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Spatial span tests (SSTs) such as the Corsi Block Test (CBT) and the SST of
the Wechsler Memory Scale are widely used to assess deficits in spatial working
memory. We conducted three experiments to evaluate the test–retest reliability and
clinical sensitivity of a new computerized spatial span test (C-SST) that incorporates
psychophysical methods to improve the precision of spatial span measurement. In
Experiment 1, we analyzed C-SST test–retest reliability in 49 participants who underwent
three test sessions at weekly intervals. Intraclass correlation coefficients (ICC) were
higher for a psychophysically derived mean span (MnS) metric (0.83) than for the
maximal span and total correct metrics used in traditional spatial-span tests. Response
times (ReTs) also showed high ICCs (0.93) that correlated negatively with MnS scores
and correlated positively with response-time latencies from other tests of processing
speed. Learning effects were insignificant. Experiment 2 examined the performance of
Experiment 1 participants when instructed to feign symptoms of traumatic brain injury
(TBI): 57% showed abnormal MnS z-scores. A MnS z-score cutoff of 3.0 correctly
classified 36% of simulated malingerers and 91% of the subgroup of 11 control
participants with abnormal spans. Malingerers also made more substitution errors than
control participants with abnormal spans (sensitivity = 43%, specificity = 91%). In
addition, malingerers showed no evidence of ReT slowing, in contrast to significant
abnormalities seen on other malingered tests of processing speed. As a result,
differences between ReT z-scores and z-scores on other processing speed tests
showed very high sensitivity and specificity in distinguishing malingering and control
participants with either normal or abnormal spans. Experiment 3 examined C-SST
performance in a group of patients with predominantly mild TBI: neither MnS nor
ReT z-scores showed significant group-level abnormalities. The C-SST improves the
reliability and sensitivity of spatial span testing, can accurately detect malingering,
and shows that visuospatial working memory is largely preserved in patients with
predominantly mild TBI.
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INTRODUCTION

Spatial span tests (SSTs) have been widely used to evaluate
visuospatial memory in patients with such diverse disorders as
dementia (Wiechmann et al., 2011), schizophrenia (Chey et al.,
2002), Parkinson’s disease (Yaguez et al., 2006), stroke (Kessels
et al., 2000), PTSD (Flaks et al., 2014), and ADHD (Yang et al.,
2011). Themost familiar SST is the Corsi Block Test (CBT) (Berch
et al., 1998), in which the participant is presented with a set of
nine blocks fixed on a board. The blocks are tapped in sequence
by the examiner, beginning with a sequence length of two blocks,
and the participant repeats the tapping sequence in the same
order. Two trials are tested at each length, with trial length
increasing if the participant reproduces either or both of the two
sequences correctly. Testing ceases when the participant misses
both trials of the same length. Maximal span is quantified as the
length of the longest sequence correctly reproduced. A similar
test procedure is used in the Wechsler Memory Scale (WMS)
with a 10-block layout (Wechsler, 1997). However, instead of
quantifying maximal span, the sum of the number of correct trials
is recorded (Wechsler, 1997; Wilde et al., 2004; Lo et al., 2012).

In a companion manuscript (Woods et al., 2015b), we
described the rationale for the development of a new
computerized version of the SST (C-SST) that differs in
three major respects from traditional SSTs. First, the C-SST
randomizes both the spatial display and trial sequence on each
trial. Second, the C-SST presents sequences at list lengths below
and above maximal span, using a staircase procedure to estimate
mean span (MnS), a psychophysical metric that shows lower
measurement variance in comparison with the maximal span
and total correct metrics used in conventional SSTs. Finally, the
C-SST accurately measures response times (ReTs), the average
time needed to select each square in the sequence.

In the companion study, we evaluated the effects of
demographic variables, including age, sex, education, and
computer-use, on C-SST performance in a normative control
sample of 187 participants ranging in age from 18 to
82 years. Experimental results showed that age and computer-
use accounted for much of the performance variance, and
simulations of the results obtained with different tests (e.g., CBT,
Wechsler SST, and C-SST) showed that the MnS metric provided
the most accurate estimate of “true span” (the span length where
a subject would correctly report 50% of trials).

Here, we describe three experiments using the C-SST. In
Experiment 1, 49 young control participants underwent three test
sessions at weekly intervals. Experiment 1a was used to evaluate
the goodness-of-fit of the regression functions defined in the
normative study. Experiments 1b and 1c permitted the analysis
of learning effects and test–retest reliability. In Experiment
2, the participants from Experiment 1 were instructed to
feign symptoms of traumatic brain injury (TBI). The goal of
Experiment 2 was to quantify the effects of malingering on
performance and to evaluatemalingering indices that could assist
in determining whether abnormal spatial span scores were due to
malingering. Finally, in Experiment 3, we examined performance
in patients with TBI of varying severity. In all three experiments,
we used multiple linear regression based on the regression

functions from the previous normative population to estimate
MnS and ReT z-scores that were corrected for the contributions
of age and computer-use.

EXPERIMENT 1: TEST–RETEST
RELIABILITY

In Experiment 1, we studied a group of 49 young participants
who underwent three test sessions at weekly intervals to examine
test–retest reliability and learning effects. Although the test–
retest reliability of the CBT maximal span has not previously
been measured directly, Park et al. (2002) found high intraclass
correlation coefficients (ICC, 0.79) in split-half comparisons of
forward and backward CBT spans measured during the same
test session. Lo et al. (2012) found moderate test–retest reliability
(r = 0.46 to r = 0.66) in the total correct metric of the Wechsler
Spatial Span Test in different age cohorts tested at intervals of 2–
7 years, and also reported insignificant learning effects. Based on
the absence of learning effects in tests where both the block layout
and the path sequences are repeated over tests, we anticipated
minimal learning on the C-SST, where both the display layout
and path sequences changed randomly on each trial.

Methods
Participants
Forty-nine young participants (mean 26.3 years, range 18–
46 years, 53% male) were recruited from existing subject pools
and from online advertisements on Craigslist. Young participants
were selected from those who volunteered to undergo four
test sessions. The C-SST was administered midway through the
California Cognitive Assessment Battery (CCAB)1 and required
approximately 5 min to complete. The results of other CCAB
tests from the same participant population have previously been
reported for digit span (Woods et al., 2011a), finger tapping
(Hubel et al., 2013), simple reaction time (Woods et al., 2015c),
choice reaction time (Woods et al., 2015e), question completion
time (Woods et al., 2015g), and trail making (Woods et al.,
2015d).

Participants were required to meet the following inclusion
criteria: (a) fluency in English; (b) no history of psychiatric
or neurological disease; (c) no current substance abuse; (d)
no history of hospitalization for head trauma; (e) on a stable
dosage of any required medication; (f) auditory functioning
sufficient to understanding normal conversational speech; and (g)
visual acuity normal or corrected to 20/40 or better. Participants
volunteered to take part in three weekly test sessions to evaluate
test-retest reliability, and in a fourth session to study the
effects of malingering (see Experiment 2, below). Experiment 1

1The CCAB included the following computerized tests and questionnaires: finger
tapping, simple reaction time, Stroop, digit span forward and backward, verbal
fluency, verbal list learning, spatial span, trail making, vocabulary, design fluency,
the Wechsler Test of Adult Reading (WTAR), visual feature conjunction, risk
and loss avoidance, delay discounting, the Paced Auditory Serial Addition Task
(PASAT), the Cognitive Failures Questionnaire (CFQ), the Posttraumatic Stress
Disorder Checklist (PCL), and a traumatic brain injury (TBI) history and symptom
questionnaire.

Frontiers in Human Neuroscience | www.frontiersin.org 2 January 2016 | Volume 9 | Article 690

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Woods et al. Visuospatial Memory Span

participants were primarily college students who were younger
[p < 0.01] and reported higher levels of computer-use [p < 0.03]
than the participants in the normative population, as shown in
Table 1. Ethnically, 68% of the participants were Caucasian, 11%
Latino, 9% African American, 10% Asian, and 2% other. All
participants gave informed written consent following procedures
approved by the Institutional Review Board of the VA Northern
California Health Care System (VANCHCS) and were paid for
their participation.

Apparatus and Stimuli
The methods were identical to those used during normative data
collection (Woods et al., 2015b). Testing was performed in a
quiet room using a standardWindows desktop computer running
Presentation software (Versions 13 and 14, NeuroBehavioral
Systems, Albany, CA, USA)2 . Ten red squares were presented
on each trial, with five squares presented in each hemifield. The
display was divided into 10 rows and 10 columns (five squares
in each hemifield). A single square was placed in each horizontal
row and vertical column, with potential locations randomly filled
in each hemifield. Small and random horizontal and vertical
offsets of each square prevented squares from being aligned.
Thus, in contrast to typical spatial span tasks, where the same
block layout is used across all trials and participants, different
displays were presented on each trial for each participant in the
C-SST. In addition, sequences were selected randomly, with the
constraint that a square could only be included once in each
sequence.

Four practice trials were followed by 14 test trials. The
display for the practice trials contained six squares (three in each
hemifield). Practice testing began with two-square sequences and
included feedback. Test trials did not include feedback and began
at a sequence length of three. Sequence length increased by one
following each correct trial and decreased by one following two
successive misses. As shown in Figure 1, the program selected
squares by moving the white cursor to each chosen square over
a period of 677 ms, followed by a 300 ms period when the
selected square flashed green–red–green (100 ms each), before
finally returning to red to indicate that a selection had beenmade.
When sequence selection was complete, the cursor returned to
the center of the display and a “DONE” button appeared at the

2An open source executable version of the C-SST can be downloaded at http://
www.ebire.org/hcnlab/.

TABLE 1 | Participants in the experiments. Range, mean, and variance are
shown for age and education.

Experiment Group N Age
(years)

Education
(years)

C-use
scale

Male
(%)

Normative Control 187 18–82;
41.1 (21.3)

10–20;
14.6(2.0)

5.12 58%

Experiment 1/2 Control/
Malinger

49 18–46;
26.3 (5.9)

12–18;
14.6 (1.5)

5.92 53%

Experiment 3 TBI 28 20–61;
33.4 (11.0)

12–18;
13.6 (1.45)

5.16 96%

C-use, computer-use. Normative data from Woods et al. (2015b).

bottom of the screen. During the response phase, the participant
used a computer gaming mouse (Razer Sidewinder, Carlsbad,
CA, USA) to control the cursor and selected each square by
pressing the left mouse button. ReTs, the average time to select
each square, were recorded (in ms) for each participant. When
finished, the participant clicked the “Done” button, whereupon a
blank display with a “Next” button appeared.

Scoring metrics
The data from individual trials were analyzed using different
automated scoring metrics similar to those used in the
companion study (Woods et al., 2015b), including maximal
span from the Corsi Block Test, maximal length (the longest
correct trial among all 14 trials), the mean sequence length
of the last five trials, and the total number of correct trials
(similar to the Wechsler SST). In addition, we estimated
MnS, the extrapolated list length where 50% of sequences
would be correctly reported, based on psychophysical
estimation (Killion et al., 2004). The MnS baseline was
set at 2.5 blocks and was incremented by the fraction
of the trials accurately reported at each succeeding list
length. Finally, we measured mean ReTs averaged over the
item selections for all 14 trials. Only two variables in the
previous normative study (Woods et al., 2015b), age and
computer-use, had significant influences on MnS and log-
transformed ReT values. Therefore, z-scores for MnS and
log-ReT were created using the multiple regression functions
derived from the normative data set, specifically: MnS = 5.68
−0.022∗Age + 0.093∗Computer-use; ReT = 1560 + 8.16∗Age –
62.3∗Computer-use.

Statistical Analysis
We used analysis of variance (ANOVA) for repeated measures
to analyze changes in the different measures. Greenhouse–
Geisser corrections of degrees of freedom were uniformly used
in computing p-values in order to correct for covariation within
factors or interactions. Effect sizes are reported as partial ω2

values. ICCs and power analyses are included for significant
results. Ninety five percent confidence ranges for correlation
coefficients were calculated using SPSS (version 22).

RESULTS

Table 2 presents mean scores for the different metrics in the
normative population and the three test sessions of Experiment 1.
MnS scores for individual participants (open, red squares) from
Experiment 1a are shown in Figure 2 as a function of age, and
mean ReTs for individual participants (open, red squares) are
shown as a function of age in Figure 3. As in our previous study
(Woods et al., 2015b), MnS scores had lower variance and a lower
coefficient of variation than maximal span scores (see Table 2).

The participants in Experiment 1 had greater MnS scores
and faster response times than the participants in the previously
tested normative population, due primarily to their younger
age. Figure 4 shows the MnS and ReT z-scores for individual
participants after corrections for age and computer-use. MnS
z-scores (mean= 0.34) in the first test session were slightly higher
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FIGURE 1 | A computerized spatial span test (C-SST) sequence of
length five. The square sequence was shown to participants using the cursor
(a small white square), which moved from square to square over 977 ms
intervals. Each square flashed green as it was selected (bottom right). When
the sequence had been shown, the “Done” button illuminated (bottom center).
The participant’s task was to select the squares in the correct order using the
mouse. The dashed line has been included to illustrate the cursor
displacements, but was not visible to participants. Participants clicked “Done”
when their selection was complete.

than those predicted from the age and computer-use regression
functions obtained in the normative population, although the
difference showed a very small effect size [F(1,234) = 4.17,
p < 0.05, partial ω2 = 0.01]. Power analysis showed that 930
subjects would be required to have a 95% chance of obtaining a
difference with the normative population at the p < 0.05 level.
ReT z-scores (mean = −0.01) showed no significant differences
from the normative data.

Test–Retest Reliability
Intraclass correlation coefficients were high for MnS scores
(0.84), log-ReT scores (0.94), MnS z-scores (0.83), and ReT
z-scores (0.93). ICCs were lower for the maximal span (0.68)
and total correct (0.67) metrics typically obtained in traditional
SSTs.

Learning Effects
Although MnS scores improved slightly (by 2.4%) over
the repeated tests, omnibus learning effects failed to reach
significance [F(2,96) = 0.64, NS]. No significant improvements
were seen in response times [F(2,96) = 3.16, p < 0.06] or in any
of the other metrics, as shown in Table 2.

DISCUSSION

As in the previous study of visuospatial span (Woods et al.,
2015b), the MnS metric showed lower variance and a reduced
coefficient of variation in comparison with the maximum span
metric traditionally used in CBT studies. Similar results were also
obtained in previous comparisons of traditional and MnS-like
psychophysical measures of digit span (Woods et al., 2011a). This
reflects the fact that the MnS metric estimates spatial span using
contributions from all 14 trials and repeatedly samples spans
above and below the maximal span. In contrast, the traditional
maximal span and the Wechsler total correct metrics reflect only
the trials presented before two trials are missed in a row. As a
result, the traditional sequence-delivery rule increases variance
and systematically underestimates the true spatial span (Woods
et al., 2015b).

The participants in Experiment 1 had slightly better MnS
z-scores than those of the normative population. However, the
span difference (0.29 items) was considerably smaller than the
differences in maximal spatial spans reported in previous large
scale studies using the CBT (Berch et al., 1998). For example,
in large normative studies (350+ participants each) with similar
mean population ages (range 53.4 versus 57.2), Orsini et al. (1986)
reported a maximal span of 4.56, while Monaco et al. (2013)
reported a maximal span of 5.38.

Intraclass correlation coefficient estimates of reliability were
higher for the MnS metric and MnS z-scores than for the
traditional maximal span and the total correct metrics (Lo
et al., 2012). ICCs were also high for the ReT z-score measure,
demonstrating that both visuospatial span and response time
were reliably measured in the C-SST paradigm.

We found no significant learning effects in repeated spatial
span testing. This result was not surprising, as insignificant
learning effects have previously been reported on the WMS SST,
which uses a fixed block display and identical sequences for all

TABLE 2 | Performance metrics in the different experiments.

TotC ML MS MnS MnS-z ReT (ms) L-ReT-z

Normative 5.95 (0.92) 5.93 (1.01) 5.15 (1.20) 5.27 (1.01) 0.00 (1.00) 1742 (426) 0.00 (1.00)

E1a 6.58 (1.01) 6.51 (1.04) 5.73 (1.32) 5.95 (1.03) 0.34 (1.20) 1569 (199) −0.01 (0.80)

E1b 6.52 (0.85) 6.57 (1.00) 5.88 (1.44) 6.04 (1.04) 0.45 (1.18) 1510 (188) −0.25 (0.79)

E1c 6.60 (0.84) 6.71 (1.04) 5.80 (1.22) 6.09 (0.98) 0.50 (1.10) 1511 (251) −0.28 (1.05)

E2. Mal 5.16 (1.11) 4.59 (1.19) 3.80 (1.19) 4.10 (1.18) −1.82 (1.37) 1588 (493) −0.09 (1.49)

E3. mTBI 5.88 (0.76) 6.00 (0.95) 5.04 (1.60) 5.21 (0.89) −0.26 (0.99) 1702 (386) −0.01 (0.80)

E3. sTBI 5.75 (0.50) 5.75 (0.96) 5.25 (0.96) 4.97 (0.80) −0.16 (0.99) 2047 (180) 0.89 (0.31)

TotC, total correct; ML, maximum length reported; MS, Corsi block span, maximum sequence length reported before missing two successive trials; MnS, mean spatial
span; MnS-Z, age- and computer-use regressed MnS z-score; ReT, mean response time; L-ReT-z, z-score of age- and computer-use regressed, log transformed ReTs.
Standard deviations are shown in parentheses.
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FIGURE 2 | Mean spatial span (MnS) of participants as a function of
age. For control participants in the normative dataset (Norm.), participants in
Experiment 1a (Reps), malingering participants (Mal, Experiment 2), and mild
and severe TBI (mTBI and sTBI) patients (Experiment 3).

FIGURE 3 | Mean response times (ReTs) as a function of age. ReTs were
averaged over different list positions. See Figure 2 for group membership
specifications.

tests (Lo et al., 2012). Learning in the C-SST would presumably
be more difficult because the block display changes on each trial
and the list sequences are selected randomly on repeated tests.

EXPERIMENT 2: SIMULATED
MALINGERING

When a patient’s SST results fall into the abnormal range,
the examiner is faced with the challenge of determining
whether impaired performance is due to organic causes or
suboptimal effort. The detection of malingering is particularly

FIGURE 4 | Mean span (MnS) and log-transformed ReT z-scores. The
z-scores were corrected for the contributions of age and computer-use using
multiple regression values from the normative data. Vertical and horizontal red
lines show p < 0.05 abnormality thresholds. See Figure 2 for group
membership specifications.

important in the evaluation of patients with head injury, where
litigation and pension claims often provide financial incentives
to perform with suboptimal effort (Armistead-Jehle, 2010).
Therefore, performance validity tests such as the Test of Memory
Malingering (Tombaugh, 1996) are widely used to evaluate
whether a participant is performing with full effort. In addition
to the standalone performance validity tests, performance validity
metrics (PVMs), embedded measures such as reliable digit span
(Babikian et al., 2006), can be extracted from established cognitive
tests, and multiple PVMs can provide a reliable measure of
suboptimal effort (Larrabee, 2014).

Previous studies have demonstrated decrements in spatial
span in control participants who were instructed to malinger
(Bernard, 1990), and in patients who are thought to be
malingering based on the existence of pension or disability
claims and evidence of malingering on performance-validity tests
(Ord et al., 2008). This has led to efforts to develop PVMs
based on SST performance. For example, Ylioja et al. (2009)
developed a “reliable spatial span” metric for the Wechsler
SST by summing the longest forward and backward spans
repeated correctly on two successive trials of the same length.
They found that a reliable spatial span of six accurately
classified 55% of malingerers and 86% of non-malingerers.
Studies using analogous reliable digit span measures have
reported similar classification accuracies, showing a sensitivity
of 60% in detecting malingerers with a specificity of 89%
(Greve et al., 2007). However, in the same study, normal
digit-span score cutoffs alone accurately classified 58% of
malingering subjects with a specificity of 89%, i.e., the majority
of malingering subjects also had significantly abnormal digit span
scores.
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In clinical practice, patients with test scores that fall within
the normal range are rarely evaluated for signs of malingering.
Rather, examiners are more focused on determining whether
abnormal test scores are due to malingering or organic
impairment. Therefore, in Experiment 2, we evaluated
malingering detection using both standard comparisons
of malingering participants and controls and additional
comparisons of malingering participants with abnormal scores
and control participants with abnormal scores. We investigated
how well three PVMs could identify malingering participants: (1)
z-score cutoffs: We hypothesized that malingering participants
would have a greater incidence of abnormal MnS scores, and that
malingering participants with abnormal scores would produce
abnormalities of greater magnitude than controls with abnormal
scores. (2) Types of errors: On digit span tests, malingering
participants produce different patterns of errors than control
participants (Woods et al., 2011b). Therefore, we investigated
whether the types of errors (e.g., transposition, substitution,
addition, permutation, omission) could identify malingering
participants in the C-SST. (3) Response times: ReT z-scores
in control participants were negatively correlated with MnS
z-scores (r = −0.27), i.e., participants with poorer spans took
longer to respond. In addition, ReT z-scores were positively
correlated with z-score measures of processing speed on other
tests performed on the same day, including simple reaction
time (r = 0.17) (Woods et al., 2015a), choice reaction time
(r = 0.21) (Woods et al., 2015e), the Trail Making Test, Part
A (r = 0.39) (Woods et al., 2015d), and question completion
time (r = 0.44) (Woods et al., 2015g). Since malingering
subjects have difficulty equating the magnitude of deficits on
different processing speed tests (Kertzman et al., 2006; Woods
et al., 2015f), we compared ReT z-scores with the results of
other tests of processing speed obtained during simulated
malingering.

Methods
Participants and Methods
With the exception of the instructions given to participants,
the methods were identical to those used in the first session
of Experiment 1. The 49 participants of Experiment 1 were
given written instructions after the third test session to
perform like a patient with a minor head injury when
participating in a fourth test session during the following
week. The additional instructions were as follows: “Listed
below you’ll find some of the symptoms common after
minor head injuries. Please study the list below and develop
a plan to fake some of the impairments typical of head
injury when you take the next test. Do your best to
make your deficit look realistic. If you make too many
obvious mistakes, we’ll know you’re faking! Symptom list:
Difficulty concentrating for long periods of time, easily
distracted by unimportant things, headaches and fatigue (feeling
“mentally exhausted”), trouble coming up with the right
word, poor memory, difficulty performing complicated tasks,
easily tired, repeating things several times without realizing
it, slow reaction times, trouble focusing on two things at
once.”

Results
Mean performance measures for malingering participants are
included in Table 2. Figure 2 shows MnS scores (green triangles)
and Figure 3 shows ReTs from malingering participants (green
triangles) as a function of age. All span metrics were reduced
in malingering conditions. However, the sensitivity of different
metrics varied considerably. Greater sensitivity to malingering
was seen for MnS measures (28 abnormal scores) in comparison
to maximal span or total correct measures (seven abnormal
scores each). Statistical comparisons showed that malingering
participants as a group produced lower MnS z-scores than
those of the normative control group [MnS z-score = −1.81,
F(1,234) = 108,3, p < 0.0001, partial ω2 = 0.31]. There were
also significant z-score decrements in comparison with full-effort
conditions in Experiment 1a [F(1,48) = 78.29, p < 0.0001, partial
ω2 = 0.62]. Power analysis showed that ten subjects would be
required to have a 95% chance of obtaining a difference at the
p < 0.05 level.

Figure 4 shows the MnS and ReT z-scores from malingering
participants (green triangles). Among the participants instructed
to malinger, 57% produced MnS z-scores in the abnormal range
(p < 0.05, z-score = −1.50). As a result, a z-score cutoff of
−1.5 showed a sensitivity of 57% and a specificity of 95% in
distinguishing malingering participants from controls. When
only those control participants with abnormal z-scores (i.e.,
nine normative controls and three subjects from Experiment
1a) were compared with malingering participants with abnormal
MnS z-scores, greater z-score abnormalities were seen in the
malingering group. For example, a z-score cutoff of 3.0 accurately
categorized 36% of malingering participants and 91% of controls
with abnormal spans, while a z-score cutoff of 2.5 accurately
classified 55% of malingering participants and 73% of controls
with abnormal spans.

Figure 5 shows the types of errors made by different
participant groups. Malingering participants (green bars) showed
an increase in the relative incidence of substitution errors
in comparison with both the normative controls (black bars)
[F(1,234) = 33.07, p < 0.0001, partial ω2 = 0.12] and the
participants in Experiment 1a (red bars) [F(1,48) = 29.90,
p < 0.0001, partial ω2 = 0.38]. Overall, the percentage
of substitution errors showed a sensitivity of 29% and a
specificity of 95% in distinguishing malingering participants from
controls. In addition, there was a strong negative correlation
between MnS z-scores and the percentage of substitution errors
among malingering participants [r = −0.47, t(47) = 3.46,
p < 0.002] that was weaker in control subjects [r = −0.21
in the normative sample, and r = −0.10 in Experiment 1a
participants], i.e., malingering participants with poorer spans
showed a greater incidence of substitution errors. As a result,
among participants with abnormal spans, an abnormal (p < 0.05)
incidence of substitution errors showed 43% sensitivity and
91% specificity in distinguishing malingering subjects from
controls.

Surprisingly, ReT z-scores in malingering subjects
were similar to those of controls [ReT z-score = −0.09,
F(1,234) = 0.28, NS], and did not differ from ReT z-scores
in Experiment 1a [F(1,48) = 0.16, NS]. Figure 6 shows the
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FIGURE 5 | Percentage of errors of different types made by
participants of different groups. Oms, omissions; Adds, additions; Subs,
substitutions; Trans, transpositions; Perms, permutations. Error bars show
standard errors. See Figure 2 for group membership specifications.

FIGURE 6 | Differences in ReT z-scores on the C-SST and two
processing speed tests in malingering and control conditions.
Ordinate: Differences between ReT z-scores and z-scores on the Trail Making
Test, part A (TrAz). Abscissa: Differences between Log ReT z-scores and
Simple Reaction Time z-scores (SRTz). Horizontal and vertical red lines show
the upper limits (p < 0.05) of the difference distribution in the normative
control group of 187 participants (Norm). See Figure 2 for group membership
specifications.

differences between ReT z-scores on the C-SST and z-scores
on two other tests of processing speed, a simple reaction time
test and the Trail Making Test, part A. Participants performing

with full effort in the normative group (blue diamonds) and
Experiment 1a (open red squares) showed similar processing
speed z-scores across the three tests (the maximal group-wise
z-score difference was 0.12 for the subjects in Experiment 1a). In
contrast, the malingerers showed large delays on both the simple
reaction time test (mean z-score = 6.43) and the Trail Making
Test, part A (mean z-score = 1.63) while producing normal ReT
z-scores on the C-SST.

We therefore examined the z-score differences between ReT
z-scores, simple reaction time z-scores, and Trails A z-scores.
All malingering subjects (100%) showed abnormal differences
(p < 0.05, z-score difference >2.07) between ReTs and simple
reaction time z-scores. In addition, 47% showed abnormal
differences (p < 0.05, z-score difference >1.89) between ReT and
Trails A z-scores in comparison to a 5% (by definition) false
positive rate among controls. Considering only those subjects
with abnormal MnS scores, 100% of malingering participants
showed abnormal z-score differences with the simple reaction
time test, and 68% showed abnormal differences with the Trail
Making Test, part A (Figure 6). In contrast, none of the control
subjects with abnormal spans showed abnormal differences
between ReT z-scores and simple reaction time z-scores (i.e.,
sensitivity = 100%, specificity = 100%), while 18% showed
abnormal differences between ReT z-scores and Trail Making
Test part A z-scores (i.e., sensitivity = 68%, specificity = 82%).

Discussion
Previous studies demonstrating reduced spatial span in
malingering participants have suggested that performance cutoffs
can distinguish between malingering and non-malingering
populations (Bernard, 1990; Ord et al., 2008; Ylioja et al., 2009).
We found that an MnS z-score cutoff (p < 0.05) provided
57% sensitivity and 95% specificity. However, when comparing
the subgroups of malingering and control participants with
abnormal spatial spans, we found that cutoff scores provided
more modest sensitivity and specificity. For example, a z-score
of 3.0 provided 36% sensitivity and 91% specificity among the
participants with abnormal spans.

The incidence of substitution errors was increased in
malingering subjects. However, a p < 0.05 cutoff based on the
percentage of substitution errors showed a lower sensitivity (29%)
than the MnS cutoff at a comparable level of specificity (95%).
In contrast, sensitivity improved (to 43%) with little loss of
specificity (93%) when only participants with abnormal MnS
z-scores were considered. This suggests that an increase in the
relative frequency of substitution errors can assist in confirming
malingering in participants with abnormal spatial spans.

Finally, across-test comparisons of ReT z-scores and z-scores
in other processing speed tests proved very sensitive to
malingering. The C-SST was particularly useful in this regard,
perhaps because malingering participants may have been
unaware that processing speed was being incidentally measured
along with item recall during C-SST testing. The difference
between simple reaction time z-scores and ReT z-scores was
within normal limits in 95% of control participants, and
abnormal in 100% of malingering participants. In addition, ReT
versus SRT z-score differences were within the normal range in
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all control subjects with abnormal spatial spans, and abnormal in
all simulated malingerers with abnormal spans.

Z-score differences between ReTs and completion times on
the Trail Making Test, part A also showed a sensitivity of 68%
and a specificity of 82% in distinguishing between simulated
malingerers and control participants with abnormal spans. Thus,
z-score differences in ReTs and other processing-speed measures
proved very sensitive in distinguishing between abnormal spans
associated with simulated malingering and abnormal spans that
occurred in participants performing with full effort.

Limitations
The performance of simulated malingerers could be
distinguished from that of controls with abnormal MnS
scores based on performance cutoffs, error-pattern analysis, and
comparisons of ReT z-scores with z-scores from processing
speed tests. However, it remains unclear whether these
comparisons would distinguish simulated malingerers from
patients with clinical disorders (e.g., schizophrenia, mild
cognitive impairment, etc.) who may show more behavioral
variability and impairments of greater magnitude than control
participants.

TABLE 3 | Traumatic brain injury (TBI) patient characteristics.

ID Age Edu Etiology PT PCL MnS MnDS RT-z

PT001c 35 12 MVA Severe 59 4.27 4.31 0.74

PT002c,d 24 12 Blast Mild 54 6.20 6.50 −1.26

PT003c,d 28 12 Blast Mild 66 4.67 6.23 0.34

PT005d 46 12 MVA Severe 42 5.75 7.37 0.55

PT012c,d 57 16 MVA Severe 56 4.30 4.79 1.02

PT014 30 14 MVA Mild – 4.90 6.67 −0.73

PT038c 52 18 MVA Mild 27 4.00 6.83 −0.57

PT051c,d 41 14 Blasta Mild 45 5.58 6.90 0.88

PT062 20 14 Blasta Mild 41 6.67 7.83 −0.07

PT078b,c 46 14 MVA Severe 46 5.57 7.08 1.26

PT081d 25 14 Fall Mild 0 5.83 5.64 −0.62

PT101 28 13 Blast Mild 47 6.17 6.83 −1.14

PT106d 25 14 Blast Mild 57 4.25 5.42 0.25

PT109 29 10 Blast Mild 54 6.17 7.08 0.44

PT110c,d 47 14 Blasta Mild 52 4.40 6.30 0.35

PT111 28 12 Fall Mild 43 5.40 8.70 0.09

PT112c 29 14 Blast Mild 27 5.03 5.83 −0.94

PT113d 61 16 MVAa Mild 52 5.83 4.79 0.13

PT114c,d 27 14 Blast Mild 72 6.25 5.64 0.03

PT115c,d 48 13 Blast Mild 59 4.33 5.57 0.75

PT117c 49 12 Fall Mild 47 4.90 5.42 −0.01

PT120c 28 14 Fall Mild 68 6.20 8.00 −0.66

PT122c,d 39 16 MVA Mild 64 4.83 6.58 −0.16

PT123c,d 25 12 Blasta Mild 72 3.82 4.10 0.28

PT125c,d 23 14 Fall Mild 67 3.58 5.79 4.47

PT143c,d 29 14 Fall Mild 47 4.42 8.08 1.40

PT174c,d 28 12 Blast Mild 46 5.75 8.25 −0.82

PT, traumatic brain injury severity; PCL, PTSD checklist; Age in years. Edu, years of
education; MVA, moving vehicle accident.aMultiple TBIs. bFemale. cChronic Pain.
dSleep Problems. Two patients who were rejected for suboptimal effort are not
included.

Unlike previous studies of the effects of simulated malingering
on SSTs, the participants in Experiment 2 were familiar
with the C-SST due to their participation in Experiment 1.
Although repeated test exposure did not significantly influence
performance in Experiment 1 (see above), the malingering
strategies adopted by the participants in Experiment 2 may have
been altered by their previous experience with the test. Further
research with naïve malingerers is needed to address this issue.

EXPERIMENT 3: THE EFFECTS OF
TRAUMATIC BRAIN INJURY

There is conflicting information surrounding the deficits in
visuospatial memory that can occur following TBI. Wilde et al.
(2004) found only insignificant differences in the spatial spans
of 22 patients with TBI and a matched control group. However,
deficits in recalling complex visual patterns have been reported
following severe TBI (sTBI), particularly in the acute phase
(Anderson and Catroppa, 2007), and deficits in recalling the
spatial locations of visual patterns have been reported following
mild TBI (mTBI) (Chuah et al., 2004). In general, however, TBI-
related deficits in working memory appear to be more evident
on verbal than visuospatial tasks (Anderson and Catroppa, 2007;
Livengood et al., 2010), consistent with recent studies that find
greater verbal than visuospatial memory deficits among veterans
with mTBI and comorbid post-traumatic stress disorder (PTSD)
(Vasterling et al., 2006; Sozda et al., 2014).

Methods
Participants and Methods
The methods were identical to those used in the first session
of Experiment 1. Thirty Veterans with a diagnosis of TBI
following comprehensive neurological and neuropsychological
examination were recruited from among such patients served
by the Veterans Affairs Northern California Health Care
System. Most of the patients had suffered one or more head
injuries during recent military conflicts. All patients gave
informed written consent following procedures approved by the
Institutional Review Board of the VANorthern California Health
Care System and were compensated for their participation.
The patients included 29 males and one female between the
ages of 20 and 61 years (mean age = 35.5 years), with an
average of 13.6 years of education. All patients had suffered head
injuries and a transient loss or alteration of consciousness, and
had been clinically diagnosed after extensive neurological and
neuropsychological examination. All were tested at least 1 year
post-injury (range 1.3–15 years). Twenty-six of the patients had
suffered one or more combat-related incidents, with a cumulative
loss of consciousness of less than 30 min, no hospitalization, and
no evidence of brain lesions on clinical MRI scans. These patients
had been diagnosed with mTBI. The remaining four patients
had suffered more severe accidents with hospitalization, coma
duration exceeding 8 h, and post-traumatic amnesia exceeding
72 h. These patients had been diagnosed with sTBI. All patients
were informed that the study was for research purposes only
and that the results would not be included in their official
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medical records. Evidence of PTSD, as reflected in elevated scores
(>50) on the Posttraumatic Stress Disorder Checklist (PCL), was
evident in the majority of the TBI sample.

Exclusion of malingering patients
Two patients with mTBI, identified as performing with
suboptimal effort in previous tests (Woods et al., 2015a,d,f),
produced low MnS z-scores (−1.2 and −1.8, respectively).
Both showed increased substitution errors and abnormal z-score
differences between ReT z-scores and z-scores on the simple
reaction time test. The data from both patients were therefore
excluded from further analysis. Table 1 provides overall
demographic information for the 28 remaining patients with
TBI included in Experiment 3, and Table 3 provides additional
information about TBI severity and etiology.

Results
Performance summaries from the remaining patients are
included in Table 2 for mTBI and sTBI groups. MnS scores for
individual mTBI (solid red circles) and sTBI (striped red circles)
patients are included in Figure 2. MnS z-scores (Figure 4) were
insignificantly reduced in the TBI group as a whole compared
to the normative population [z = −0.25, F(1,213) = 1.51, NS],
with similar insignificant reductions seen in the mTBI subgroup
[z = −0.26, F(1,209) = 1.46, NS] and the small sTBI subgroup
[z = −0.16, F(1,189) = 0.11, NS]. Although MnS z-scores in the
TBI group were slightly reduced relative to the performance of
the control subjects in Experiment 1a [F(1,75) = 4.93, p < 0.04,
partial ω2 = 0.05], the effect size was small and further power
analysis showed that 246 subjects would be required to provide
a 95% chance of obtaining a difference with the Experiment 1a
population at the p < 0.05 level. As shown in Figure 5, the types
of errors made by patients with TBI resembled those committed
by the control participants.

Mean patient ReTs are included in Figure 3. Patient ReT
z-scores (Figure 4) showed minimal slowing in the TBI group
as a whole [mean ReT z-score = 0.21, F(1,213) = 1.00, NS],
though the ReT z-scores of the sTBI patient subgroup (mean
z-score = 0.89) showed a weak trend toward increased ReT
z-scores [F(1,189) = 3.16, p < 0.08]. However, power analysis
showed that 1112 subjects would be required to have a 95%
chance of obtaining a difference between sTBI patients and the
normative population at the p < 0.05 level. Z-score differences
in ReTs and processing-speed measures on other tests were also
generally within the normal range (Figure 6).

Discussion
After excluding two patients who showed evidence of
malingering (Armistead-Jehle, 2010), we found no significant
group-level abnormalities in the MnS scores of patients with
TBI. These results are consistent with previous reports of
preserved visuospatial span in TBI patient groups (Wilde et al.,
2004) and contrast with group-level deficits in visuospatial
span seen in other patient populations, including patients with
schizophrenia (Chey et al., 2002), dementia (Wiechmann et al.,
2011), and hemispatial neglect (Luukkainen-Markkula et al.,
2011). We previously found significant abnormalities in digit

span (z-score = −0.52) in the same TBI patient group (Woods
et al., 2011b). One possible explanation is that TBI damage had
greater effect on the anatomical regions subserving digit span
(Baldo et al., 2012) than spatial span (Chechlacz et al., 2014).
Alternatively, digit span may be more sensitive than spatial span
to PTSD co-morbidity (Vasterling et al., 2006; Sozda et al., 2014),
which was common in our patient group (see Table 3).

CONCLUSION

We describe a computerized spatial span test (C-SST) that
provides multiple measures of visuospatial memory span,
including the maximal span metric of the Corsi Block
Test, the total correct metric of the Wechsler Spatial Span
Test, and the psychophysically based mean span (MnS)
metric. The current experiments confirm that the MnS
metric is a more precise measure of visuospatial memory
than the other two metrics, with lower standard deviations
and reduced coefficients of variation in comparison with
traditional measures. In Experiment 1, the MnS showed
higher test–retest reliability than the maximal span or
total correct metrics. Experiment 1 also revealed that
response times (ReTs) were highly reliable across tests,
and that learning effects on both MnS and ReT scores
were insignificant. Experiment 2 examined performance in
simulated malingerers. MnS scores were abnormal in the
majority of malingerers, but MnS z-score cutoffs were only
partially successful in distinguishing simulated malingerers
from control participants, particularly among those with
abnormal spans. The percentage of substitution errors also
increased in malingering, enabling simulated malingerers to
be discriminated from control participants with abnormal
spans with moderate sensitivity and specificity. In addition,
because ReTs did not increase in simulated malingerers, in
contrast to the pronounced slowing seen on other tests of
processing speed, z-score differences in processing speed
measures enabled the discrimination of simulated malingerers
and controls, even those with abnormal spans, with high
specificity and sensitivity. Experiment 3 examined performance
in patients with TBI. Consistent with previous reports, no
significant group-level abnormalities were found. The C-SST
enhances the reliability and sensitivity of spatial span testing,
assists in detecting poor performance due to malingering, and
provides precise measures of visuospatial memory in patient
populations.
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