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Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of
chromosome 21. DS affects multiple organs, but it invariably results in altered brain
development and diverse degrees of intellectual disability. A large body of evidence
has shown that synaptic deficits and memory impairment are largely determined by
altered GABAergic signaling in trisomic mouse models of DS. These alterations arise
during brain development while extending into adulthood, and include genesis of
GABAergic neurons, variation of the inhibitory drive and modifications in the control of
neural-network excitability. Accordingly, different pharmacological interventions targeting
GABAergic signaling have proven promising preclinical approaches to rescue cognitive
impairment in DS mouse models. In this review, we will discuss recent data regarding
the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and
patients, and we will evaluate the state of current clinical research targeting GABAergic
signaling in individuals with DS.
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INTRODUCTION

Down syndrome (DS) or trisomy 21 is the leading cause of genetically-defined intellectual disability
and congenital birth defects. DS is characterized by many phenotypical features affecting almost all
body systems, including developmental defects and growth delay (Nadel, 2003; Antonarakis and
Epstein, 2006). In particular, brains of individuals with DS show decreased volume and reduced
neuronal density in diverse brain areas (e.g., cortex, hippocampus and cerebellum; Sylvester, 1983;
Coyle et al., 1986; Aylward et al., 1997, 1999; Shapiro, 2001). These alterations originate early
during development (Schmidt-Sidor et al., 1990; Winter et al., 2000; Pinter et al., 2001; Larsen
et al., 2008) and are possibly due to defective neuronal precursor proliferation during gestation
(Contestabile et al., 2007; Guidi et al., 2008). Accordingly, the development of individuals with
DS is characterized by delayed cognitive progress in infancy and childhood, leading to mild-to-
moderate mental retardation with an Intelligence Quotient (IQ) ranging from 30 to 70 (Vicari
et al., 2000, 2005; Pennington et al., 2003; Vicari, 2004). This scenario is additionally worsened
during adulthood by further loss of cognitive abilities and the development of Alzheimer’s disease
(AD) by the fourth decade of life (Wisniewski et al., 1985; Mann and Esiri, 1989; Leverenz and
Raskind, 1998; Teipel and Hampel, 2006).

Although cognitive impairment is the most common and severe feature of DS, other
neurological and psychiatric manifestations of the disease highly impinge on the quality of life of
individuals with DS and their families. In particular, the DS population shows increased frequency
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of anxiety (Vicari et al., 2013), clinically relevant sleep
disturbance (Carter et al., 2009; Breslin et al., 2011; Angriman
et al., 2015; Edgin et al., 2015; Konstantinopoulou et al., 2016;
Maris et al., 2016), and hyperactivity or movement disorders
(Pueschel et al., 1991; Haw et al., 1996). Finally, DS patients
demonstrate increased incidence of epileptic episodes with
seizure onset mainly concentrated during early life and aging
(Stafstrom et al., 1991; Lott and Dierssen, 2010; Robertson et al.,
2015).

The identification of possible mechanisms leading to
cognitive impairment in DS has been largely conducted
thanks to the analysis of different DS genetic mouse models
(Dierssen, 2012). Interestingly, compelling studies in these
animals indicate that altered signaling of the neurotransmitter
GABA is one of the main determinants in reducing cognitive
and memory functions. In particular, GABAergic dysfunctions
impair synaptic plasticity and learning and memory in DS
by altering optimal excitatory/inhibitory synaptic balance
(Kleschevnikov et al., 2004, 2012a,b; Costa and Grybko, 2005;
Fernandez et al., 2007; Deidda et al., 2014). In this review article,
we will survey available data on the alteration of GABAergic
signaling in DS trisomic animal models and individuals with DS.
Additionally, since no effective pharmacological treatment for
ameliorating cognitive deficits in DS has been found yet, we will
also evaluate the current status of pre-clinical and clinical trials
with GABAergic drugs in DS.

GABA SIGNALING IN THE BRAIN

GABA is the main inhibitory neurotransmitter in the adult and
healthy brain and it acts through ionotropic and metabotropic
receptors (GABAARs and GABABRs, respectively).

GABAA Receptors
GABAARs are chloride-permeable ion channels. In the adult
brain, the chloride gradient across the neuronal cell membrane
is sustained by the exporter K-Cl cotransporter (KCC2), which
maintains low intracellular chloride concentration ([Cl−]i).
Thus, GABAAR opening generates an influx of negative chloride
ions that hyperpolarizes the cell membrane potential and
inhibits neuronal activity. Moreover, opening of GABAAR
ion channels may also shunt concurrent excitatory currents
(e.g., driven by the neurotransmitter glutamate), thus preventing
them from bringing the membrane potential to the action
potential threshold. Indeed, GABAAR opening short-circuits
depolarizing synaptic currents by locally reducing the input
resistance (Ben-Ari, 2002; Jonas and Buzsaki, 2007; Silver,
2010; Khazipov et al., 2015). Thus, adult GABAA-mediated
transmission is physiologically hyperpolarizing and inhibitory.
Conversely, in early neurodevelopment, KCC2 expression is
low, and associated with high expression of the chloride
importer Na-K-Cl cotransporter (NKCC1), which generates
high [Cl−]i. In this condition, the chloride flux through
GABAARs is outward and depolarizes the cell membrane
potential (Cherubini et al., 1990; Rivera et al., 1999; Ben-
Ari, 2002; Fiumelli et al., 2005). Although GABAAR-mediated
depolarizing postsynaptic potentials (PSPs) will be in most

cases not sufficient to reach the threshold for action-potential
generation, they will be able to activate voltage-gated calcium
channels (VGCCs), remove the voltage-dependent magnesium
block from NMDA receptors (Leinekugel et al., 1995, 1997; Ben-
Ari, 2002), and possibly add up to concurrent excitatory inputs
(Gulledge and Stuart, 2003). Consequently, even an initially
mild depolarizing effect of GABA can contribute to a more
pronounced excitation and eventually reach the threshold for
action potential firing. Thus, GABAA-mediated transmission is
generally depolarizing and possibly excitatory in the immature
brain, although depolarizing GABAA currents may still be
inhibitory by shunting concurrent excitatory inputs. Notably, a
depolarizing (rather than hyperpolarizing) GABAAR response
may also occur in mature neurons depending on timing and
location of GABAARs, upon relatively small difference in [Cl−]i
at different cell compartments, more hyperpolarized resting
membrane potentials, sustained activity or even pathological
conditions (Lamsa and Taira, 2003; Khirug et al., 2008; Chiang
et al., 2012; Cellot and Cherubini, 2014). Indeed, as the reversal
potential for GABAAR-mediated chloride currents (ECl) sits
very near to the resting membrane potential (VREST), relatively
small changes in [Cl−]i are sufficient to change the polarity
of GABAergic responses. In particular, if ECl is more negative
than VREST , the chloride flow will be inward (hyperpolarizing).
Instead, if ECl is less negative than VREST , the chloride flow
will be in the opposite direction, generating depolarizing
PSPs.

GABAARs are composed of five subunits, and the many
subunit variants identified in mammals (six α, three β, three
γ, one δ, three ρ, one ε, one π and one θ) confer different
pharmacological and kinetic properties to the receptor (Olsen
and Sieghart, 2008; Fritschy and Panzanelli, 2014). In the
CNS, the largest population of GABAARs is composed of 2 α,
2 β and 1 γ subunits, but isoform expression and receptor
composition change with subcellular localization, brain area,
and development, thus assuring receptor properties set to fulfil
specific neuronal needs. For example, the α1–3, β2–3 and γ2
isoforms are the most represented in the adult brain, constituting
synaptic GABAARs. In particular, thanks to their fast kinetics
with rapid onset and desensitization, they generate phasic
currents following GABA release from presynaptic vesicles with
spatial and temporal accuracy. Conversely, α5- or δ-containing
GABAARs are mainly extra-synaptic. The presence of the α5 or
δ subunits confers high GABA affinity and slow desensitization
kinetics to GABAARs. Thus, α5 or δ–containing receptors are
able to detect ambient GABA spilled out of the synaptic cleft
and generate long-lasting (tonic/extrasynaptic) currents (Böhme
et al., 2004; Caraiscos et al., 2004; Farrant and Nusser, 2005;
Zheleznova et al., 2009).

Phasic vs. tonic GABAA-mediated currents provide for
different regulation of neuronal physiology. Phasic GABA
transmission plays a relevant role in synaptic-input integration.
Indeed, fast inhibition acts as coincidence detector of excitatory
inputs by feed-forward inhibition: this mechanism ensures
that a second input desynchronized with a first input is
canceled out; thus, excitatory inputs sum up only when
they are perfectly synchronized (Pouille and Scanziani, 2001).
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A similar although opposite integration occurs when GABA is
depolarizing. GABAAR opening may generate small excitatory
potentials that last after the channel closure and sum up with
concurrent excitatory inputs, thus facilitating the achievement
of action potential threshold (Gulledge and Stuart, 2003).
While phasic inhibition participates in synaptic integration,
tonic inhibition generates relatively persistent changes of
input conductance, thus rightward shifting the input-output
relationship. Therefore, tonic inhibition reduces the magnitude,
duration and propagation length of excitatory PSPs, limiting
their temporal/spatial summation possibilities and inhibiting
neuronal excitability. Such effect is mainly mediated by shunting
which is particularly relevant for the inhibitory action of tonic
GABA transmission and less for the phasic inhibition, given the
longer opening of tonic GABAARs (Ben-Ari, 2002; Farrant and
Nusser, 2005; Jonas and Buzsaki, 2007; Silver, 2010; Khazipov
et al., 2015).

Integration processes of excitatory inputs depend from
PSPs generated from GABAARs, shunting inhibition, and also
from the localization of GABAARs. For example, on the
dendrites of CA1 pyramidal neurons, GABAergic synapses are
mostly located on the dendritic shaft and on spines (Megías
et al., 2001), thus participating to synaptic integration of two
different sets of inputs: the ones already partially processed
along the way from their synaptic origin to the dendritic
shaft, and the ones originated in neighborhood synapses
in the same spine, respectively. Notably, different cellular
compartments show different [Cl−]i that critically determine
GABAAR participation to input integration in a compartment-
specific fashion. Indeed, [Cl−]i is maximum in the axon and
axonal initial segment, lower in the soma, and it continues
to decrease gradually along dendrites (Szabadics et al., 2006;
Khirug et al., 2008; Waseem et al., 2010). In summary, phasic
inhibition plays as a coincidence detector and undergoes to
tight spatial and temporal integration with excitatory inputs
in a compartment-specific manner; tonic inhibition sets the
neuronal excitability background, by affecting excitatory input-
output relation.

GABAB Receptors
GABABRs are Gi/o-protein-coupled receptors (GPCRs) mostly
localized extra-synaptically. Their high affinity for GABA
ensures that ambient GABA spilled out of synapses can
activate GABABRs despite of their distance. In particular,
the GABABR Gαi/o subunit can lead to adenylate cyclase
inhibition and consequent reduction of cAMP levels and PKA
pathway activity (Bettler et al., 2004; Padgett and Slesinger,
2010); Gβγi/o subunit, instead, inhibits voltage-gated calcium
channels and opens G protein-coupled inwardly-rectifying
potassium channels (GIRK/Kir3), tetramers formed by different
compositions of GIRK1–4 subunits (Koyrakh et al., 2005).
In particular, presynaptic GABABRs reduce vesicle release by
inhibition of the voltage-gated calcium channels and by a
calcium independent mechanism (Rost et al., 2011), whereas
GABABR subunits found on dendrite and spine necks regulate
neuronal excitability by coupling to the GIRK channels (Nicoll,
2004; Koyrakh et al., 2005). Interestingly, all GIRK subunits

virtually form protein complexes with GABABR subunits
in heterologous systems (David et al., 2006; Fowler et al.,
2007; Ciruela et al., 2010). Nevertheless, GABABR-triggered
potassium currents seem to be mostly mediated by GIRK2-
containing homo- and hetero-tetramers (Koyrakh et al., 2005).
GIRK channel opening elicits an outward hyperpolarizing K+

current and a decrease in the input resistance (Lüscher et al.,
1997; Koyrakh et al., 2005). Thus, through GIRK channels,
GABABRs inhibit neuronal excitability by shunting excitatory
currents, hyperpolarizing the membrane with slow inhibitory
PSPs, and contributing in maintaining VREST (Lüscher et al.,
1997; Koyrakh et al., 2005; Gassmann and Bettler, 2012).
These effects also prevent action potential back-propagation
in dendrites (Leung and Peloquin, 2006). Finally, through
inhibition of postsynaptic voltage-gated calcium channels,
GABABR activation also prevents dendritic calcium spikes
(Chalifoux and Carter, 2011).

GABAA and GABAB Receptor Functions
Across Neurodevelopment and Adulthood
Given the variety of potential signaling dynamics by GABAA
and GABAB receptors, it is not surprising that GABA may
play a relevant role in different processes during healthy
neurodevelopment and adulthood, as well as under pathological
conditions. In particular, depolarizing and possibly excitatory
GABAA-mediated transmission in early life plays key roles in
promoting neurodevelopment. α5- or δ-containing extrasynaptic
GABAARs are predominant at this stage when synapses are
not yet formed and ambient GABA released from growth
cones and astrocytes is detected by high affinity subunits
(Cellot and Cherubini, 2013). Depolarizing tonic currents
facilitate spiking, thus increasing the probability of firing
coincidence from different cells and therefore of synaptic
wiring important for synaptogenesis. Moreover, these tonic
currents drive neuronal migration and maturation, axon
growth, and synaptic plasticity (Ben-Ari et al., 2007; Wang
and Kriegstein, 2009; Kilb et al., 2013; Luhmann et al., 2015).
Also GABABRs regulate neuronal migration, maturation of
pyramidal neurons, synapse formation and circuit development
(Fiorentino et al., 2009; Gaiarsa and Porcher, 2013). Notably,
GABABR activation is not able to elicit GIRK-mediated
(hyperpolarizing) currents in early neurodevelopment,
although maintaining the pre-synaptic inhibitory function
on neurotransmitter release. Indeed, coupling of postsynaptic
GABABRs to Kir channels is delayed during development
(Fukuda et al., 1993; Gaiarsa et al., 1995; McLean et al.,
1996).

Finally, in neurodevelopment, both GABAA- and GABAB-
mediated transmission control synaptic plasticity. Indeed,
GABAA receptors interfere both with the opening and the
closure of the visual cortex critical period, i.e., the time
window when brain plasticity can be evoked by environmental
stimuli and experimental paradigms in slices and in vivo
(i.e., long-term potentiation (LTP) and induction andmonocular
deprivation, respectively; Levelt and Hübener, 2012). Eventually,
in the adult brain, GABAARs usually exert a negative
regulation on hippocampal plasticity and cognition. Indeed,
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GABAAR-mediated inhibition suppresses LTP both in vitro and
in vivo (Wigström and Gustafsson, 1986; Grover and Yan,
1999; Matsuyama et al., 2008), and benzodiazepines (positive
regulators of GABAARs) or GABAAR activation impairs memory
(Roth et al., 1984; Zarrindast et al., 2002; Raccuglia and Mueller,
2013). While LTP is enhanced by GABAAR blockade (Wigström
and Gustafsson, 1986), long term depression (LTD) is facilitated
by GABAAR activation in vitro (Steele and Mauk, 1999),
thus suggesting that GABAA-mediated inhibition balances the
ratio between LTP and LTD. On the other hand, GABABR-
mediated membrane hyperpolarization, inhibition of voltage-
gated calcium channels and of back-propagating spikes, as
well as reduction of the cAMP/PKA generally contribute
to prevent synaptic plasticity. Indeed, GABABRs generally
suppress LTP and memory performance, however a dual role
in plasticity regulation is mediated by auto- and hetero-
GABABRs (Davies et al., 1991; Stäubli et al., 1999). Finally,
GABAergic regulation of brain plasticity also involves adult
neurogenesis. Indeed, tonic depolarizing GABAA responses by
GABAergic Parvalbumin interneurons negatively regulate adult
neurogenesis in the dentate gyrus (DG) of the hippocampus
(Song et al., 2012; Pontes et al., 2013; Pallotto and Deprez,
2014).

Phasic GABAA-mediated transmission also ensures
simultaneous and temporally limited inhibition, able to
synchronize network activity and generate network oscillations,
according to both computational models and in vitro slice
experiments from juvenile (P14–27) and adult mice (Wang and
Buzsáki, 1996; Mann and Mody, 2010). Moreover, GABABRs
synchronize hippocampal network activity at low oscillation
frequency (Scanziani, 2000; Kohl and Paulsen, 2010) and
are activated during cortical up-states, contributing to their
termination (Mann et al., 2009). Finally, GABA also exerts
key roles in pathological conditions such as a number of
neurodevelopmental disorders (Ramamoorthi and Lin, 2011;
Deidda et al., 2014), epilepsy (Kaila et al., 2014a), anxiety (Nuss,
2015), and neurodegenerative diseases (e.g., AD; Li et al., 2016).

MOUSE MODELS OF DS

Most of the current knowledge regarding alterations of the
GABAergic signaling in the DS brain has come from the study
of mouse models of DS. According to a recent study utilizing
the Vertebrate Genome Annotation (VEGA) database1, the
human chromosome 21 (Hsa21) contains a total of 222 protein-
coding genes (of which 218 map to the long arm 21q),
including two large clusters of 49 keratin-associated proteins
(KRTAPs; Gupta et al., 2016). The mouse genes orthologue
of those mapping to the long arm of Hsa21 are distributed
on three syntenic regions present on mouse chromosomes
10, 16 and 17. In particular, the distal portion of mouse
chromosome 16 (Mmu16) encompasses a large (∼28 Mb)
region that contains∼55% of Hsa21 orthologous protein-coding
genes (Antonarakis et al., 2004; Gupta et al., 2016). Therefore,
many of the available DS mouse models have been created

1http://vega.sanger.ac.uk

by genetic manipulation of this Mmu16 region. Specifically,
the Ts65Dn mouse (Reeves et al., 1995) is the most widely
used murine model of DS and carries an extra translocation
chromosome composed of the Mmu16 syntenic region fused
to the centromeric portion of Mmu17. This freely-segregating
extra chromosome contains 90 non-KRTAP, Hsa21 protein-
coding orthologues, plus 35 protein-coding genes (deriving from
Mmu17) that are not triplicated in DS (Duchon et al., 2011;
Gupta et al., 2016). Additional DS mouse models carrying a
smaller triplication of the Mmu16 syntenic region are the Ts1Cje
and the Ts1Rhr. Ts1Cje mice are characterized by the genomic
duplication of a Mmu16 segment containing 71 Hsa21 protein-
coding orthologues and translocated to the distal portion of
Mmu12 (Sago et al., 1998; Gupta et al., 2016). However, the
translocation resulted in the deletion of seven genes in the most
telomeric segment of Mmu12 (Duchon et al., 2011). Ts1Rhr
mice (Olson et al., 2004) were generated by Cre/lox chromosome
engineering and carry a tandem duplication of an even smaller
Mmu16 region comprising 29 Hsa21 protein-coding orthologues
from the so-called ‘‘DS critical region’’ (DSCR; Delabar et al.,
1993; Korenberg et al., 1994).

The vast majority of the studies on DS-related cognitive
and electrophysiological abnormalities have been performed
on the Ts65Dn mouse. Indeed, although the Ts65Dn model
still presents issues from a genetic point of view (Gardiner
et al., 2003), it recapitulates many of the phenotypic features
of the human syndrome (Dierssen, 2012; Rueda et al., 2012),
and it is currently the only mouse model used for preclinical
identification of pharmacological interventions targeting DS
cognitive impairment (Gardiner, 2014). Moreover, phenotypic
comparison of different DS mouse models has suggested
that the genes triplicated in the Ts65Dn mouse are major
responsible for DS-related cognitive abnormalities (Rueda et al.,
2012). In particular, Ts65Dn mice show severe behavioral
deficits in different learning and memory tasks, including fear
conditioning, T-maze spontaneous alternation, Morris water
maze and object recognition tests (Reeves et al., 1995; Costa
et al., 2007; Fernandez et al., 2007; Contestabile et al., 2013), and
electrophysiological alterations in both synaptic transmission
(Kleschevnikov et al., 2004, 2012b; Best et al., 2007, 2012;
Hanson et al., 2007; Mitra et al., 2012) and hippocampal
synaptic plasticity (Siarey et al., 1997, 1999; Kleschevnikov et al.,
2004; Costa and Grybko, 2005; Contestabile et al., 2013). In
addition, Ts65Dn mice display alterations in dendritic spine
morphology (Belichenko et al., 2004; Guidi et al., 2013) and
impaired neurogenesis both in the developing brain (Baxter
et al., 2000; Roper et al., 2006; Chakrabarti et al., 2007, 2010;
Contestabile et al., 2007, 2009) and in neurogenic niches of
the adult brain (Clark et al., 2006; Bianchi et al., 2010a;
Contestabile et al., 2013). Additionally, Ts65Dn mice are not
spontaneously epileptic, but show increased seizures incidence
in some experimental epilepsy paradigms (Cortez et al., 2009;
Westmark et al., 2010; Joshi et al., 2016). Finally, similarly to
DS patients, Ts65Dn mice also exhibit some sleep alterations
and hyperactivity in locomotor behavior (Escorihuela et al.,
1995; Reeves et al., 1995; Sago et al., 2000; Colas et al.,
2008).
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Although Ts1Cje and Ts1Rhr mice show some DS-related
phenotypes, the extent of these features is somewhat milder
and with some distinct characteristics (Rueda et al., 2012). In
particular, Ts1Cje mice displayed deficits in synaptic plasticity
and behavior in the T-maze test comparable to Ts65Dn mice,
whereas memory performances were less severely affected in the
Morris water maze and substantially spared in the novel object
recognition (Sago et al., 1998; Siarey et al., 2005; Belichenko et al.,
2007; Fernandez and Garner, 2007). On the other hand, Ts1Rhr
mice showed impaired synaptic plasticity in the hippocampal
DG, but unaffected plasticity in the CA1 hippocampal region.
At the behavior level, deficits were detected in the T-maze
and novel object recognition tests, but not in the Morris
water maze test (Olson et al., 2007; Belichenko P. N. et al.,
2009). Finally, Ts1Cje mice were found hypoactive (Sago et al.,
1998), and Ts1Rhr mice mostly not different compared to
WT animals for locomotor behavior (Belichenko P. N. et al.,
2009).

In more recent years, systematic application of Cre/lox-
mediated chromosome engineering has permitted the creation
of three new murine lines (Dp10, Dp16 and Dp17) individually
trisomic (through a tandem duplication on the corresponding
chromosome) for the three complete syntenic regions on
Mmu10, 16 and 17, respectively (Li et al., 2007; Yu et al.,
2010a,b). Nevertheless, although these mouse lines represent
ideal models in terms of genetic triplication, they lack the
extra freely-segregating chromosome that is found in most
individuals with DS and in Ts65Dn mice. In fact, the presence
of an extra unpaired chromosome could also have a role per se
in the phenotypic consequences of trisomy by impacting on
global gene expression and/or chromatin structure (Reinholdt
et al., 2009; Dierssen, 2012). On the other hand, mice fully-
trisomic for all Hsa21 orthologue genes can also be created
by successively crossing the Dp10, Dp16 and Dp17 lines,
although decreased viability and poor breading have limited
the experimental studies on these triple trisomic mice (Yu
et al., 2010a; Belichenko et al., 2015). Moreover, the Dp10,
Dp16 and Dp17 mice have also permitted the dissection of
the relative contribution of the different triplicated regions to
the diverse disease phenotypes. Interestingly, while Dp16 and
triple trisomic mice (Dp10/Dp16/Dp17) show behavioral and
synaptic plasticity deficits comparable to the ones found in
Ts65Dn mice (Yu et al., 2010a,b; Belichenko et al., 2015), and
the single trisomic mice Dp10 as well as Dp17 show normal (or
even enhanced) performances (Yu et al., 2010b), highlighting
the importance of the Mmu16 syntenic region in DS-related
phenotype.

GABA SIGNALING IN DS MOUSE MODELS

GABAA Signaling and Trisomy
A first main finding regarding GABA-related phenotypes
in DS came from the observation that the number of
GABAergic interneurons is increased in both the cortex and
the hippocampus of Ts65Dn mice (Chakrabarti et al., 2010;
Pérez-Cremades et al., 2010; Hernández et al., 2012; Hernández-
González et al., 2015). Specifically, this increase arises from

amplified neurogenesis during embryonic development of neural
progenitor cells in the medial ganglionic eminence (MGE, where
most interneurons originate during development; Marín and
Müller, 2014), and it is more prominent for Parvalbumin and
Somatostatin-positive GABAergic interneurons (Chakrabarti
et al., 2010). In line with the increase in GABAergic
interneurons, the same authors reported also an increase in
spontaneous GABAergic postsynaptic events in CA1 pyramidal
neurons. Nevertheless, further functional analysis of GABAergic
transmission by electrophysiology did not find evidence for
alterations in the frequency of miniature inhibitory postsynaptic
currents (mIPSC, which represent activity-independent quantal
release of GABA), release probability at GABAergic synapses and
evoked GABAA transmission in the hippocampal CA1 region
of adult Ts65Dn mice (Chakrabarti et al., 2010; Best et al.,
2012). Therefore, the increase of spontaneous GABAergic events
observed in Ts65Dn mice may be due to a general enhancement
in interneuron excitability rather than a specific increase in
the number of GABAergic synapses. Indeed, further electron
microscopy studies in the temporal cortex and hippocampus of
adult Ts65Dn mice found the density of symmetric synapses
(putative GABAergic) to be unaffected (Kurt et al., 2000, 2004;
Belichenko P. V. et al., 2009). Similarly, immunohistochemical
evaluation of GABAergic terminals confirmed comparable
density between WT and Ts65Dn mice in the DG, even
if the distribution of GABAergic synapses appeared altered,
with a selective redistribution of GABAergic synapses from
the dendrite shaft and the spine heads to the spine neck of
trisomic neurons (Belichenko et al., 2004; Belichenko P. V. et al.,
2009; Kleschevnikov et al., 2012b). Such selective retribution of
GABAergic synapses to the spine neck was later also confirmed
in the DG of Ts1Cje mice (Belichenko et al., 2007). The
altered location of GABAergic synapses in DS mice may impair
synaptic input integration. Indeed, GABAergic contacts on the
spine neck may account for integration of spine-converging
inputs, in replacement of contacts on the spine head and on
the dendritic shaft that integrate inputs at local synaptic and
dendritic levels, respectively. Anyhow, the increased number
of GABAergic neurons seems not to be directly associated
with increased synaptic contacts in the DS brain. The reason
is not fully understood, but GABAergic synaptic density may
normalize in adulthood for compensatory mechanisms, after
defective brain development. Indeed, differently than in adult
Ts65Dn mice, both mIPSC frequency and evoked GABAA
transmission (but not release probability) were found larger in
the CA1 region of 2 weeks old Ts65Dn mice (Mitra et al.,
2012). Further support to the compensation hypothesis is the
observation that an increased GABAergic synaptic density was
in fact found specifically in the inner molecular layer and
granular layer of the hippocampal DG of adult Ts65Dn mice
(Martínez-Cué et al., 2013; García-Cerro et al., 2014; Mojabi
et al., 2016). Indeed, this brain area is highly innervated by
GABAergic fibers, and one could expect that developmental
compensatory mechanisms may be more difficult to put in
place. On the other hand, all these seemingly conflicting results
may simply indicate that GABAA-mediated dysfunctions are not
uniform in all areas of the trisomic brain and/or may also be
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simply due to age-related changes. Indeed, mIPSC frequency
and evoked GABAergic transmission were found increased in
the DG of adult Ts65Dn mice, but with this alteration primarily
attributed to increased release probability at GABAergic
terminals, rather than increased synapse number (Kleschevnikov
et al., 2004, 2012b), indicating possible sub-regional differences

in the density of GABAergic synapses and its functional
consequences (see Figure 1). Additionally, mIPSC frequency
was found decreased (rather than increased) in the hippocampal
CA3 region of Ts65Dn mice (Hanson et al., 2007; Stagni
et al., 2013). Finally, outside the hippocampus, increased
excitability, enhanced release probability and decreased tonic

FIGURE 1 | Subregion-specific GABA-related dysfunctions in the hippocampus of the Ts65Dn mouse model. IPSC, inhibitory postsynaptic currents;
sIPSC, spontaneous IPSC; mIPSC, miniature IPSC; eIPSC, evoked IPSC; freq, frequency; ampl, amplitude; mEPSC, miniature excitatory postsynaptic currents;
[Cl]I, intracellular chloride concentration; ECl, reversal potential of GABAAR-mediated Cl currents; VREST, resting membrane potential. Arrows indicate increases or
decreases of the reported measures.
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GABA inhibition were found in cerebellar granule cells of
Ts65Dn mice (Usowicz and Garden, 2012; Das et al., 2013;
Szemes et al., 2013).

Phasic and tonic GABA transmission is necessary to
synchronize neuronal firing and maintain physiological network
oscillation. Interestingly, gamma oscillation power is reduced in
Ts65Dn hippocampal slices, while duration and frequency of
up-states are reduced in Ts65Dn layer 4 of somatosensory cortex
slices (Hanson et al., 2013; Cramer et al., 2015).

Regarding the expression of the different GABA receptors, no
statistical difference was found in the hippocampus of Ts65Dn
mice compared toWT for α1, α2, α3, α5, γ2 subunits of GABAAR
(Belichenko P. V. et al., 2009; Best et al., 2012; Kleschevnikov
et al., 2012b). However, decreased immunostaining for β2/3
subunits of GABAAR have been reported in the DG of
3 month-old Ts65Dn mice, but not at later time points,
suggesting possible age-related changes (Belichenko P. V. et al.,
2009). Moreover, the binding of the selective α5 subtype radio-
ligand [3H]RO0154513 was unchanged in vivo in Ts65Dn mice
compared to WT, suggesting similar expression of GABAARs
containing the α5 subunit (Martínez-Cué et al., 2013).

As detailed above, GABAAR-mediated transmission
undergoes a developmental switch from depolarizing (excitatory)
to hyperpolarizing (inhibitory) during neuronal maturation and
it can shift between inhibition and excitation under some
circumstances and/or in particular cellular compartments
(Andersen et al., 1980; Staley et al., 1995; Gulledge and
Stuart, 2003; Viitanen et al., 2010; Ruusuvuori et al., 2013).
Consequently, the complex relationship of ionic movements
determined by GABAAR signaling and chloride transporters
must be highly regulated to avoid deleterious consequences on
neuronal physiology (Deidda et al., 2014). In this regard,
we have recently found that NKCC1 is upregulated in
the brain of both Ts65Dn mice and individuals with DS
(Deidda et al., 2015b). Accordingly, we found that [Cl−]i was
increased in CA1 pyramidal neurons from Ts65Dn mice and
ECl was depolarized by 7.7 mV compared to WT neurons
(Deidda et al., 2015b). As a result, ECl was less negative than
VREST in trisomic neurons, thus predictive of outward Cl−

depolarizing currents upon GABAAR activation. Accordingly,
the mean firing frequency of individual CA1 neurons was
increased by exogenous application of GABA in trisomic
hippocampal slices, whereas it was decreased by blockade
of GABAAR-mediated transmission with bicuculline, the
opposite of what physiologically observed in WT neurons
(Deidda et al., 2015b). Therefore, despite the complex dual
excitatory and shunting/inhibitory effect of GABA following
ECl depolarization, GABAA signaling was mainly excitatory in
Ts65Dn neurons in our experimental conditions of prolonged
bath-application of the drugs in acute brain slices. In this
regard, the contribution of evoked, synaptically released or tonic
GABA signaling to the depolarizing effect of GABAARs has
not been studied yet in Ts65Dn slices. Similarly, experiments
are needed to evaluate in vivo the strength and direction of
GABAA transmission in DS. Moreover, little is known about
the contribution of GABAergic signaling on network dynamics
in trisomic neurons. However, one calcium imaging study on

hippocampal cultures showed decreased response to bicuculline
application on network burst-amplitude and duration in
Ts65Dn mice, as well as decreased network bursts upon GABA
application in both WT and Ts65Dn culture (Stern et al.,
2015).

Despite of whether GABAAR-induced depolarization may
reach the threshold for neuronal excitation or not, GABAAR-
driven depolarization may still work in favor of excitation
more efficiently than GABAAR-driven shunting would work in
favor of inhibition. Indeed, in Ts65Dn neurons the shunting
effect of GABAA opening may be very mild on dendritic signal
processing, since most synapses are located on the spine neck.
Instead, GABAA depolarizing PSPs may generate in the spine
neck for the depolarized ECl and propagate to spine heads
and dendritic shaft, consequently affecting NMDA receptor and
voltage-gated channel openings, and adding up to concurrent
excitatory PSPs. Notably, the concomitant hyperpolarized shift of
VREST in Ts65Dn neurons, due to GIRK2 triplication (Best et al.,
2012), may also contribute to the depolarizing action of GABA.
Anyhow, pharmacological inhibition of NKCC1 transport
activity with the specific antagonist Bumetanide completely
restored the hyperpolarizing and inhibitory action of GABA in
Ts65Dn neurons (Deidda et al., 2015b).

GABAB Signaling and Trisomy
Another direct link between DS genetic triplication and GABA
signaling came from the discovery that the KCNJ6 gene, which
encodes the subunit 2 of the GIRK channel (GIRK2/Kir3.2),
maps to Hsa21 (Ohira et al., 1997; Hattori et al., 2000). The
presence of an extra KCNJ6 copy in Ts65Dn mice leads to
overexpression of GIRK2 mRNA and protein in hippocampus,
cortex and midbrain (Harashima et al., 2006). Interestingly,
also the GIRK1 protein (which is not triplicated in DS) is
overexpressed in Ts65Dn brains, with normal levels of mRNA.
Thus, the increased GIRK1 protein expression is most likely
due to enhanced hetero-dimerization with GIRK2 subunit
(which drives GIRK subunit trafficking) and downstream
decreased protein turnover (Harashima et al., 2006). As a
consequence, GABAB/GIRK currents are increased in cultured
primary hippocampal neurons (Best et al., 2007), as well as in
CA1 pyramidal neurons and in DG granule cells from acute slices
of the Ts65Dn hippocampus (Best et al., 2012; Kleschevnikov
et al., 2012b). This increase of GABAB/GIRK signaling in
Ts65Dn neurons could strongly affect neuronal excitability
and plasticity by enhancement of GIRK-mediated shunting
inhibition, reduction of excitatory PSPs, back-propagating action
potentials, and change of neuronal passive properties (Lüscher
et al., 1997; Koyrakh et al., 2005). Anyhow, genetically restoring
GIRK2 gene dosage to disomy in Ts65Dn mice (by crossing
to GIRK2+/− mice) rescued the observed increase in GABAB-
triggered currents in CA1 pyramidal neurons (Joshi et al., 2016).
In agreement with triplication of KCNJ6 and the increase of
GABAB/GIRK signaling, VREST is hyperpolarized by 2.3 mV in
CA1 pyramidal neurons and by 6.2 mV in DG granule cells
(DGGC; Best et al., 2012; Kleschevnikov et al., 2012b). Of note,
whereas no statistical difference was found in the hippocampus
of Ts65Dn mice compared to WT for GABABR subunit 1,
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GABABR subunit 2 was slightly decreased, most likely due to a
compensatory adaptation mechanism in response to the increase
of GIRK2 levels (Best et al., 2012; Kleschevnikov et al., 2012b).

Apart from GABABRs, GIRKs channels may also mediate
signaling from many other neurotransmitters including
acetylcholine, dopamine, opioid, serotonin, somatostatin
and adenosine through their metabotropic GPCRs (Lüscher
et al., 1997). Therefore, GIRK2 triplication in DS may
account for a large plethora of different effects depending
on the neurotransmitter system involved. For example,
GIRK2 channels also mediate the hypothermic response
induced by administration of the serotonin 5-HT1A and 5-HT7
receptor agonist 8-OH-DPAT (Costa et al., 2005). Indeed,
8-OH-DPAT hypothermic response is increased in Ts65Dnmice
(Stasko et al., 2006).

Synaptic Plasticity and GABA Signaling in
DS
A large body of evidence linking altered GABA physiology
to DS-related cognitive phenotypes came from the study of
hippocampal synaptic plasticity in trisomic mice. LTP and LTD
are widely accepted models of synaptic plasticity, characterized
by the strengthening or weakening (respectively) of synaptic
efficiency following specific stimulation protocols. In particular,
LTP represents the cellular correlate of memory and it is
necessary for different cognitive processes, including learning
(Lynch, 2004; Whitlock et al., 2006; Nabavi et al., 2014). In
line with the impairment in cognitive abilities characteristic of
persons with DS and of DS mouse models, synaptic plasticity
paradigms (both LTP and LTD) were found altered in Ts65Dn
hippocampal slices (Siarey et al., 1997, 1999, 2006).

Given the already described pivotal role of GABAergic
inhibition in regulating synaptic plasticity and given the defective
GABAergic transmission in DS animals, researchers have
evaluated the effect of GABAergic drugs on different forms of
hippocampal LTP in DS mice. Interestingly, LTP occurring at
Shaffer collateral-CA1 synapses (CA3-CA1 LTP) was rescued in
Ts65Dn slices by acute application in the recording bath of the
GABAAR antagonist picrotoxin (PTX). Similarly, potentiation
at perforant path-DGGC synapses (DG-LTP) was restored by
application of either PTX or the GABABR antagonist CGP55845
(Kleschevnikov et al., 2004, 2012a; Costa and Grybko, 2005),
establishing a causal link between GABAergic transmission and
plasticity deficits in DS. Remarkably, CA3-CA1 LTP was also
rescued by application of the NKCC1 inhibitor Bumetanide,
indicating the involvement of depolarizing GABAergic signaling
in the impairment of synaptic plasticity in DS (Deidda et al.,
2015b). An even more striking evidence came about when
it was shown that DG-LTP was rescued in acute slices
from Ts65Dn mice that had been chronically treated with
the GABAAR blocker pentylenetetrazole (PTZ). The effect
was evident for up to 1–3 months after treatment cessation
(Fernandez et al., 2007). Accordingly, chronic in vivo treatment
with RO4938581, a selective negative allosteric modulator
of α5-containing GABAARs, rescued in vitro CA3-CA1 LTP
in Ts65Dn mice, although it was not assessed after drug
withdrawal (Martínez-Cué et al., 2013).

Finally, comparative evaluation of synaptic plasticity deficits
in the other DS mouse models has shown that DG-LTP
was similarly impaired and rescued by PTX application in
Ts1Cje, Ts1Rhr, and triple trisomic (Dp10/Dp16/Dp17) mice
(Belichenko et al., 2007; Belichenko P. N. et al., 2009; Belichenko
et al., 2015). Conversely, CA3-CA1 LTP was decreased in Ts1Cje,
Dp16 and triple trisomic mice, unchanged in Ts1Rhr and
Dp10 mice, and even significantly increased in Dp17 mice, but
none of these later studies evaluated the possible contribution of
GABAergic signaling (Siarey et al., 2005; Olson et al., 2007; Yu
et al., 2010a,b).

Of note, beside the two studies performed in primary
neuronal cultures (Best et al., 2007; Stern et al., 2015), all
other electrophysiological investigations of GABAergic signaling
alteration in DS mouse model have been performed on acute
brain slices. Therefore, further studies are needed to assess
whether GABAergic dysfunctions can be fully reproduced on
in vitro neuronal cultures and, most importantly, if they are also
occurring in vivo in the intact brain.

PHARMACOLOGICAL INTERVENTIONS
TARGETING GABA TRANSMISSION TO
RESCUE COGNITIVE DEFICITS IN DS
MOUSE MODELS

Given the large body of evidence showing the involvement of
GABA signaling in neurophysiology, cognition and synaptic
plasticity in DS, many studies have evaluated learning
and memory processes in DS mice after pharmacological
interventions targeting GABAergic transmission. Although
therapy with GABAAR antagonists may be hampered by possible
pro-epileptic and anxiogenic side effects in patients already at
increased risk for these conditions, a first seminal study evaluated
the efficacy of different GABAAR antagonists (PTX, PTZ and
Bilobalide) at non-epileptic doses on long-term declarative
memory in the novel object recognition test in Ts65Dn mice:
chronic (but not acute) blockade of GABAA transmission
rescued object recognition memory after 2-weeks of treatment
(Fernandez et al., 2007). Strikingly, the positive effect of
PTZ (a drug previously used in the clinic) was maintained
after an additional 2 months of drug withdrawal, indicating
that the treatment likely induced long-term neuronal-circuit
rearrangements able to sustain cognitive performance in trisomic
mice. The positive effect of chronic PTZ treatment on learning
and memory was further confirmed in the Morris water maze
by a later study (Rueda et al., 2008). However, the same study
showed a worsening effect of PTZ in Ts65Dn mice in a test
for equilibrium, indicating a possible side effect of the drug.
Interestingly, a follow-up study found that the effective dose of
PTZ could be reduced by 10 times without compromising its
efficacy, thus defining a potential safer therapeutic window with
respect to the possible pro-epileptic and anxiogenic side effects
of the drug (Colas et al., 2013).

Prompted by the effectiveness of PTZ treatment and by
the observation that mice knock-out for the GABAAR α5
subunit—which is highly expressed in the hippocampus (Wisden
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et al., 1992)—show increased learning and memory performance
(Collinson et al., 2002), a second series of studies has evaluated
the efficacy of two inverse agonists selective for the α5 subunit
of the GABAAR and acting as negative allosteric modulators.
These two drugs had been developed by different pharmaceutical
companies as cognitive enhancers: α5IA (Chambers et al., 2003)
and RO4938581 (Ballard et al., 2009). Both acute and chronic
treatments with these drugs were proven effective in ameliorating
cognitive performance of Ts65Dn mice in both the novel object
recognition and Morris water maze tests without showing
pro-epileptic or anxiogenic side effects that may be associated
with GABAAR antagonism (Braudeau et al., 2011a,b; Martínez-
Cué et al., 2013).

Moreover, following the observation that the chloride
importer NKCC1 is upregulated in DS and that GABAA
transmission is depolarizing in adult Ts65Dn mice, we
have recently assessed the efficacy of the NKCC1 inhibitor
Bumetanide (a FDA-approved loop diuretic) on learning
and memory in trisomic mice. We found that chronic
NKCC1 inhibition in Ts65Dn mice was able to rescue
discriminative memory in the object recognition test, spatial
memory in the object location test and associative memory
in the contextual fear conditioning task (Deidda et al.,
2015b). Interestingly, the effect of Bumetanide was evident
also after acute treatment and quickly lost upon treatment
cessation, indicating that the effect of Bumetanide relied
on direct NKCC1 inhibition rather than on neuronal-circuit
rearrangements. These findings are in line with previous studies
on the positive effect of GABAAR antagonists on learning
and memory in DS mice. Indeed, GABAAR antagonists will
reduce aberrant depolarizing GABAA signaling in Ts65Dn mice
regardless of whether GABAAR signaling is increased in DS.
On the other hand, since modulation of [Cl−]i is predicted to
have only little effect on shunting inhibition, Bumetanide would
preserve the ability of GABAA currents to shunt concurrent
excitatory inputs, hence possibly reducing potential pro-epileptic
side effects. Conversely, GABAAR antagonists together with
reducing receptor transmission will also reduce the shunting
inhibition, thus possibly increasing the risk of seizures and
profoundly altering neuronal input integration.

With respect to increased GABABR signaling in DS, both
acute and chronic treatment with the specific GABABR
antagonist CGP55845 restored cognitive performance in the
novel object recognition test and associative memory in the
contextual fear conditioning test in Ts65Dnmice (Kleschevnikov
et al., 2012a), indicating also the possible involvement of
metabotropic GABA signaling in DS cognitive impairment.

GABA SIGNALING IN DS PATIENTS AND
PATIENT-DERIVED iPSC

Less detailed information is obviously available regarding the
GABAergic system in individuals with DS. Reduced brain size
and decreased density of neurons are hallmarks of DS andmainly
arise from reduced neurogenesis during brain development
(Colon, 1972; Sylvester, 1983;Wisniewski et al., 1984;Wisniewski
and Schmidt-Sidor, 1989; Wisniewski, 1990; Kesslak et al., 1994;

Wisniewski and Kida, 1994; Raz et al., 1995; Aylward et al., 1997,
1999; Teipel et al., 2003; Teipel and Hampel, 2006; Contestabile
et al., 2007; Guidi et al., 2008). Nevertheless, only two histological
studies on DS autoptic brain samples have selectively evaluated
cell counts of bona fide GABAergic interneurons. One first
study found decreased number of Golgi-stained aspinous stellate
(putative GABAergic) cells in the somatosensory, visual and
auditory cortices (Ross et al., 1984). Accordingly, the number
of Parvalbumin and Calbindin-positive non-pyramidal neurons
was also reduced in the frontal and temporal cortices of DS
patients (Kobayashi et al., 1990). Although such decrease of
GABAergic neurons may come from a secondary effect due to
Alzheimer-like degeneration in DS, brain GABA concentration
has been shown to be specifically decreased in AD, but not
in aging DS patients (Seidl et al., 2001). Moreover, microarray
studies to evaluate changes in gene expression on human DS
cortical neuronal progenitor cells (hNPCs) in culture have shown
gene changes indicative of decreased GABAergic interneuron
genesis (Bhattacharyya et al., 2009). Moreover, the same study
showed increased expression of the α2 subunit of the GABAAR,
and downregulation of the α3 and α5 subunits in trisomic cells
compared to controls (Bhattacharyya et al., 2009). This GABAAR
composition favoring the α2 over the α5 subunits may be
indicative that GABAAR opening is fastened, possibly reducing
the opportunity of shunting inhibition and generating quick
PSPs, a condition that may be of particular relevance if GABAA-
mediated transmission is depolarizing in humans. Indeed, we
have shown that NKCC1 is overexpressed also in the brains
of DS patients, establishing a direct parallel with the Ts65Dn
model (Deidda et al., 2015b), and possibly suggesting depolarized
ECl in humans as in animal models. Finally, GABA levels were
found decreased or unchanged in neurochemical (Reynolds and
Warner, 1988; Seidl et al., 2001; Whittle et al., 2007) and 1HMRS
studies (Śmigielska-Kuzia and Sobaniec, 2007; Śmigielska-Kuzia
et al., 2010) on human trisomic brains.

The recently developed technique for reprogramming somatic
cells has opened the possibility of studying patient-derived
neurons as a valuable tool for modeling neurological diseases
(Takahashi et al., 2007; Park et al., 2008). This approach has been
also applied to DS and has permitted the generation of different
induced pluripotent stem cells (iPSCs) lines. In particular,
two studies have used trisomic iPSCs to assess GABAergic
neurogenesis and synaptogenesis upon induction of neuronal
differentiation. The results from these studies have highlighted
a general impairment in synaptogenesis of DS iPSC-derived
neurons that was mirrored by a decrease in the frequency
of both inhibitory and excitatory spontaneous postsynaptic
currents (sPSCs). However, the percentage of neurons expressing
GABAergic markers, the fraction of GABAergic synapses, or the
ratio of glutamatergic to GABAergic sPSCs were substantially
unaffected (Weick et al., 2013; Hibaoui et al., 2014).

Overall, although the available data from human
studies—while limited—seem not to support the data derived
from animal research of increased GABA-mediated transmission
due to the overproduction of GABAergic interneurons, further
electrophysiological studies on iPSCs-derived neurons are
needed. On the other hand, no study has yet assessed the
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occurrence of depolarizing GABAA signaling or increased
GABAB-mediated transmission in human DS neurons.

GABAergic DRUGS IN DS CLINICAL
TRIALS

Due to the encouraging preclinical data highlighting a strong link
between GABA signaling and DS cognitive impairment, some of
the pharmacological interventions effective in DS mouse models
have been translated into clinical trials on individuals with DS.
In particular, although the use of PTZ on DS patients has been
questioned due to the potential pro-epileptic side effects, the
dosage effective in rescuing learning and memory in Ts65Dn
mice is well below the epileptic dose (Colas et al., 2013). Indeed,
Balance Therapeutics is conducting a clinical trial in Australia to
evaluate the efficacy of PTZ (BTD-001) on individuals with DS.
This COMPOSE trial (Cognition andMemory in People with DS,
registered in the Australian-New Zealand clinical trial registry as
ACTRN12612000652875) is a phase IB study aimed at evaluating
safety, tolerability, preliminary efficacy and pharmacodynamics
of BTD-001 at two different doses in adults and adolescents with
DS. Recruitment for this study has been completed2 and the
results are eagerly awaited.

Moreover, Hoffmann-La Roche has conducted two clinical
trials for assessing the efficacy of the selective negative
allosteric modulator of the α5-containig GABAAR Basmisanil
(RG1662/RO5186582), a derivative of RO4938581, previously
shown to rescue learning and memory in Ts65Dn mice
(Martínez-Cué et al., 2013). The first trial (CLEMATIS)
was designed as a phase II placebo-controlled study
(NCT02024789) aimed at evaluating the efficacy and safety
of RG1662 at two different doses in adults and adolescents
with DS. Disappointingly, although the complete results of
the CLEMATIS trial have not been disclosed yet, a media
release from Roche later this June has announced that the
study did not meet its primary and secondary endpoints on
improving cognitive functions in DS patients, and that there was
no significant difference between the placebo and the treated
groups3. The lack of efficacy seen in the CLEMATIS trial induced
the discontinuation of the second ongoing placebo-controlled
dose-investigating pediatric study (NCT02484703), aimed at
evaluating pharmacokinetics, pharmacodynamics, efficacy,
and safety of RG1662 in children with DS. The interruption
was not decided for safety reasons, as the drug appeared to be
well-tolerated and no relevant side effects were observed.

SPECULATION FOR FUTURE DIRECTIONS
IN THE RESEARCH ON DS AND
GABAergic TRANSMISSION

Possible Convergence of Different Drug
Treatments on GABAergic Signaling in DS
Alternative mechanisms, apart from GABA signaling, have been
shown to underline LTP and/or cognitive deficits in Ts65Dn

2http://www.anzctr.org.au
3http://www.roche.com/media/store/statements.htm

mice. Indeed, CA3-CA1 LTP and/or behavioral performances
were rescued in Ts65Dn mice by a variety of manipulations
including: acute application of the GluN2B-selective antagonist
Ro25–6981 (Hanson et al., 2013) or of the green tea polyphenolic
compound epigallocatechin-3-gallate (EGCG, an inhibitor of
the DS triplicated kinase Dyrk1A; Xie et al., 2008), chronic
treatments with polyphenolic green tea extracts enriched in
EGCG (De la Torre et al., 2014; Catuara-Solarz et al., 2015),
the monoacylglycerol lipase inhibitor JZL184 (Lysenko et al.,
2014), the neuro-hormone Melatonin (Corrales et al., 2013), the
Sonic Hedgehog agonist SAG1.1 (Das et al., 2013), the serotonin
reuptake inhibitor Fluoxetine (Bianchi et al., 2010b; Begenisic
et al., 2014; Guidi et al., 2014), or also exposure to an enriched
environment (EE; Begenisic et al., 2011, 2015). Nevertheless,
most of these treatments are also known to directly or indirectly
modulate the GABAergic system, while for others such link has
not been established yet. For example, Ro25–6981 selectively
reduced the activation of GABAergic interneurons in the
Stratum Radiatum of the hippocampus (Hanson et al., 2013),
whereas JZL184 decreased GABAergic transmission by likely
modulating presynaptic cannabinoid receptors (Katona et al.,
1999; Zhang et al., 2009; Lee et al., 2015). Instead, both
treatment with Fluoxetine and exposure of Ts65Dn mice to
EE showed beneficial effects on LTP and memory in Ts65Dn
mice, possibly by reducing release from GABAergic terminals
(Begenisic et al., 2011, 2014, 2015). Indeed, Fluoxetine has been
previously found to reduce GABAergic neurotransmission in the
hippocampus independently from the inhibition of serotonin
reuptake (Méndez et al., 2012; Caiati and Cherubini, 2013),
and to decrease the levels of extracellular GABA in vivo
(Maya Vetencourt et al., 2008). Additionally, Fluoxetine may
also inhibit GIRK channels (Kobayashi et al., 2003; Cornelisse
et al., 2007), therefore possibly normalizing enhanced GABABR
signaling in Ts65Dn mice. In this regard, it is important
to note that GIRK channels are also coupled to serotonin
receptors 5-HT1A (Williams et al., 1988; Llamosas et al., 2015;
Montalbano et al., 2015) and GIRK2 triplication can therefore
impact on serotoninergic signaling in DS. Indeed, stimulation
of 5-HT1A receptors in the hippocampus can reduce neuronal
firing frequency and gamma oscillations through GIRK channels
activation (Johnston et al., 2014). Since fluoxetine treatment
reduces GIRK-mediated 5-HT1A and GABAB receptor signaling
in the dorsal Raphe (Cornelisse et al., 2007), this mechanismmay
be involved in the therapeutic effect of fluoxetine in Ts65Dn
mice. However, a possible link between changes in serotonin
signaling due to GIRK2 overexpression and the effects of
fluoxetine on learning and memory has not been assessed in DS
mice. On the other hand, chronic treatment with polyphenolic
green tea extracts enriched in EGCG decreased the expression
of the GABAergic synaptic markers GAD67 and VGAT in
the cortex of Ts65Dn mice (Souchet et al., 2015). Conversely,
EGCG positively modulated GABAA-mediated transmission
when administered acutely (Vignes et al., 2006; Park et al.,
2011). Of note, a recently concluded clinical trial (TESDAD,
NCT01699711) evaluating the efficacy of long-term green tea
extract treatment on DS patients showed some behavioral
improvements, although—as stated by the authors—below the
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threshold for clinical relevance in 2 out of 15 measured tests (de
la Torre et al., 2016). Finally, the positive effect of Melatonin is
unlikely to depend on decreased GABAergic signaling because it
acts as a positive allosteric modulator of GABAA receptors (Wang
et al., 2003; Scott et al., 2010; Cheng et al., 2012). Altogether, these
data indicate that a number of the large plethora of effective drug
treatments able to restore LTP and/or memory in Ts65Dn mice
may rely on a common ground of action through the modulation
of the GABAergic system.

Excitatory Deficits in DS
Altogether, the literature reported above indicates a key role for
GABAergic signaling in neuronal network deficits in trisomic
mice. However, deficits in excitatory inputs and glutamatergic
transmission could also contribute to the imbalance in
excitatory/inhibitory transmission in the trisomic brain. Indeed,
several lines of evidence indicate delayed development and
decreased production of excitatory glutamatergic neurons in the
cortex (Chakrabarti et al., 2007, 2010; Tyler and Haydar, 2013;
Guidi et al., 2014), DG (Lorenzi and Reeves, 2006; Contestabile
et al., 2007; Bianchi et al., 2010b) and cerebellum (Baxter et al.,
2000; Roper et al., 2006; Contestabile et al., 2009) of Ts65Dn
mice. Accordingly, a decreased density of glutamatergic synapses
was found in the cortex and hippocampus of Ts65Dn mice by
electron microscopy and immunohistochemistry (Kurt et al.,
2000, 2004; Chakrabarti et al., 2007; Rueda et al., 2010; Guidi
et al., 2013; Stagni et al., 2013; García-Cerro et al., 2014), as
well as in human DS iPSCs-derived neurons (Weick et al., 2013;
Hibaoui et al., 2014). However, in vivo 1H MRS evaluation
of different metabolites and neurotransmitters in the Ts65Dn
hippocampus showed no difference in the concentration of
either GABA or glutamate (Santin et al., 2015). Despite of the
evidence supporting a possible decrease of excitatory inputs,
few electrophysiological studies have functionally evaluated
glutamatergic signaling in trisomic mice. Decreased frequency
of miniature excitatory postsynaptic currents (mEPSC) was
found in the CA3 hippocampal region (Hanson et al., 2007;
Stagni et al., 2013), whereas a decreased ratio of postsynaptic
NMDA/AMPA-evoked responses was found in the CA1 region
of Ts65Dn mice (Das et al., 2013). Interestingly, Ts65Dn mice
show increased electrophysiological and behavioral response to
pharmacological manipulations of NMDA receptors (Costa et al.,
2007; Scott-McKean and Costa, 2011). Although a complete
mechanistic explanation behind such effect will need further
investigations (Costa, 2014), inhibition of NMDA transmission
with the noncompetitive antagonist Memantine rescued learning
and memory performance in different behavioral tests both
after acute and chronic administration in Ts65Dn mice
(Costa et al., 2007; Rueda et al., 2010; Lockrow et al.,
2011). Following these studies, two clinical trials evaluated
the efficacy of Memantine on improving cognitive functions
in DS patients. Although the drug was well-tolerated, the
results of the first study (NCT00240760) did not show any
improvement on cognitive functions (Hanney et al., 2012).
However, a pitfall of this study may be represented by
the advanced age of participants. Indeed, since DS patients
are at increased risk of developing Alzheimer degeneration

early in life, irreversible pathological and/or degenerative
changes may have been already in place by the time of
treatment (Costa, 2014). A second trial (NCT01112683) on
a relatively small number of young-adults with DS showed
no significant difference in the primary outcome. However,
some encouraging improvements were detected in a secondary
measure of verbal memory (Boada et al., 2012). Overall,
the lack of a comprehensive assessment of glutamatergic
functions in DS mouse models will require a more detailed
investigation to clearly evaluate the involvement of glutamatergic
signaling in excitatory/inhibitory imbalance in the trisomic
brain.

GABA in Neurodevelopment and Critical
Period Plasticity in DS
DS is widely recognized as a neurodevelopmental disorder
since many (but not all) brain deficits originate during the
embryonic and early life. Since activation of both GABAAR and
GABABR plays a key role in brain development (Gaiarsa and
Porcher, 2013; Le Magueresse and Monyer, 2013), changes in
ambient GABA (also due to increased number of GABAergic
interneurons) may underline at least some of the brain
alterations that originate during DS fetal life and persist into
adulthood. Nevertheless, no study has so far addressed the role
of aberrant GABAergic signaling in neural circuit formation
in DS. In particular, it would be interesting to evaluate the
timing of the depolarizing/hyperpolarizing GABA switch (Ben-
Ari, 2002) and related developmental changes in GABAAR-
subunit expression (Succol et al., 2012) in trisomic mice.
On the other hand, GABABR signaling may affect DS brain
development by modulating adenylate cyclase and calcium
channels. Triplication of GIRK2 is instead unlikely to directly
contribute to GABAB-mediated early developmental DS brain
alterations, as coupling of GABABRs with GIRK channels does
not occur until the second postnatal week of life in rats
(Fukuda et al., 1993; López-Bendito et al., 2003; Bony et al.,
2013). Nevertheless, the possibility of premature coupling of
GABABRs to GIRK2 due its overexpression in DS may still
exist.

Anyhow, future studies are also needed to investigate
whether modulating GABAergic signaling and/or intracellular
Cl− accumulation during specific developmental periods, when
brain circuits are possibly more prone to plastic changes,
may result in beneficial effects in learning and memory
that persist into adulthood. In this regard, it would be
interesting to test the long-term effects of GABAAR inhibition
(i.e., PTZ or α5 negative allosteric modulator treatments) or
of lowering [Cl−]i with Bumetanide during brain development.
The importance of an early intervention during a likely
essential period of brain development in DS is highlighted
by the observation that different treatments (e.g., Fluoxetine,
SAG1.1 and Choline) administered during gestation or in
the early postnatal period rescued memory performances in
Ts65Dn mice later in life (Bianchi et al., 2010b; Moon
et al., 2010; Das et al., 2013; Guidi et al., 2013; Velazquez
et al., 2013; Ash et al., 2014). Nevertheless, one important
and apparently neglected aspect of early pharmacological
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interventions is related to possible side effects of drug
treatment during development, which should in fact be carefully
considered. Indeed, similarly to the beneficial effect of the
drugs, adverse effects may persist into adulthood and may
impact on the functionality of different organs or systems. A
recent example came from the NEMO trail (NCT01434225)
regarding the use of Bumetanide on newborns with hypoxic
ischemic encephalopathy. Indeed, the trial was interrupted
because of hearing loss adverse effect (Pressler et al., 2015).
Moreover, in light of the encouraging results obtained on
Ts65Dn offsprings prenatally and perinatally treated with
Fluoxetine (Bianchi et al., 2010b; Guidi et al., 2014), a clinical
trial has been recently announced4, aimed at assessing the
efficacy of Fluoxetine administration during the prenatal (2nd
trimester) and postnatal (up to 2 years of age) periods in
ameliorating the developmental abilities of children with DS.
However, the dosage and timing of administration should be
carefully considered in the light of the fact that Fluoxetine
administration during pregnancy has been associated to birth
defects (Reefhuis et al., 2015), and treatment in adult patients
increased seizure susceptibility (Pisani et al., 1999). Moreover,
Fluoxetine treatment in rodents during embryonic and early
postnatal life modifies the migration of cortical GABAergic
interneurons, and—later in life—increases aggression in males
as well as changes emotional and social behaviors (Kiryanova
et al., 2013; Ko et al., 2014; Frazer et al., 2015; Svirsky et al.,
2016).

Aberrant GABAergic transmissionmay also affect the critical-
period plasticity in the visual cortex. Interestingly, this critical-
period plasticity depends on the depolarizing action of GABA
during early development and its length can be extended
by reducing depolarizing GABAA signaling by treatment
with Bumetanide (Deidda et al., 2015a). Therefore, an early
intervention with Bumetanide may provide an extended window
for neuronal plasticity in DS. Although no study has assessed
critical-period plasticity in visual cortical circuits of trisomic
animals, Ts65Dn mice show deficits in cortical visual evoked
potentials (VEPs; Scott-McKean et al., 2010). Interestingly,
exposure to EE either during development or adulthood restored
cortical VEP responses in Ts65Dn mice, possibly through
modulation of GABAergic transmission (Begenisic et al., 2011,
2015).

GABA in Other DS Symptoms, Possibly
Affecting Cognition
Besides cognitive impairments, individuals with DS present a
number of other symptoms (i.e., epilepsy, sleep disorders and
anxiety) that affect the quality of their lives and may in turn
also impinge on their cognitive abilities (Pueschel et al., 1991;
Stafstrom et al., 1991; Haw et al., 1996; Carter et al., 2009; Lott
and Dierssen, 2010; Breslin et al., 2011; Rissman and Mobley,
2011; Vicari et al., 2013; Angriman et al., 2015; Edgin et al., 2015;
Robertson et al., 2015; Konstantinopoulou et al., 2016; Maris
et al., 2016). Interestingly, epilepsy, sleep disorders and anxiety

4http://www.utsouthwestern.edu/research/fact/detail.html?studyid=STU%20
032014-006

have all been associated to defective GABAergic transmission
(Wagner et al., 1997; Choi et al., 2008; Rudolph and Knoflach,
2011; Möhler, 2012; Kaila et al., 2014b).

DS patients and Ts65Dn mice demonstrate increased
incidence of epileptic seizures (Stafstrom et al., 1991; Westmark
et al., 2010; Rissman and Mobley, 2011; Lott, 2012; Robertson
et al., 2015). These observations appeared contradictory when
considering that increased GABA signaling in Ts65Dn mice
was expected to overall decrease neuronal network activity,
and therefore reduce incidence of seizures. However, the
increased incidence of seizures is in line with depolarizing
GABAA signaling in DS, because the shift in GABAAR-mediated
responses will also clearly impact on the excitatory/inhibitory
balance and promote brain neuronal circuit hyperexcitability.
Interestingly, administration of γ-butyrolactone (GBL, a prodrug
for the GABABR agonist γ-hydroxybutyrate: GHB) induced
epileptiform activity in Ts65Dn mice that was rescued by
genetically restoring GIRK2 gene dosage to disomy (Cortez
et al., 2009; Joshi et al., 2016). Although the general molecular
mechanism of GHB action is still matter of debate (Bay
et al., 2014; Venzi et al., 2015), it is intriguing to speculate
that, in the scenario of GABA dysregulation in DS, both the
GABABR-GIRK2 signaling and depolarizing GABAA signaling
may play a role in GBL-induced epileptic phenotype seen
in Ts65Dn mice. Indeed, GHB would further increase the
already enhanced GIRK2-mediated signaling, thus abnormally
drifting VREST towards hyperpolarization. This condition would
emphasize the depolarizing GABAA signaling, with amplification
of all depolarizing inputs and consequent trigger of epileptic
activity. On the other hand, Ts65Dn mice also show increased
incidence of audiogenic seizure that can be reduced by treatment
with the metabotropic glutamate receptor subtype mGluR5
antagonist Fenobam (Westmark et al., 2010), but not by
inhibition of NKCC1 with Bumetanide (Deidda et al., 2015b).
Moreover, also the characteristic hyperactivity of Ts65Dn
mice (Escorihuela et al., 1995; Reeves et al., 1995; Sago
et al., 2000) was reduced by the α5-containing GABAAR
negative modulator RO4938581 (Martínez-Cué et al., 2013), but
not by Bumetanide treatment (Deidda et al., 2015b). These
observations indicate thatmore complexmechanisms in addition
to altered GABA signaling may underline these increased
seizure susceptibility and hyperactive phenotypes in Ts65Dn
mice.

DS patients have also higher incidence of sleep disturbance
in relation to the general population (Carter et al., 2009; Breslin
et al., 2011; Edgin et al., 2015; Konstantinopoulou et al., 2016;
Maris et al., 2016), and Ts65Dnmice show some sleep alterations
mainly consisting in increased awaking and higher theta power
in sleep EEG (Colas et al., 2008). On the other hand, Ts65Dn
mice show little or no differences in circadian rhythms, which
are not altered by PTZ treatment (Stewart et al., 2007; Ruby et al.,
2010). Nevertheless, it is striking the observation that PTZ was
effective in restoringmemory performances in Ts65Dnmice only
when it was administrated during the light phase of the day,
but not during the dark phase, indicating a possible different
circadian contribution of the GABAergic system on learning
and memory in DS (Colas et al., 2013). Given the recently
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identified connection between GABA signaling and memory in
circadian arrhythmic animals (Ruby et al., 2008, 2013), more
studies are needed to uncover this possible relationship in DS.
Since GABAA signaling (and possibly Cl− homeostasis) has been
repeatedly described as a key regulator of sleep and circadian
rhythms (Wagner et al., 1997; Choi et al., 2008), it is possible that
alterations of GABA signaling and/or expression of NKCC1 may
play a role in sleep disorders in DS.

Finally, the strong involvement of GABAA signaling in
anxiety disorders (Rudolph and Knoflach, 2011; Möhler, 2012)
and the observation that DS patients show increased anxiety
(Vicari et al., 2013) may indicate that also this aspect possibly
originates, at least in part, from the alteration of GABAA
signaling. However, this issue has not been addressed yet in
DS mice. On the other hand, since GIRK2 knockout mice
show reduced anxiety-related behavior (Pravetoni andWickman,
2008) but GABABR knockout mice show an anxious phenotype
(Mombereau et al., 2005), coupling of GIRK channels to
metabotropic neurotransmitter receptor systems other than
GABABRsmay play a role in regulating anxiety-related behaviors
in DS. For example the overexpression of GIRK2 in the midbrain
of Ts65Dn mice (Harashima et al., 2006) may modulate signal
transduction of dopamine receptors (Perez et al., 2006; Podda
et al., 2010; Marcott et al., 2014; Zhao et al., 2016) and
impact on different DS phenotypes including anxiety-related
symptoms (Sim et al., 2013). Finally, a possible role for altered
GABAergic transmission in impaired adult neurogenesis (Song
et al., 2012; Pallotto and Deprez, 2014) and AD (Li et al.,
2016)-which both eventually result in impaired cognition- is still
an unexplored field of research in DS (Rissman and Mobley,
2011).

CONCLUDING REMARKS

The genetic cause of DS has been unequivocally identified in
the triplication of genes located on the human chromosome
21, although the exact group of genes and the pathological
mechanisms underlying DS intellectual disability are still unclear.
Despite of the limitations in reproducing in mice the exact
genetic condition characterizing DS human pathology, the
creation of DS mouse models with construct and face validity has
been giving nevertheless a wide contribution in understanding
gene-phenotype association, DS pathological processes, and in
extending therapeutic prospects. Here, we evaluated the evidence
pointing at a role for abnormal signaling from GABAA and
GABAB receptors in the neuronal defects associated with DS,
and we considered particularly the Ts65Dn mouse model of DS,
one of the most largely used. The origin of defective GABAergic
transmission tracks back into early neurodevelopment, with
possible excitatory/inhibitory unbalance and neuronal and
plasticity impairments that persist into adulthood. However,
the weight of the GABAergic inhibitory vs. the glutamatergic
excitatory transmission in this unbalance is still unclear. Indeed,
depolarizing GABAA signaling coexists with glutamatergic
excitatory alterations in Ts65Dn mice, and excitatory/inhibitory
unbalance appears to be brain-region specific in DS mouse
models. Moreover, possible decreased GABAergic transmission

in human DS patients may seem to be discordant with the
increased GABAergic transmission in Ts65Dn mice, although to
date, human data are still scarce and inconclusive. Fortunately,
the recent advances in the use of human-derived iPSCs may
give a large contribution in the future understanding of DS
neuropathology, with higher translational viability. Indeed,
whether the failure of the CLEMATIS trial and limited positive
results from other clinical studies can be ascribed to inefficacy of
the drugs (despite the strong preclinical data), a low predictive
potential of the Ts65Dn mouse model may also have played a
role. For example, changes in GABAAR subunit composition
specific for human DS (Bhattacharyya et al., 2009), but lacking in
Ts65Dn mice, could account for the failure of pharmacological
treatments with a α5 selective antagonist in individuals with
DS. Since the ‘‘perfect’’ mouse model does not exist yet, it
will be worth for the future to assess the efficacy of each
new pharmacological treatment in more than one DS mouse
model, and promote parallel human and animal studies. On
the other hand, the failures of clinical trials may also rest in
the inadequacy of current neuropsychological tests in measuring
cognitive improvements in DS (Gardiner, 2010, 2014; Fernandez
and Edgin, 2016). Indeed, cognitive performance measured
by tests are mostly dependent by the integration of different
cognitive domains, thus the selective improvement of one of
them may not be detected; on the other hand, an improvement
in neuropsychological tests may not imply a perceived substantial
improvement in the daily life.

In conclusion, the data reported above clearly highlight
the multifaceted nature of DS brain abnormalities. These
alterations represent the sum of different molecular mechanisms
that most likely include impaired GABAergic transmission.
Possibly, these abnormalities originate (at least in part) during
development and lead to complex synaptic, physiological and
circuit changes, ultimately causing cognitive deficits and other
neurological manifestations. As a consequence, the still unmet
need of identifying effective pharmacological interventions
to alleviate DS-related cognitive impairment represents an
incredible complex challenge for the future. Surely, the
insights about GABA-related impairments in DS models may
be of great relevance also for other neurodevelopmental
disorders where defective GABAergic transmission (including
depolarizing GABAA signaling) may play a pathological role
(e.g., Autism, Fragile X syndrome, epilepsy, and possibly Rett
syndrome; Cellot and Cherubini, 2014; Deidda et al., 2014; He
et al., 2014; Khazipov et al., 2015).
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Śmigielska-Kuzia, J., and Sobaniec, W. (2007). Brain metabolic profile obtained
by proton magnetic resonance spectroscopy HMRS in children with Down
syndrome. Adv. Med. Sci. 52, 183–187.

Song, J., Zhong, C., Bonaguidi, M. A., Sun, G. J., Hsu, D., Gu, Y., et al. (2012).
Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate
decision. Nature 489, 150–154. doi: 10.1038/nature11306

Souchet, B., Guedj, F., Penke-Verdier, Z., Daubigney, F., Duchon, A.,
Herault, Y., et al. (2015). Pharmacological correction of excitation/inhibition
imbalance in Down syndrome mouse models. Front. Behav. Neurosci. 9:267.
doi: 10.3389/fnbeh.2015.00267

Stafstrom, C. E., Patxot, O. F., Gilmore, H. E., and Wisniewski, K. E. (1991).
Seizures in children with Down syndrome: etiology, characteristics and
outcome. Dev. Med. Child Neurol. 33, 191–200. doi: 10.1111/j.1469-8749.1991.
tb05108.x

Stagni, F., Magistretti, J., Guidi, S., Ciani, E., Mangano, C., Calzà, L., et al. (2013).
Pharmacotherapy with fluoxetine restores functional connectivity from the
dentate gyrus to field CA3 in the Ts65Dn mouse model of down syndrome.
PLoS One 8:e61689. doi: 10.1371/journal.pone.0061689

Staley, K. J., Soldo, B. L., and Proctor, W. R. (1995). Ionic mechanisms of
neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981.
doi: 10.1126/science.7638623

Stasko, M. R., Scott-McKean, J. J., and Costa, A. C. (2006). Hypothermic responses
to 8-OH-DPAT in the Ts65Dn mouse model of Down syndrome. Neuroreport
17, 837–841. doi: 10.1097/01.WNR.0000220129.78726.bb

Stäubli, U., Scafidi, J., and Chun, D. (1999). GABAB receptor antagonism:
facilitatory effects on memory parallel those on LTP induced by TBS but not
HFS. J. Neurosci. 19, 4609–4615.

Steele, P. M., andMauk, M. D. (1999). Inhibitory control of LTP and LTD: stability
of synapse strength. J. Neurophysiol. 81, 1559–1566.

Stern, S., Segal, M., and Moses, E. (2015). Involvement of potassium and cation
channels in hippocampal abnormalities of embryonic Ts65Dn and Tc1 trisomic
mice. EBioMedicine 2, 1048–1062. doi: 10.1016/j.ebiom.2015.07.038

Stewart, L. S., Persinger, M. A., Cortez, M. A., and Snead, O. C. III.
(2007). Chronobiometry of behavioral activity in the Ts65Dn model of
Down syndrome. Behav. Genet. 37, 388–398. doi: 10.1007/s10519-006-
9119-y

Succol, F., Fiumelli, H., Benfenati, F., Cancedda, L., and Barberis, A. (2012).
Intracellular chloride concentration influences the GABAA receptor subunit
composition. Nat. Commun. 3:738. doi: 10.1038/ncomms1744

Svirsky, N., Levy, S., and Avitsur, R. (2016). Prenatal exposure to selective
serotonin reuptake inhibitors (SSRI) increases aggression and modulates
maternal behavior in offspring mice. Dev. Psychobiol. 58, 71–82.
doi: 10.1002/dev.21356

Sylvester, P. E. (1983). The hippocampus in Down’s syndrome. J. Ment. Defic. Res.
27, 227–236. doi: 10.1111/j.1365-2788.1983.tb00294.x

Szabadics, J., Varga, C., Molnár, G., Oláh, S., Barzó, P., and Tamás, G. (2006).
Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits.
Science 311, 233–235. doi: 10.1126/science.1121325

Szemes, M., Davies, R. L., Garden, C. L. P., and Usowicz, M. M. (2013). Weaker
control of the electrical properties of cerebellar granule cells by tonically active
GABAA receptors in the Ts65Dn mouse model of Down’s syndrome. Mol.
Brain 6:33. doi: 10.1186/1756-6606-6-33

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al.
(2007). Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell 131, 861–872. doi: 10.1016/j.cell.2007.11.019

Teipel, S. J., and Hampel, H. (2006). Neuroanatomy of down syndrome in vivo:
a model of preclinical Alzheimer’s disease. Behav. Genet. 36, 405–415.
doi: 10.1007/s10519-006-9047-x

Teipel, S. J., Schapiro, M. B., Alexander, G. E., Krasuski, J. S., Horwitz, B.,
Hoehne, C., et al. (2003). Relation of corpus callosum and hippocampal size
to age in nondemented adults with Down’s syndrome. Am. J. Psychiatry 160,
1870–1878. doi: 10.1176/appi.ajp.160.10.1870

Tyler, W. A., and Haydar, T. F. (2013). Multiplex genetic fate mapping
reveals a novel route of neocortical neurogenesis, which is altered in the
Ts65Dn mouse model of Down syndrome. J. Neurosci. 33, 5106–5119.
doi: 10.1523/JNEUROSCI.5380-12.2013

Usowicz, M. M., and Garden, C. L. (2012). Increased excitability and altered
action potential waveform in cerebellar granule neurons of the Ts65Dn mouse
model of Down syndrome. Brain Res. 1465, 10–17. doi: 10.1016/j.brainres.2012.
05.027

Velazquez, R., Ash, J. A., Powers, B. E., Kelley, C. M., Strawderman, M.,
Luscher, Z. I., et al. (2013). Maternal choline supplementation improves
spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse
model of Down syndrome.Neurobiol. Dis. 58, 92–101. doi: 10.1016/j.nbd.2013.
04.016

Venzi, M., Di Giovanni, G., and Crunelli, V. (2015). A critical evaluation of the
γ-hydroxybutyrate (GHB) model of absence seizures. CNS Neurosci. Ther. 21,
123–140. doi: 10.1111/cns.12337

Vicari, S. (2004). Memory development and intellectual disabilities. Acta Paediatr.
Suppl. 93, 60–63; discussion 63–64. doi: 10.1111/j.1651-2227.2004.tb03059.x

Vicari, S., Bellucci, S., and Carlesimo, G. A. (2000). Implicit and explicit memory: a
functional dissociation in persons with Down syndrome. Neuropsychologia 38,
240–251. doi: 10.1016/s0028-3932(99)00081-0

Vicari, S., Bellucci, S., and Carlesimo, G. A. (2005). Visual and spatial
long-term memory: differential pattern of impairments in Williams
and Down syndromes. Dev. Med. Child Neurol. 47, 305–311.
doi: 10.1017/s0012162205000599

Vicari, S., Pontillo, M., and Armando, M. (2013). Neurodevelopmental and
psychiatric issues in Down’s syndrome: assessment and intervention. Psychiatr.
Genet. 23, 95–107. doi: 10.1097/YPG.0b013e32835fe426

Vignes, M., Maurice, T., Lanté, F., Nedjar, M., Thethi, K., Guiramand, J., et al.
(2006). Anxiolytic properties of green tea polyphenol (-)-epigallocatechin
gallate (EGCG). Brain Res. 1110, 102–115. doi: 10.1016/j.brainres.2006.
06.062

Viitanen, T., Ruusuvuori, E., Kaila, K., and Voipio, J. (2010). The K+-
Cl− cotransporter KCC2 promotes GABAergic excitation in the mature
rat hippocampus. J. Physiol. 588, 1527–1540. doi: 10.1113/jphysiol.2009.
181826

Wagner, S., Castel, M., Gainer, H., and Yarom, Y. (1997). GABA in themammalian
suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387,
598–603. doi: 10.1038/42468

Wang, X. J., and Buzsáki, G. (1996). γ oscillation by synaptic inhibition in a
hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413.

Wang, D. D., and Kriegstein, A. R. (2009). Defining the role of GABA in
cortical development. J. Physiol. 587, 1873–1879. doi: 10.1113/jphysiol.2008.
167635

Wang, F., Li, J., Wu, C., Yang, J., Xu, F., and Zhao, Q. (2003). The GABAA receptor
mediates the hypnotic activity of melatonin in rats. Pharmacol. Biochem. Behav.
74, 573–578. doi: 10.1016/s0091-3057(02)01045-6

Waseem, T., Mukhtarov, M., Buldakova, S., Medina, I., and Bregestovski, P.
(2010). Genetically encoded Cl-Sensor as a tool formonitoring of Cl-dependent
processes in small neuronal compartments. J. Neurosci. Methods 193, 14–23.
doi: 10.1016/j.jneumeth.2010.08.002

Weick, J. P., Held, D. L., Bonadurer, G. F., Doers, M. E., Liu, Y., Maguire, C., et al.
(2013). Deficits in human trisomy 21 iPSCs and neurons. Proc. Natl. Acad. Sci.
U S A 110, 9962–9967. doi: 10.1073/pnas.1216575110

Frontiers in Cellular Neuroscience | www.frontiersin.org 20 March 2017 | Volume 11 | Article 54

https://doi.org/10.1111/j.1471-4159.2006.03971.x
https://doi.org/10.1016/s0028-3908(97)00157-3
https://doi.org/10.1016/j.neuropharm.2005.02.012
https://doi.org/10.1038/nrn2864
https://doi.org/10.1038/ncomms2598
https://doi.org/10.1016/s1734-1140(10)70369-8
https://doi.org/10.1016/s1734-1140(10)70369-8
https://doi.org/10.1038/nature11306
https://doi.org/10.3389/fnbeh.2015.00267
https://doi.org/10.1111/j.1469-8749.1991.tb05108.x
https://doi.org/10.1111/j.1469-8749.1991.tb05108.x
https://doi.org/10.1371/journal.pone.0061689
https://doi.org/10.1126/science.7638623
https://doi.org/10.1097/01.WNR.0000220129.78726.bb
https://doi.org/10.1016/j.ebiom.2015.07.038
https://doi.org/10.1007/s10519-006-9119-y
https://doi.org/10.1007/s10519-006-9119-y
https://doi.org/10.1038/ncomms1744
https://doi.org/10.1002/dev.21356
https://doi.org/10.1111/j.1365-2788.1983.tb00294.x
https://doi.org/10.1126/science.1121325
https://doi.org/10.1186/1756-6606-6-33
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1007/s10519-006-9047-x
https://doi.org/10.1176/appi.ajp.160.10.1870
https://doi.org/10.1523/JNEUROSCI.5380-12.2013
https://doi.org/10.1016/j.brainres.2012.05.027
https://doi.org/10.1016/j.brainres.2012.05.027
https://doi.org/10.1016/j.nbd.2013.04.016
https://doi.org/10.1016/j.nbd.2013.04.016
https://doi.org/10.1111/cns.12337
https://doi.org/10.1111/j.1651-2227.2004.tb03059.x
https://doi.org/10.1016/s0028-3932(99)00081-0
https://doi.org/10.1017/s0012162205000599
https://doi.org/10.1097/YPG.0b013e32835fe426
https://doi.org/10.1016/j.brainres.2006.06.062
https://doi.org/10.1016/j.brainres.2006.06.062
https://doi.org/10.1113/jphysiol.2009.181826
https://doi.org/10.1113/jphysiol.2009.181826
https://doi.org/10.1038/42468
https://doi.org/10.1113/jphysiol.2008.167635
https://doi.org/10.1113/jphysiol.2008.167635
https://doi.org/10.1016/s0091-3057(02)01045-6
https://doi.org/10.1016/j.jneumeth.2010.08.002
https://doi.org/10.1073/pnas.1216575110
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Contestabile et al. The GABAergic Hypothesis in Down Syndrome

Westmark, C. J., Westmark, P. R., andMalter, J. S. (2010). Alzheimer’s disease and
down syndrome rodent models exhibit audiogenic seizures. J. Alzheimers Dis.
20, 1009–1013. doi: 10.3233/JAD-2010-100087

Whitlock, J. R., Heynen, A. J., Shuler, M. G., and Bear, M. F. (2006). Learning
induces long-term potentiation in the hippocampus. Science 313, 1093–1097.
doi: 10.1126/science.1128134

Whittle, N., Sartori, S. B., Dierssen, M., Lubec, G., and Singewald, N. (2007). Fetal
Down syndrome brains exhibit aberrant levels of neurotransmitters critical
for normal brain development. Pediatrics 120, e1465–e1471. doi: 10.1542/peds.
2006-3448

Wigström, H., and Gustafsson, B. (1986). Postsynaptic control of hippocampal
long-term potentiation. J. Physiol. 81, 228–236.

Williams, J. T., Colmers, W. F., and Pan, Z. Z. (1988). Voltage- and ligand-
activated inwardly rectifying currents in dorsal raphe neurons in vitro.
J. Neurosci. 8, 3499–3506.

Winter, T. C., Ostrovsky, A. A., Komarniski, C. A., and Uhrich, S. B. (2000).
Cerebellar and frontal lobe hypoplasia in fetuses with trisomy 21: usefulness
as combined US markers. Radiology 214, 533–538. doi: 10.1148/radiology.214.
2.r00fe40533

Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992). The distribution
of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon,
diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062.

Wisniewski, K. E. (1990). Down syndrome children often have brain with
maturation delay, retardation of growth and cortical dysgenesis. Am. J. Med.
Genet. Suppl. 7, 274–281. doi: 10.1002/ajmg.1320370755

Wisniewski, K. E., Dalton, A. J., McLachlan, C.,Wen, G. Y., andWisniewski, H.M.
(1985). Alzheimer’s disease in Down’s syndrome: clinicopathologic studies.
Neurology 35, 957–961. doi: 10.1212/WNL.35.7.957

Wisniewski, K. E., and Kida, E. (1994). Abnormal neurogenesis and
synaptogenesis in Down syndrome. Dev. Brain Dysfunction 7, 289–301.

Wisniewski, K. E., Laure-Kamionowska, M., and Wisniewski, H. M.
(1984). Evidence of arrest of neurogenesis and synaptogensis in brains
of patients with Down’s syndrome. N. Engl. J. Med. 311, 1187–1188.
doi: 10.1056/NEJM198411013111819

Wisniewski, K. E., and Schmidt-Sidor, B. (1989). Postnatal delay of myelin
formation in brains from Down syndrome infants and children. Clin.
Neuropathol. 8, 55–62.

Xie, W., Ramakrishna, N., Wieraszko, A., and Hwang, Y. W. (2008). Promotion
of neuronal plasticity by (−)-epigallocatechin-3-gallate. Neurochem. Res. 33,
776–783. doi: 10.1007/s11064-007-9494-7

Yu, T., Li, Z., Jia, Z., Clapcote, S. J., Liu, C., Li, S., et al. (2010a). A
mouse model of Down syndrome trisomic for all human chromosome
21 syntenic regions. Hum. Mol. Genet. 19, 2780–2791. doi: 10.1093/hmg/
ddQ199

Yu, T., Liu, C., Belichenko, P., Clapcote, S. J., Li, S., Pao, A., et al. (2010b). Effects
of individual segmental trisomies of human chromosome 21 syntenic regions
on hippocampal long-term potentiation and cognitive behaviors in mice. Brain
Res. 1366, 162–171. doi: 10.1016/j.brainres.2010.09.107

Zarrindast, M. R., Bakhsha, A., Rostami, P., and Shafaghi, B. (2002). Effects
of intrahippocampal injection of GABAergic drugs on memory retention
of passive avoidance learning in rats. J. Psychopharmacol. 16, 313–319.
doi: 10.1177/026988110201600405

Zhang, S. Y., Xu, M., Miao, Q. L., Poo, M. M., and Zhang, X. H. (2009).
Endocannabinoid-dependent homeostatic regulation of inhibitory synapses by
miniature excitatory synaptic activities. J. Neurosci. 29, 13222–13231. doi: 10.
1523/JNEUROSCI.1710-09.2009

Zhao, B., Zhu, J., Dai, D., Xing, J., He, J., Fu, Z., et al. (2016). Differential
dopaminergic regulation of inwardly rectifying potassium channel mediated
subthreshold dynamics in striatal medium spiny neurons. Neuropharmacology
107, 396–410. doi: 10.1016/j.neuropharm.2016.03.037

Zheleznova, N. N., Sedelnikova, A., and Weiss, D. S. (2009). Function and
modulation of δ-containing GABAA receptors. Psychoneuroendocrinology 34,
S67–S73. doi: 10.1016/j.psyneuen.2009.08.010

Conflict of Interest Statement: AC and LC are named as co-inventors on
International Patent Application PCT/EP2014/078561, filed on December 18,
2014, and connected US, EP, JP National Phase Applications, claiming priority to
US Provisional Application US 61/919,195, priority date December 20, 2013.

The other author SM declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2017 Contestabile, Magara and Cancedda. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution and reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 21 March 2017 | Volume 11 | Article 54

https://doi.org/10.3233/JAD-2010-100087
https://doi.org/10.1126/science.1128134
https://doi.org/10.1542/peds.2006-3448
https://doi.org/10.1542/peds.2006-3448
https://doi.org/10.1148/radiology.214.2.r00fe40533
https://doi.org/10.1148/radiology.214.2.r00fe40533
https://doi.org/10.1002/ajmg.1320370755
https://doi.org/10.1212/WNL.35.7.957
https://doi.org/10.1056/NEJM198411013111819
https://doi.org/10.1007/s11064-007-9494-7
https://doi.org/10.1093/hmg/ddQ199
https://doi.org/10.1093/hmg/ddQ199
https://doi.org/10.1016/j.brainres.2010.09.107
https://doi.org/10.1177/026988110201600405
https://doi.org/10.1523/JNEUROSCI.1710-09.2009
https://doi.org/10.1523/JNEUROSCI.1710-09.2009
https://doi.org/10.1016/j.neuropharm.2016.03.037
https://doi.org/10.1016/j.psyneuen.2009.08.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

	The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome
	INTRODUCTION
	GABA SIGNALING IN THE BRAIN
	GABAA Receptors
	GABAB Receptors
	GABAA and GABAB Receptor Functions Across Neurodevelopment and Adulthood

	MOUSE MODELS OF DS
	GABA SIGNALING IN DS MOUSE MODELS
	GABAA Signaling and Trisomy
	GABAB Signaling and Trisomy
	Synaptic Plasticity and GABA Signaling in DS

	PHARMACOLOGICAL INTERVENTIONS TARGETING GABA TRANSMISSION TO RESCUE COGNITIVE DEFICITS IN DS MOUSE MODELS
	GABA SIGNALING IN DS PATIENTS AND PATIENT-DERIVED iPSC
	GABAergic DRUGS IN DS CLINICAL TRIALS
	SPECULATION FOR FUTURE DIRECTIONS IN THE RESEARCH ON DS AND GABAergic TRANSMISSION
	Possible Convergence of Different Drug Treatments on GABAergic Signaling in DS
	Excitatory Deficits in DS
	GABA in Neurodevelopment and Critical Period Plasticity in DS
	GABA in Other DS Symptoms, Possibly Affecting Cognition

	CONCLUDING REMARKS
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES


