite different in the BN network related to EO compared to the
network related to EC. The directional connections in the EO
state were increased when compared with those of the EC state
(Figure 3).

SVM CLASSIFIER PERFORMANCE
The RFE-based SVC was used to further explore the directional
connectivity patterns that could effectively discriminate between
the EO and EC states. We found that the first 20 directional
connections (according to the RFE results) form a pattern that
could effectively discriminate between these two states (accuracy
= 97%). The details are shown in Figure 4.

We further investigated these features (directional
connectivity) in the created discriminative pattern. This pattern
is shown in Figure 5. The results indicated that the salient feature
that helped classify the two states was the attention (i.e., SN
and DAN)-related directional connectivity in the BN. Notably,
the sub-systems of the attention network performed oppositely.
The DAN primarily received the connections from the other
networks, whereas the SN primarily sent out connections to
other networks, and this was the most salient feature of the
discriminative pattern (Figure 5).

DISCUSSION
The present study investigated the directional connections among
the large-scale RSNs in the human brain related to having EO and
having EC by combining ICA and BN learning approaches. The

FIGURE 4 | Accuracy of RFE-based SVM classification between the EO
and EC states.

FIGURE 5 | The effectively discriminative pattern of the EO and EC
states based on the weight coefficients of the direct connections. The
background arrows represent the direction of connections. The color bar
represents the contribution in the discrimination between the states. The
color describes the level of contribution in classification.
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main findings can be summarized as follows: (i) the directional
connections from SN to DMN (aDMN and pDMN) and from
HVN to PVN were obvious characteristics of the BN network
(both EC and EO states); and (ii) the identified discriminative
pattern was primarily characterized as the attention (i.e., SN and
DAN)-related directional connections in the BN network, which
performed well in EO and EC classification, with the SN and DAN
exhibiting opposite dynamic and directional properties in the EO
and EC states.

RESTING-STATE BN
Many previous studies have demonstrated that the SN, DMN,
and CEN were core neurocognitive networks of the human brain
(Greicius et al., 2003; Fox and Raichle, 2007; Seeley et al., 2007).
Specifically, SN is involved in the capture of biologically and
cognitively relevant events (Seeley et al., 2007; Sridharan et al.,
2008; Menon and Uddin, 2010), DMN plays important roles in
monitoring the internal mental landscape (Greicius et al., 2003,
2004; Qin and Northoff, 2011), and CEN is crucial for a range
of cognitively demanding tasks (e.g., working memory, problem
solving, and decision making) (Miller and Cohen, 2001; Koechlin
and Summerfield, 2007). According to the triple network model
(Menon, 2011), the interactive connections among these three
networks are highly involved into the cognitive and affective
functions of the human brain, and aberrant connections play a
prominent role in brain dysfunction in several disorders.

In the present study, we found that the SN and the DMN were
hub regions of the resting-state BN. Moreover, our results showed
that there was significant outflow of signals from the SN to other
systems. In particular, the directional connections from the SN
to the anterior/posterior DMN were the obvious features of the
resting-state BN. In addition, this feature was highly consistent
between the EO and EC states (Figure 3). In fact, the directionality
among these three systems (i.e., SN, DMN, and CEN) has been
measured in a previous study (Sridharan et al., 2008) using
chronometric techniques and Granger Causality Analysis (GCA)
in three experimental conditions. The findings of this previous
study indicated that the SN (e.g., right fronto-insular cortex) plays
a critical and causal role in switching between the CEN and the
DMN. Obviously, all these findings correspond to the notion that
the SN was important in detecting and mapping salient external
inputs and internal brain events. That is, the SN is an integral
hub (Menon, 2011) in mediating dynamic interactions between
other large-scale brain networks involved in externally oriented
attention and internally oriented self-related mental processes.

In addition, our results suggested that the outflow from the
HVN to the PVN was also a salient feature of the resting-
state BN, which was also highly consistent between the EO
and EC states. Several previous studies have investigated the
spontaneous activity of these visually associated regions. The
collective findings suggest that visual-related spontaneous activity
may be highly associated with mental operation processing
such as memory-related mental imagery and visual memory
consolidation processes (Wang et al., 2008). In addition to the
directional connection from HVN to PVN, we also found a
directional connection from the PSMN to PVN. In particular,
CEN-related directional connections were observed in the

resting-state BN. However, we noted that the directionality of
these connections was reversed between EC and EO states.
Few studies have examined the role of the CEN in the EC
and EO switch. This restricted our further speculation on
the findings regarding the CEN that need to be studied
in depth in the future. Considering the high involvement
of the CEN in working memory related mental operations
(Babiloni et al., 2004; Kondo et al., 2004), our findings may
also suggest that the visual memory-related mental operations
are predominant in the spontaneous activity of the human
brain.

DIRECTIONAL CONNECTION CHANGE BETWEEN EC AND EO
Recent findings have demonstrated that there are distinct
mental states related to the EO and EC states. Specifically,
there is an “exteroceptive” mental activity state characterized
by attention and ocular motor activity during EO and an
“interoceptive” mental activity state characterized by imagination
and multisensory activity during EC (Marx et al., 2003, 2004).
Accordingly, many studies have shown that eye behavioral
states (e.g., EO and EC) modulated the brain spontaneous
oscillation states within several systems, such as the visual system
(Yang et al., 2007) and DMN (Yan et al., 2009). The primary
contribution of the present study was to further investigate the
directional connections among these systems in the resting-state
brain during the EO and EC states and explore the differences in
the directional connection between these systems during different
states. In particular, we applied a RFE-based SVM approach to
identify a discriminative pattern that performed well in EO and
EC classification. After analysis of this pattern, we found that
the dynamic and directional properties of the SN and DAN were
opposite: SN gave out information to other systems, and the
DAN received information from other systems (Figure 5). These
findings were consistent with the notion of Posner et al. that the
DAN and SN possessed different roles in brain function, i.e., the
DAN is primarily in charge of prioritizing sensory input, and
the SN are highly related to top-down task control (Petersen and
Posner, 2012).

Accumulated evidence suggests that the “salience system” and
the “dorsal attention system” are the two main subsystems of the
attention system (Seeley et al., 2007). We also found that these
two subsystems played different roles in pattern discriminating
between the EO and EC states. Considering that the SN and DAN
are two subsystems of the attention system and previous studies
have shown that the SN is crucial as an integral outflow hub
for initiating network switching, the attention network may have
an important role in switching between the EO and EC states.
The subsystems of the attention system may be coordinated in
the dynamic translation of information in the resting-state BN.
More details on the role of the attention system in the resting-
state BN should be further explored. Nevertheless, our findings
provide new evidence for the important role of the attention-
related directional connections in the discrimination between the
EC and EO states.

Many studies have tested the roles of the attention system in
switching of mental states (Wylie et al., 2003; Elton and Gao,
2014). However, few studies investigated the neural properties of
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attention network during resting-state. As most of the knowledge
about the attention network functions are derived from the
task related studies (Hampton and O’Doherty, 2007; Schafer
and Moore, 2007; Sridharan et al., 2008), which limited our
interpretations of this study. Although the relationship between
the RSN and task neural activity has been reported in many
studies (Hermundstad et al., 2013; Cole et al., 2014), the exact
relation between them is still unclear. In the present study, we
found that the DAN-related directional connections were changed
between the EC and EO conditions; especially, we found that more
information from primary sensory modalities (e.g., PVN, PSMN)
was input into the DAN in the EO condition when compared to
the EC condition. This observation was consistent with several
previous studies (Marx et al., 2003, 2004; Brandt, 2006) which
proposed the activated attention system in the “exteroceptive”
network whereby eyes-open periods (McAvoy et al., 2012).

The PVN-related directional connection was also different
between the EO and EC states. Currently, there are still
controversial viewpoints about the neural activity change in the
visual cortex between the EO and EC states. For example, the
lower amplitude of low-frequency fluctuation (ALFF) in the
bilateral visual cortex and higher ALFF in the right PCL were
observed during EC compared with EO (Yang et al., 2007). The
possible interpretation of this result was that the visual cortex was
activated by visual input during EO (Raichle et al., 2001; Uludağ
et al., 2004). However, several studies contrarily indicated that EC
activated the neural activity of visual areas (Marx et al., 2003,
2004). The present study provided new evidence for the PVN-
related neural activity pattern change between the EC and EO
states. We found that more directional connections were shown
to be related to the PVN during EO compared with EC. In
particular, a salient directed connection was observed from PVN
to DAN during the EO condition. This finding also confirmed
the hypothesis proposed by Marx et al., that the EO condition
corresponds to the “exteroceptive” network.

LIMITATIONS
There are several issues that should be addressed in future works.
First, the present study investigated the directional connection
among RSNs within a BN. The RSNs related to EO and EC were
the focus, but not all the RSNs were included. Therefore, the
directional connections of other RSNs should also be detected
using a similar approach. Second, the directional connections of
the spontaneous activity among large-scale systems were explored
in a low-frequency band (0.01–0.08 Hz) in the present study,
and the brain activity differences between EC and EO were
also observed in a high-frequency band (Jin et al., 2014; Yuan
et al., 2014). It may be interesting to explore the directional
connections of brain systems in other frequency bands. Third, the
present study investigated the changes of dynamical connections
of RSNs between EC and EO conditions, the main findings
should be further expanded among other conditions (e.g., EC,
EO, fixed condition; Yan et al., 2009; Patriat et al., 2013). Forth,
a limited number of RSNs were used to preliminarily explore the
directionality of resting-state brain networks during EC and EO
conditions, other RSNs (e.g., the audition network and emotion
network) should be considered in future studies. Finally, there

may be confusion factors (e.g., eye movements) in this study,
further studies are necessary to reproduce our main findings using
new methods with the development of this field.

CONCLUSION
Collectively, the present study investigated the dynamics and
directionality of the large-scale RSNs within a BN during the EO
and EC states. We found that the salient features of the resting-
state BN (EC and EO) were the directional connections from SN
to DMN and from HVN to PVN. However, the differences in
the BN between EC and EO were observed in the attention (SN
and DAN)-related directional connections in the BN network.
These results demonstrated the dynamics and directionality of the
attention systems within a BN that were important in switching
between the EC and EO states.
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